现在位置:范文先生网>教案大全>数学教案>七年级数学教案>七年级数学上册教案

七年级数学上册教案

时间:2024-07-16 12:44:25 七年级数学教案 我要投稿

【热】七年级数学上册教案

  作为一位不辞辛劳的人民教师,编写教案是必不可少的,编写教案有利于我们科学、合理地支配课堂时间。那么应当如何写教案呢?以下是小编整理的七年级数学上册教案,希望能够帮助到大家。

【热】七年级数学上册教案

七年级数学上册教案1

  教学目标:

  1、能将正方体、长方体、棱锥、棱柱展开成平面图形;并由它们的平面图形折叠成立体图形

  2、在操作活动中认识棱柱的某些特性;

  3、经历折叠、模型制作等活动,发展空间观念,积累数学活动经验;

  教学重点:

  通过活动认识归纳出棱柱的特性,并能初步感受到研究空间问题的思维方法

  教学难点:

  根据简单的立体图形判别平面图形;反之,根据平面图形判别立体图形。

  教学过程:

  一、导入情境

  让学生自己出示现实生活中某些商品的包装盒(课前准备工作),制作这些纸盒,我们是先根据它们表面展开后图形的形状剪裁纸张,再折叠围成,从而引入课题——展开与折叠。

  二、通过动手操作,加强对图形(棱柱)的感受,体会棱柱的`性质做一做

  活动一:

  1、如图1所示的平面图形经过折叠能否围成一个棱柱?请同学们以同桌的形式动手做做看。

  2、操作完后,请学生展示他们制作的模型。

  3、实践验证图1所示的平面图形经过折叠可以围成如图2所示的棱柱。

  4、教师介绍棱柱的各部分名称。

七年级数学上册教案2

  一、教学目标

  1、知识与技能:

  (1)在现实中,认识角是一种基本的几何图形,理解角的概念,掌握角的表示方法。

  (2)认识角的度量单位度、分、秒,能根据角的度量比较角的大小,熟练进行角的换算。

  2、能力目标:培养学生的抽象概括能力,增强应用数学的意识。

  3、情感目标:通过丰富的图形世界进一步理解角的有关概念,感受数学与生活的密切联系,积极参与数学学习活动。

  4、过程与方法:提高学生的识图的能力,学会用运动变化的观点看问题。

  二、教学重点、难点关键

  1、教学重点:角的概念、表示方法及角度制的换算

  2、教学难点:角的表示方法、角度制的换算

  3、关键:学会观察图形是正确表示一个角的关键

  三、学情分析

  角是几何初步知识中比较抽象的概念,学生在小学已经初步接触了角的有关知识,对角的概念、比较、度量有了初步的认识。按照教学目标要求,这节课将进一步对角的概念、比较和度量进行规范。培养学生观察、比较、概括能力,借此引导学生在已有的生活经验和知识的基础上学习数学,理解数学,体会数学与生活的关系。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。本节课设计的教学方法是采用引导发现法,辅之以讨论法

  四、教学准备

  为了提高课堂教学效率,激发学生学习兴趣,培养学生的'空间想象力,本节课采用的是直观教学手段,充分利用多媒体演示,便于学生理解和掌握。

  五、教学用具:

  量角器

  六、教学过程

  (一)引入新课

  1多媒体放映一些生活中图形:时钟,教堂,足球射门请生观察。

  2提出问题:

  时钟的分针和时针,教堂的屋顶,足球与门框,都给我们怎样的平面图形的形象?请把它们画出来。

  学生活动:进行独立思考,画出一个角,然后观看教师的演示过程。

  (二)活动探究,建构新知

  活动一

  角的概念

  师:我们如何给角下定义?请大家根据自己的理解给角下一个定义。生:角的两种定义:

  a、角是由两条具有公共端点的射线组成的图形,两条射线的公共端点上一这个角的顶点,这两条射线是这个角的边;

  b、角也可以看成由一条射线绕着它的端点旋转而成的图形。

  (学生小组活动思考讨论,组内统一意见,代表发言,最后比较各答案得出准确定义。学生对角的概念已初步接触过,让学生进一步加深对角的概念的理解,培养学生抽象概括能力以及语言的表达能力。但由于学生的语言表达能力还不是太强,教师可进行适当的纠正、归纳)

  活动二

  角的表示

  师:如何表示一个角?请同学们阅读课本第136面在关内容,归纳角的表示方法(小组内讨论互助)

  生:角的表示方法有:

  1、角的符号+三个大写字母,如:∠aob

  2、角的符号+一个大写字母,如:∠o

  (顶点处只有一个角时)

  3、角的符号+数字如:∠1

  4、角的符号+希腊字母如∠α

  师:在用这些方法表示角的时候应该注意些什么呢?

  生:用“角的符号+三个大写字母”表示角的时候要用大写字母,顶点的字母应该写在中间;在顶点处只有一个角时,才可以用一个大写的字母表示。

  师:老师再告诉大家一个细节:用数字或希腊字母表示角的时候,要在角上画一个小弧形。另外在角的表示中不能丢了前面角的符号。

  (在课堂教学中,教师应该充分相信学生,让学生在课堂上有充分的活动空间和时间,形成学生自我寻求发展的愿望,充分发挥他们的自主精神。当然,学生在归纳、表述的时候会出现不正确、思维不太严谨的地方,教师可给于适当的引导、纠正)

  尝试应用,反馈矫正

  师:请同学们完成下面的练习

  1、图中共有多少个角?请分别表示出来。

  c

  2、将图中的角用不同方法表示出来并填写下表

  b

  b

  ∠1

  ∠bca∠3∠4abc

  ceda

  获得积极深层次的体验,从而促进学生探究能力的发展)

  活动三

  角的度量与比较

  ab

  师:点a、b、c表示足球比赛中三个不同的射门位置,请同学们:c

  1、先估测图中所示各个角的大小

  2、再用量角器量一量,比较它们的大小,并与同学们交流度量角的方法3、射门角度越大,进球机会越大,请指出在图中哪一点射门最好

  4、对于角的比较大小,你还能有什么好的方法吗?

  生:1、∠b最大

  2、∠a=28°∠b=91°∠c=45°

  量角器的使用方法:“一对中,二合线,三读数”

  1、点b射门最好。

  2、对于角的比较大小,也可以通过叠合的方法来比较。

  (通过学生的探索,让学生明白角的比较方法很多,可以通过估测、度量的方法,也可以通过叠合的方法来比较角的大小)

  (三)、巩固练习,迁移新知

  试一试1、如图打台球的时候,球的反射角总是等于入射角。

  请同学们估测球反弹后会撞击图中的哪一点?

  (问题1以打台球为情景,因为台球是学生喜爱的体育活动,又与角有着密切的关系,可进一步引导学生分析角的三种比较方法)

  2、(1)图中以oa为一边的角有哪几个?请按大小顺序用“﹤”号连接起来;

  (2)∠aoc=∠aob+∠boc,∠aob=∠aod-∠dob。类似地,你还能写

  出哪些有关的角的和与差的关系式?o

  dac

  b

  (问题2具有开放性,教学中要指导学生认真读图,要给学生较为充分的独立思考、相互交流的时间和空间,鼓励学生尽可能多地表述出有关角的和与差的关系式)

  3、已知一条射线oa,若从点o再引两条射线ob、oc,使得∠aob=600,∠boc=300,求∠aoc的度数。

  (问题3的解答中,∠aoc有两种可能,不少同学只得出了一个答案:90°。表现出思维不太严谨,此时教师应该抓住思维训练的契机,培养学生的思维能力)关于角的度量单位,教学时应强调:

  (1)度、分、秒是常用的角的度量单位;

  (2)度、分、秒的进率是60(与时间的单位时、分、秒的换算一样)多媒体出示例题与练习

  (四)、归纳总结,系统知识

  师:本节课学习了哪些知识?

  生:学习了角的概念、角的表示、角的比较与度量,角的换算。

  师:通过本节课的实践、探索、交流与讨论,你有哪些收获?

  生:学会了角的表示方法,角的大小比较方法,并能熟练地进行角度的换算等

  (五)、布置作业:课本p3081、2、3同时出示思考题“用一副三角板,你可以作出哪些特殊的角”作为本节课的延伸。

七年级数学上册教案3

  一、教材分析

  (一)教材的地位和作用

  本节内容是一元一次方程应用的延伸与拓展,它进一步让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,同时又渗透了函数与不等式的思想,为以后内容学习奠定了必要的数学基础,本节内容具有承上启下的作用.学生能深刻地认识到方程是刻画现实世界有效的数学模型,领悟到“方程”的数学思想方法.总之,本节内容无论在知识上还是在数学思想方法上,都是十分很好的素材,能很好培养学生的探索精神、应用意识以及创新能力.

  (二)教材的重难点

  本节的重点是探索并掌握列一元一次方程解决实际问题的方法.而方程的建模思想学生还是初步接触,寻找相等关系对学生来说仍相当困难,所以确定“找出已知量与未知量之间的关系,尤其是相等关系”为本节的难点之一,列方程解应用题的最终目标是运用方程的解对客观现实作出合理的解释,这是本节的难点之二.

  二、教学目标分析

  (一)知识技能目标

  1.目标内容

  (1) 结合生活实际,会在独立思考后与他人合作,结合估算和试探,列出一元一次方程解决本节的三个实际问题,并能解释结果的实际意义及其合理性.

  (2) 培养学生建立方程模型来分析、解决实际问题的能力以及探索精神、合作意识.

  2.目标分析

  (1) 本节的内容就是通过列方程、解方程来解决实际问题,这是必须掌握的知识,估算与试探的思维方法也很重要,这是发现和解决问题的有效途径.

  (2) 七年级的学生对数学建模还比较陌生,建模能突出应用数学的意识,而探索精神和合作意识又是课标所大力倡导的,因而必须加强培养学生这方面的能力.

  (二)过程目标

  1.目标内容

  在活动中感受方程思想在数学中的作用,进一步增强应用意识.

  2.目标分析

  利用方程解决问题是有用的数学方法,学生在前两节的数学活动中,有了一些初步的经验,但是更接近生活,更富有挑战性的.问题则需要师生合作,探索解决.

  (三)情感目标

  1.目标内容

  (1) 在探索中获得成功的体验,激发学生学习数学的热情,享受与他人合作的乐趣,建立自信心.

  (2) 通过对实际问题的解决,进一步体会“数学来源于生活,且服务于生活”的辩证思想.

  2.目标分析

  七年级学生的年龄特征决定了他们好奇心强、思想活跃、求知心切.利用教材培养学生良好的学习习惯、方法和品质,这是落实新课标倡导的教育理念的关键.

  三、教材处理与教法分析

  本节内容拟定两课时完成,今天说课的内容是第一课时(探究Ⅰ、探究Ⅱ).根据本节课的特点及七年级学生的心理特征和认知特征,本节课采用探索发现法进行教学,在活动中充分体现学生是学习的主人,教师是学习的组织者、引导者、合作者.本课借助多媒体辅助教学,给学生以直观形象的演示,增强感性认识,增强教学效果.课中以设疑提问、分组活动等方式,激发学生的兴趣,引导学生自主探索与合作交流,主动获得知识.

  四、教学过程分析

  (一)教学过程流程图

  探究Ⅰ

  (二)教学过程Ⅰ

  (以探究为主线、形式多样化)

  1.问题情境

  (1) 多媒体展示有关盈亏的新闻报道,感受生活实际.

  (2) 据此生活实例,展示探究Ⅰ,引入新课.

  考虑到学生不完全明白“盈利”、“亏损”这样的商业术语,故针对性地播放相关新闻报道,然后引出要探索的问题Ⅰ.

  2.讨论交流

  (1) 学生结合自己的生活实际,交流对“盈利”、“亏损”含义的理解.

  (2) 学生交流后,老师提出问题:某件商品的进价是40元,卖出后盈利25%,那么利润是多少?如果卖出后亏损25%,利润又是多少?(利润是负数,是什么意思?)

  (3) 要求学生对探究Ⅰ中商店的盈亏进行估算,交流讨论并说明理由.在讨论中学生对商店盈亏可能出现不同的观点,因此引导学生用数学方法解决问题,统一认识.

  (4) 师生互动,要知道究竟是盈是亏,必须先知道什么?从而引出要算出每件衣服的进价.

  让学生讨论盈利和亏损的含义,理解其概念,建立感性认识;乍一看,大多数学生可能在大体估算后得到不亏不盈,直觉上也是如此,但要解决实际问题,还要知其原价(未知量),从这一分析引入未知量,为后面建立模型,做了必要的铺垫.

  3.建立模型

  (1) 学生自主探索,寻找已知量与未知量之间的关系,确定相等关系.

  (2) 学生分组,根据找出的相等关系列出方程,其中一组计算盈利25%的衣服的进价,另一组计算亏损25%的衣服的进价.

  (3) 师生互动:①两件衣服的进价和为________;②两件衣服的售价和为________;③由于进价________售价,由此可知两件衣服的盈亏情况.

  (教师及时给出完整的解答过程)

  学生分组、计算盈亏;教师参与、适当提示;师生互动、得到决策.这样设计,让学生体会到合作交流、互相评价、互相尊重的学习方式,有利于学生知识的形成与发展,也有利于学生健康人格的养成.这样设计易于突出重点,突破难点,巩固应用一元一次方程作工具来解决实际问题的方法,也很好地让学生从已有的经验中、活动中,有意义地构建自己的知识结构,获得富有成效的学习体验.

  4.小结

  一个感悟:估算与主观判断往往与实际情况大相径庭,需要我们通过准确的计算来检验自己的判断.

  培养学生科学的学习态度与严谨的学习作风.

  探究Ⅱ

  (三)教学过程Ⅱ

  1.在灯具店选购灯具时,由于两种灯具价格、能耗的不同,引起矛盾冲突.

  恰当的问题情境激发学生探索的欲望,同时让学生体会到数学来源于生活,又服务于生活的实用性.

  启发:选择的目的是节省费用,费用又是由哪些因素决定的?学生讨论得出结论:

  2.列代数式

  费用=灯的售价+电费

  电费=0.5×灯的功率(千瓦)×照明时间(时)

  在此基础上,用t表示照明时间(小时).要求学生列出代数式表示这两种灯的费用.

  节能灯的费用(元):60+0.5×0.011t.

  白炽灯的费用(元):3+0.5×0.06t.

  分析各个量之间的关系,列出代数式,为后面列方程,并进一步探索提供了基础.

  3.特值试探

  具体感知

  学生分组计算:

  t=1000、20xx、2500、3000时,这两种灯具的使用费用,填入下表:

  时间(小时)

  1000

  20xx

  2500

  3000

  节能灯的费用(元)

  白炽灯的费用(元)

七年级数学上册教案4

  一:说教材:

  1教材的地位和作用

  本节课是在学习了有理数加减法及乘除法法则的基础上学习的。本节课对前面所学知识是一个很好的小结,同时也为后面的有理数混合运算做好铺垫,很好地锻炼了学生的运算能力,并在现实生活中有比较广泛的应用。

  3教育目标

  (1)、知识与能力

  ①能按照有理数加减乘除的运算顺序,正确熟练地进行运算。

  ②培养学生的观察能力、分析能力和运算能力。

  (2)、过程与方法

  培养学生在解决应用题前认真审题,观察题目已知条件,确定解题思路,列出代数式,并确定运算顺序,计算中按步骤进行,最后要验算的好习惯。

  (3)、情感态度价值观

  通过本例的学习,学生认识到如何利用有理数的四则运算解决实际问题,并认识到小学算术里的四则混合运算顺序同样适用于有理数系,学生会感受到知识普适性美。

  4教学重点和难点

  重点和难点是如何利用有理数列式解决实际问题及正确而

  合理地进行计算。

  二:说教法

  鉴于七年级学生的年龄特点,他们对概念的理解能力不强,精神不能长时间集中,但思维比较活跃。尝试指导法,以学生为主体,以训练为主线。为了突出学生的主体性,使学生积极参与到数学活动中来,采用了问题性教学模式。“以学生为主体、以问题为中心、以活动为基础、以培养分析问题和解决问题能力为目标。

  三:说学法指导

  本例将指导学生通过观察、讨论、动手等活动,主动探索,发现问题;互动合作,解决问题;归纳概括,形成能力。增强数学应用意识,合作意识,养成及时归纳总结的良好学习习惯。

  四:师生互动活动设计

  教师用投影仪出示例题,学生用抢答等多种形式完成最终的解题。

  五:说教学程序

  (课本36页)例9:某公司去年1~3月份平均每月亏损1。5万元,4~6月份平均每月盈利2万元,7~10月份平均每月盈利1。7万元,11~12月份平均每月亏损2。3万元,这个公司去年盈亏情况如何?

  师生共析:认真审题,观察、分析本题的问题共同回答以下问题:

  1全年哪几个月是亏损的?哪几个月是的'盈利的?

  2各月亏损与盈利情况又如何?

  3如果盈利记为“ ”,亏损记为“—”,那么全年亏损多少?

  盈利多少?

  6你能将亏损情况与盈利情况用算式列出来吗?

  (5)通过算式你能说出这个公司去年盈亏情况如何吗?

  【师生行为】:由教师指导学生列出算式并指出运算顺序(有理数加减乘除混合运算,如无括号,则按“先乘除后加减”的顺序进行。)再由学生自主完成运算。

  【教法说明】:此题一方面可以复习加法运算,另一方面为以后学习有理数混合运算做准备,特别注意运算顺序。同时训练了学生的观察,分析题目的能力。为以后解决实际问题做准备。

  (三):归纳小结

  今天我们通过例9的学习懂得了遇到实际问题应把实际问题通过“观察—分析—动手”的过程用数学的形式表现出来,直观准确的解决问题。

  六:说板书设计

  板书要少而精,直观性要强。能使学生清楚的看到本节课的重点,模仿示范例题熟练而准确的完成练习。也能体现出学生做题时出现的问题,便于及时纠正。

七年级数学上册教案5

  教学目标:

  知识能力:理解有理数的概念,掌握有理数的两种分类方法,能够按要求对给定的有理数进行分类。

  过程与方法:通过本节的学习,培养学生正确的分类讨论观点和分类能力。

  情感、态度、价值观:通过本节课的学习,体验成功的喜悦,保持学好数学的信心。

  教学重点:

  掌握有理数的两种分类方法

  教学难点:

  给定的数字将被填入它所属的'集合中

  教学方法:

  问题导向法

  学习方法:

  自主探究法

  教学过程:

  一、形势归纳

  小学我们学了整数和分数,上节课我们学了正数和负数。谁能快速提出以下问题?

  1、有以下数字:15,—1/9,—5,2/15,—13/8,0.1,—5.22,—80,0,123,2.33

  (1)将以上数字填入以下两组:正整数集{}和负整数集{}。你填完了吗?

  (2)将以上数字填入以下两个集合:整数集合{}和分数集合{}。你填完了吗?

  称整数和分数为有理数。(指点题,板书)

  二、自学指导

  学生自学课本,根据课本寻找自学的机会

  提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。

  三、展示归纳

  1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;

  2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;

  3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。

  四、变式练习

  逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。

  五、总结与反思:通过本节课的学习,你有什么收获?

  六、作业:必做题:课本14页:1、9题

七年级数学上册教案6

  一、教学目标

  1.使学生认识平行线的特征,能灵活地利用平行线的三个特征解决问题.

  2.继续对学生进行初步的数学语言的训练,使学生能用数学语言叙述平行线的特征,并能用初步的数学语言进行简单的逻辑推理.

  3.使学生理解平移的思想,知道图形经过平移以后的位置,并能画出平移后的图形.

  4.通过利用“几何画板”所做的数学实验的演示等,培养学生的观察能力,即在图形的运动变化中抓住图形的本质特征,发展学生逻辑思维能力,通过实际问题的解决培养学生分析问题和解决问题的能力.

  5.通过课堂设疑,培养学生勇于发现、探索新知识的'精神.

  6.通过创设问题情境,让学生亲身体验、直观感知并操作确认,激发学生自主学习的欲望,使之爱学、会学、学会、会用.

  二、教学重点

  平行线的三个特征.

  三、教学难点

  灵活地利用平行线的三个特征解决问题.

  四、教学过程

  老师:同学们,如图所示,是我们大连的马栏河,河上有两座桥:新华桥和光明桥.河的两岸是两条平行的公路:黄河路与高尔基路,某测量员在A点测得.如果你不通过测量,能否猜出的度数是多少?

  王亮:.

  老师:他到底猜得对不对呢?下面我们要先做一个实验,拿出尺子,画两条平行的直线a、b,第三条直线l和这两条直线相交,标出所得到的角,用量角器量出各个角的度数,观察当两直线平行时,各种角有什么关系.

  学生动手按要求做实验.

  老师:将你发现的规律与组内同学进行交流.

  学生以小组为单位进行交流与研究.

  老师:请每组派一名代表将你们得到的规律写到黑板上,并结合你画的图讲解你们组的结论.

  第1组学生代表:如果两直线平行,同位角就相等。

七年级数学上册教案7

  一、教材分析

  “数据的收集”是华东师大版《数学》七年级(上)中第五章第一节的第一个学习内容,在本章教材中起着对后面进一步学习的铺垫作用,数据的收集是从学生身边熟悉的简单问题入手,经历数据的收集过程,让学生体会数据的作用,进而养成用数据说话的习惯。

  二、教学目标

  (一)知识与技能目标

  1。通过实际问题理解额数与频率的概念。

  2。在收集数据的过程中,了解收集数据的方法和步骤。

  3。能够多角度对数据进行分析,并能够根据数据作出合理的解释和推断。

  (二)过程与方法目标

  1。经历数据的处理过程,学会合作学习,学会相互交流、相互评价。

  2。在形成猜想和作出决策的过程中,形成解决问题的一些基本策略,发展实践能力。

  (三)情感与态度目标

  1。通过利用数据的收集解决身边的一些简单问题,初步体验数据在解决实际问题中的作用,感受所学知识是有价值的。

  2。在问题解决的过程中,体验与他人合作的重要性,品尝发现带来的.欢乐,树立学好数学的自信心。

  三、教学重点

  在合作讨论的过程中体会数据的作用。

  四、教学难点

  利用数据进行分析。

  五、教学过程

  (一)创设问题情境

  师:李小姐有一个工厂,管理人员有李小姐、6个亲戚;工作人员有5个领工、10个工人和1名学徒,现在需要增加一个新工人。

  小张姐姐应征而来,与李小姐交谈,李小姐说:“我们这里的报酬不错,平均工资是每周300元。”小张姐姐工作几天以后,找到李小姐说:“你欺骗了我,我已经问过其他工人,没有一个工人的工资超过每周300元,平均工资怎么可能是300元呢?”李小姐说。“小张。平均工资是300元,不信,你看这张工资表”

  人员李小姐亲戚领工工人学徒合计

  工资/人2200250220200100——

  人数16510123

  工资总数22001500110020001006900

  请大家仔细观察表中的数据,讨论回答下面的问题:

  李小姐说平均每周工资300元是否欺骗了小张姐姐

七年级数学上册教案8

  内容:整式的乘法—单项式乘以多项式 P58-59

  课型:新授 时间:

  学习目标:

  1、在具体情景中,了解单项式和多项式相乘的意义。

  2、在通过学生活动中,理解单项式和多项式相乘的法则,会用它们进行计算。

  3、培养学生有条理的思考和表达能力。

  学习重点:单项式乘以多项式的法则

  学习难点:对法则的理解

  学习过程

  1.学习准备

  1.叙述单项式乘以单项式的法则

  2.计算

  (1)(- a2b) ?(2ab)3=

  (2) (-2x2y)2 ?(- xy)-(-xy)3?(-x2)

  3、举例说明乘法分配律的应用。

  2.合作探究

  (一)独立思考,解决问题

  1、 问题: 一个施工队修筑一条路面宽为n m的.公路,第一天修筑 a m长,第二天修筑长 b m,第三天修筑长 c m,3天工修筑路面的面积是多少?

  结合图形,完成填空。

  算法一:3天共修筑路面的总长为(a+b+c)m,因为路面的宽为bm,所以3

  天共修筑路面 m2.

  算法二:先分别计算每天修筑路面的面积,然后相加,则3天修路面 m2.

  因此,有 = 。

  3.你能用字母表示乘法分配律吗?

  4.你能尝试单项式乘以多项式的法则吗?

  (二)师生探究,合作交流

  1、例3 计算:

  (1) (-2x) (-x2?x+1) (2)a(a2+a)- a2 (a-2)

  2、练一练

  (1)5x(3x+4) (2) (5a2? a+1)(-3a)

  (3)x(x2+3)+x2(x-3)-3x(x2?x-1)

  (4)(?a)(-2ab)+3a(ab-b-1))

  (三)学习

  对照学习目标,通过预习,你觉得自己有哪些方面的收获?有什么疑惑?

  (四)自我测试

  1、教科书P59 练习 3,结合解题,单项式乘以多项式的几何意义。

  2、判断题

  (1)-2a(3a-4b) =-6a2-8ab ( )

  (2) (3x2-xy-1) ? x =x3 -x2y-x ( )

  (3)m2- (1- m) = m2- - m ( )

  3、已知ab2=-1,-ab(a2b3-ab3-b)的值等于 ( )

  A. -1 B. 0 C. 1 D. 无法确定

  4、计算(20xx 贺州中考)

  (-2a)?( a3 -1) =

  5、(3m)2(m2+mn-n2)=

  (五)应用拓展

  1、计算

  (1)2a(9a2-2a+3)-(3a2) ?(2a-1)

  (2)x(x-3)+2x(x-3)=3(x2-1)

  2、若一个梯形的上底长(4m+3n)cm,下底长(2m+n)cm,高为3m2n cm,求此梯形的面积。

  3、一块边长为xcm的正方形地砖,因需要被裁掉一块2cm宽的长条,为剩下部分面积是多少?

七年级数学上册教案9

  一、教学目标

  知识与技能

  1.理解单项式及单项式系数、次数的概念。

  2.会准确迅速地确定一个单项式的系数和次数。

  过程与方法

  通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。

  情感态度与价值观

  初步培养学生观察、分析、抽象、概括等思维能力和应用意识。

  二、重点难点

  重点

  列单项式表示数量关系,单项式及其系数、次数的意义.

  难点

  列单项式表示数量关系.

  三、学情分析

  本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习。要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫。

  四、教学过程设计

  问题设计师生活动设计意图

  [活动1]

  举世瞩目的青藏铁路于20xx年7月1日建成通车,实现了几代中国人梦寐以求的愿望。青藏铁路是世界上海拔最高、线路最长的`高原铁路。青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段。列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答问题:

  列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?

  提问:字母表示数有什么意义?

  学生独立思考,尝试解决

  解答:

  1002=200千米

  1003=300千米

  100t=100t千米

  我们用含字母t的式子100t表示路程。用字母表示数后,可以用含有字母的式子把数量关系简明地表达出来,更适合一般规律的表达。

  从学生已有的数学经验和现实问题情境出发,感受用字母表示数的意义。

  以青藏铁路为引例,对学生进行爱国主义教育的德育渗透。

七年级数学上册教案10

  教学目标

  知识与技能:

  1.会求代数式的值,会利用代数式求值判断代数式所反应的规律;

  2.能利用求代数式的值解决较简单的实际问题;

  过程与方法:

  3.通过求代数式的值,体会代数式实际上是由计算程序反映的一种数量间的关系;

  4.将不同的数代入同一代数式,求出相应的值,能够从所得代数式的值来判断代数式所反映的规律,体会抽象的代数式与实际数量关系之间的关系.

  情感态度价值观:

  5.通过代数式求值,感受数学中的程序化和抽象性,感受抽象的字母和具体的数之间的关系,进一步理解字母表示数的意义,进一步增强符号感.

  教学重点

  理解代数式的意义,会求代数式的值

  教学难点

  利用代数式求值推断代数式所反映的规律

  教学方法

  引导、探究法,即引导学生发现规律,使其在探究过程中掌握知识

  教学准备

  多媒体,或投影仪,胶片

  课时安排

  1课时

  教学过程

  Ⅰ.巧设情景问题,引入课题

  [师]我们在探讨了代数式之后,不仅能用字母与代数式表示数量关系,还能解释一些代数式的实际背景或几何意义.

  下面我们来看一组数值转换机:(出示投影片§3.3A),大家想一想,做一做.

  下面是一组数值转换机,写出图1的输出结果,找出图2的转换步骤:

  [生1]图1的输出结果是:6x-3.

  图2的转换步骤:-3、×6.

  [师]这位同学书写的跟你们的一样吗?

  [生齐声]一样.

  [师]很好,同学们写得很正确,这两个数值转换机由于转换的步骤不一样,因此输出的代数式也不一样.

  我们已经知道,表示数的字母具有任意性和确定性.当给出代数式时,如:6x-3,字母x可以取任何有理数,当给出未知数的值时,如x=5时,求6x-3的值,这时,x只能是5这个确定的数.

  今天我们就来研究第三节:代数式求值.

  Ⅱ.讲授新课

  当我们把一些数输入“数值转换机”时,通过一个算法,相应得就会得到一些数值.下面大家来做一做,填下表.(出示投影片§3.3B)

  输入-2-

  00.26

  4.5

  图1输出

  图2输出

  (学生计算,使他们认识到代数式求值就是转换过程或是某种计算).

  [师]大家在运算时一定要注意:要按转换的步骤进行.填出结果了吗?……来同桌间相互检查.××同学说说你的结果.

  [生]

  [师]同学们做得都不错,很好,下面,我们来比赛一下,看谁做得又对又快.(出示投影片§3.3C)

  议一议:

  填写下表,并观察下列两个代数式的值的变化情况:

  (1)随着n的值逐渐变大,两个代数式的值如何变化?

  (2)估计一下,哪个代数式的值先超过100?

  (学生积极发言,大多同学填得对)

  [生]

  [师]很好,大家计算得又对又快,接下来我们分组讨论:(1)、(2)问题,并总结.

  [生]随着n的值逐渐变大,两个代数式的值也逐渐变大.

  根据值的变化趋势,我估计:n2的值先超过100.

  [师]对,代数式的值是由其所含的字母取值所确定的,并随字母取值的变化而变化,字母取不同的值,代数式的值可能不同,也可能相同.求出代数式的值后,根据值的变化趋势还可以进行预测、推断代数式所反映的规律.

  下面我们来做练习,进一步体会本节课的内容:

  Ⅲ.课堂练习

  (一)课本P99随堂练习

  1.人体血液的质量约占人体体重的6%~7.5%.

  (1)如果某人体重是a千克,那么他的血液质量大约在什么范围内?

  (2)亮亮的体重是35千克,他的血液质量大约在什么范围内?

  (3)估计你自己的血液质量?

  答案:(1)6%a千克~7.5%a千克

  (2)亮亮的'血液质量大约在2.1千克到2.625千克之间

  (3)让学生估计计算一下

  2.物体自由下落的高度h(米)和下落时间t(秒)的关系,在地球上大约是:

  h=4.9t2,在月球上大约是:h=0.8t2.

  (1)填写下表

  (2)物体在哪儿下落得快?

  (3)当h=20米时,比较物体在地球上和月球上自由下落所需的时间.

  答案:(1)

  (2)地球

  (3)通过表格,估计当h=20米时,t(地球)≈2秒,t(月球)≈5秒

  (二)试一试

  1.当a=-1,-0.5,0,0.5,1,1.5,2时,a2-a是正数还是负数?当|a|>2时,估计a2-a是正数还是负数?

  解:本题可列表进行比较.

  通过估计得:当|a|>2时,a2-a>0

  2.当a=-4,-3,-2,-1,1,2,3,4时,分别求出代数式a2+的值.你发现了什么?

  解:

  从计算的结果中发现:当a取互为相反数的值时,a2+的值相等;当|a|>1时,a的绝对值变大,a2+的值也变大.

  Ⅳ.课时小结

  通过本节课的学习,我们会求代数式的值,对于一个代数式,它所含的字母取不同的值时,所得代数式的值,一般也不同,所以在求代数式的值时,要注意解题步骤:(1)代入.

  (2)计算.

  Ⅴ.课后作业

  (一)看课本P98;P99的读一读.

  (二)课本习题3.31、2、3、4.

  (三)(1)预习内容:P102~103

  (2)预习提纲

  1.项的系数和项的概念.

  2.进一步理解字母表示数的意义.

  Ⅵ.活动与探究

  1.下面是两个数值转换机,请你输入五组数据,比较两个输出的结果,发现了什么?

  根据上题的启示,你能设计出两个数值转换机来验证:a2-2ab+b2=(a-b)2吗?

  过程:让学生根据题意,求代数式的值.然后讨论、总结,最后根据总结的规律与等式a2-2ab+b2=(a-b)2进行比较,设计两个数值转换机.

  结果:通过输入数值,进行计算,发现了两个输出的结果相等,即:

  a2+b2+2ab=(a+b)2

  根据上题的启示,设计出如下的两个数值转换机,使得:a2-2ab+b2=(a-b)2.

  2.已知=7,求的值.

  过程:让学生审清题,不要盲目计算.从题中知:与正好是互为倒数,整体代入,问题可轻松解决.

  结果:因为=7,所以:=.

  所以:原式=2×7-×=13.

  板书设计

  §3.3代数式求值

  一、“数值转换机”求值三、课堂练习

  二、议一议

  四、课时小结

  规律五、课后作业

七年级数学上册教案11

  【学习目标】:

  1、掌握正数和负数概念;

  2、会区分两种不同意义的量,会用符号表示正数和负数;

  3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。

  【重点难点】:正数和负数概念

  【教学过程】:

  一、知识链接:

  1、小学里学过哪些数请写出来:

  2、阅读课本P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:

  3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?

  二、自主学习

  1、正数与负数的产生

  (1)、生活中具有相反意义的量

  如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。请你也举一个具有相反意义量的例子: 。

  (2)负数的产生同样是生活和生产的需要

  2、正数和负数的表示方法

  (1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的`—3、—8、—47。

  (2)活动: 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.

  (3)阅读P2的内容

  3、正数、负数的概念

  1)大于0的数叫做 ,小于0的数叫做 。

  2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

  【课堂练习】:

  1. P3第1,2题(直接做在课本上)。

  2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。

  3.已知下列各数:?13,?2,3.14,+3065,0,-239; 54

  则正数有_____________________;负数有____________________。

  4.下列结论中正确的是 ????????????????( )

  A.0既是正数,又是负数

  C.0是最大的负数

  【要点归纳】:

  正数、负数的概念:

  (1)大于0的数叫做 ,小于0的数叫做 。

  (2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

  【拓展训练】:

  1.零下15℃,表示为_________,比O℃低4℃的温度是_________。

  2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,

  其中最高处为_______地,最低处为_______地.

  3.“甲比乙大-3岁”表示的意义是______________________。

  4.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。

  【课后作业】P5第1、2题

七年级数学上册教案12

  教学目标

  1.会利用合并同类项的方法解一元一次方程;(重点)

  2.通过对实例的分析、体会一元一次方程作为实际问题的数学模型的作用.(难点)

  教学过程

  一、情境导入

  1.等式的基本性质有哪些?

  2.解方程:(1)x-9=8; (2)3x+1=4.

  3.下列各题中的两个项是不是同类项?

  (1)3xy与-3xy;  (2)0.2ab与0.2ab;

  (3)2abc与9bc; (4)3mn与-nm;

  (5)4xyz与4xyz; (6)6与x.

  4.能把上题中的同类项合并成一项吗?如何合并?

  5.合并同类项的法则是什么?依据是什么?

  二、合作探究

  探究点一:利用合并同类项解简单的一元一次方程

  例1解下列方程:

  (1)9x-5x=8;

  (2)4x-6x-x=15.

  解析:先将方程左边的同类项合并,再把未知数的系数化为1.

  解:(1)合并同类项,得4x=8.

  系数化为1,得x=2.

  (2)合并同类项,得-3x=15.

  系数化为1,得x=-5.

  方法总结:解方程的实质就是利用等式的性质把方程变形为x=a的形式.

  探究点二:根据“总量=各部分量的和”列方程解决问题

  例2足球表面是由若干个黑色五边形和白色六边形皮块围成的.,黑、白皮块数目的比为3∶5,一个足球表面一共有32个皮块,黑色皮块和白色皮块各有多少个?

  解析:遇到比例问题时可设其中的每一份为x,本题中已知黑、白皮块数目比为3∶5,可设黑色皮块有3x个,则白色皮块有5x个,然后利用相等关系“黑色皮块数+白色皮块数=32”列方程.

  解:设黑色皮块有3x个,则白色皮块有5x个,根据题意列方程3x+5x=32,解得x=4,则黑色皮块有3x=12(个),白色皮块有5x=20(个).

  答:黑色皮块有12个,白色皮块有20个.

  方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的数量关系,列出方程,再求解.此题的关键是要知道相等关系为:黑色皮块数+白色皮块数=32,并能用x和比例关系把黑皮与白皮的数量表示出来.

  三、板书设计

  1.用合并同类项的方法解简单的一元一次方程.

  解方程的步骤:

  (1)合并同类项;

  (2)系数化为1(等式的基本性质2).

  2.找等量关系列一元一次方程.

  列方程解应用题的步骤:

  (1)设未知数;

  (2)分析题意找出等量关系;

  (3)根据等量关系列方程;

  (4)解方程并作答.

  教学反思

  本节从复习入手,帮助学生回顾合并同类项的相关知识,为学习用合并同类项解方程做好铺垫.教学中采用引导发现的方法,课堂训练中鼓励自己动手,体现学生在课堂上的主体地位;整个教学过程中充分调动学生学习积极性,培养学生合作学习,主动探究的习惯.

七年级数学上册教案13

  1.1 生活中的立体图形

  〖教学过程:

  一、看一看:(情境创设)

  教师(导语):在我们的生活中,充满着各种各样的图形,其优美的结构值得我们鉴赏,其奇妙的性质等着我们去探究。请听来自世界图形的对话吧。

  设计:(1)卡通A(代表平面图形):“我是平面图形,是大家的老朋友,我家的家庭成员一定比你家多。”

  (2)卡通B(代表立体图形):“我是立体图形,是大家的新朋友,大家知道的并不一定比你少。”

  教师(问):卡通A、B身体各部分是什么图形?

  通过卡通A、B 的对话,组织学生讨论,派代表指着屏幕上图形说明自己的观念,让学生主动参与,激起他们的兴趣。培养集体意识,增强团队精神。

  教师(导语):看来同学们非常善于观察图形,不知你们能否用数学的眼光观察生活中的图形?请看来自生活中的立体图形。

  (出示课题):生活中的立体图形

  音乐响起,屏幕播放录象。

  二、议一议(课堂讨论)

  问题1:你发现录象中的这些物体与哪些立体图形相类似,你能找出与这些立体图形相类似的物体吗?

  组织学生围绕以上问题四人一小组讨论,说明自己的`观念,其他小组积极点评,补充,得出常见的立体图形:圆柱、圆锥、正方体、球、棱锥。

  问题2:比较这些立体图形,看看相互之间有什么相同点和不同点?

  电脑演示:(1)球体 (2)圆柱 (3)圆锥

  并通过实物展示,引导学生观察、讨论、归纳,得出常见的立体图形的分类:球体、柱体、椎体。

  电脑演示:由圆柱变成棱柱(三棱柱、四棱柱、五棱柱┉┉),

  问题3 以三棱柱为例,说出一个棱柱的棱数与底面的边数,侧面的平面的个数之间的关系?

  诱导学生思考:当棱柱的棱柱的棱数越来越多时,棱柱就越来越趋向于什么立体图形?

  (用类似的方法),电脑演示:将圆锥演变成棱椎(三棱锥、四棱锥、五棱椎┉),再由棱锥演变成圆锥。

  通过一连串的活动,让学生掌握从特殊到一般,再有一般到特殊的的认知思想,了解图形之间的相互联系。通过对比,确立分类思想。并用类比的方法,自主的讨论、归纳,突出重点、化解难点,在轻松的氛围中学习。

  三、练一练(评价)

  遵循“由浅入深,循序渐进,由感性到理性”的认知规律,依据“主体参与,分层优化,及时反馈,激励评价”的原则,我设计了以下训练题:

  1、发给学生一些图片或实物,说说手中的图形,是什么立体图形?没有发到的学生,举出立体图形的实例。

  尽量让每个学生都发言,注意培养学生的语言表达能力。

七年级数学上册教案14

  教学目的:

  1.知识与技能

  体会有理数乘法的实际意义;

  掌握有理数乘法的运算法则和乘法法则,灵活地运用运算律简化运算。

  2.过程与方法

  经历有理数乘法的推导过程,用分类讨论的思想归纳出两数相乘的法则,感悟中、小学数学中的乘法运算的重要区别。

  通过体验有理数的乘法运算,感悟和归纳出进行乘法运算的一般步骤。

  3.情感、态度与价值观

  通过类比和分类的思想归纳乘法法则,发展举一反三的能力。

  教学重点:

  应用法则正确地进行有理数乘法运算。

  教学难点:

  两负数相乘,积的符号为正。

  教具准备:

  多媒体。

  教学过程:

  一、引入

  前面我们已经学习了有理数的加法运算和减法运算,今天,我们开始研究有理数的乘法运算.

  问题一:有理数包括哪些数?

  回答:有理数包括正整数、正分数、负整数、负分数和零.

  问题二:小学已经学过的乘法运算,属于有理数中哪些数的运算?

  回答:属于正有理数和零的乘法运算.或答:属于正整数、正分数和零的乘法运算.

  计算下列各题;

  以上这些题,都是对正有理数与正有理数、正有理数与零、零与零的乘法,方法与小学学过的相同,今天我们要研究的有理数的乘法运算,重点就是要解决引入负有理数之后,怎样进行乘法运算的问题.

  二、新课

  我们以蜗牛爬行距离为例,为区分方向,我们规定:向左为负,向右为正,为区分时间,我们规定:现在前为负,现在后为正。

  如图,一只蜗牛沿直线l爬行,它现在的位置恰在l上的点O。

  1.正数与正数相乘

  问题一:如果蜗牛一直以每分2cm的速度向右爬行,3分后它在什么位置?

  讲解:3分后蜗牛应在l上点O右边6cm处,这可表示为

  (+2)×(+3)=+6

  答:结果向东运动了6米.

  2.负数与正数相乘

  问题二:如果蜗牛一直以每分2cm的速度向左爬行,3分后它在什么位置?

  讲解:3分后蜗牛应在l上点O右边6cm处,这可表示为

  (-2)×(+3)=(-6)

  3.正数与负数相乘

  问题三:如果蜗牛一直以每分2cm的速度向右爬行,3分前它在什么位置?

  讲解:3分后蜗牛应为l上点O左边6cm处,这可以表示为

  (+2)×(-3)=-6

  4.负数与负数相乘

  问题四:如果蜗牛一直以每分2cm的速度向左爬行,3分前它在什么位置?

  讲解:3分前蜗牛应为l上点O右边6cm处,这可以表示为

  (-2)×(-3)=+6

  5.零与任何数相乘或任何数与零相乘

  问题五:原地不动或运动了零次,结果是什么?

  答:结果都是仍在原处,即结果都是零,若用式子表达:

  0×3=0;0×(-3)=0;2×0=0;(-2)×0=0.

  综合上述五个问题得出:

  (1)(+2)×(+3)=+6;

  (2)(-2)×(+3)=-6;

  (3)(+2)×(-3)=-6;

  (4)(-2)×(-3)=+6.

  (5)任何数与零相乘都得零.

  观察上述(1)~(4)回答:

  1.积的符号与因数的符号有什么关系?

  2.积的绝对值与因数的绝对值有什么关系?

  答:1.若两个因数的符号相同,则积的符号为正;若两个因数的符号相反,则积的符号为负.2.积的绝对值等于两个因数的绝对值的积.

  由此我们可以得到:

  两数相乘,同号得正,异号得负,并把绝对值相乘.

  (1)~(5)包括了两个有理数相乘的所有情况,综合上述各种情况,得到有理数乘法的法则:

  口答:确定下列两数积的符号:

  例题:计算下列各题:

  解题步骤:

  1.认清题目类型.

  2.根据法则确定积的符号.

  3.绝对值相乘.

  练习:

  1.口答下列各题:

  (1)6×(-9);(2)(-6)×(-9);

  (3)(-6)×9;(4)(-6)×1;

  (5)(-6)×(-1);(6)6×(-1);

  (7)(-6)×0;(8)0×(-6);

  (9)(-6)×0.25;(10)(-0.5)×(-8);

  注意:由(4)(5)(6)得:一个数与1相乘得原数,一个数与-1相乘,得原数的相反数.

  2.在表中的`各个小方格里,填写所在的横行的第一个数与所在直列的第一个数的积:

  3.计算下列各题:

  (1)(-36)×(-15);(2)-48×1.25;

  4.填空:

  (1)1×(-5)=____;(-1)×(-5)=____;

  +(-5)=____;-(-5)=____;

  (2)1×a=____;(-1)×a=____;

  (3)1×|-5|=____;-1×|-5|=____;

  -|-5|=____

  (4)1+(-5)=____;(-1)+(-5)=____;

  (-1)+5=____.

  三、小结

  (1)指导学生看书,精读乘法法则.

  (2)强调运用法则进行有理数乘法的步骤.

  (3)比较有理数乘法的符号法则与有理数加法的符号法则的区别,以达到进一步巩固有理数乘法法则的目的.

  四、作业

  1.计算:

  (1)(-16)×15;(2)(-9)×(-14);

  (3)(-36)×(-1);(4)13×(-11);

  (5)(-25)×16;(6)(-10)×(-16).

  2.计算:

  (1)2.9×(-0.4);(2)-30.5×0.2;

  (3)0.72×(-1.25);(4)100×(-0.001);

  (5)-4.8×(-1.25);(6)-4.5×(-0.32).

  3.计算:

  4.填空:(用“>”或“<”号连接)

  (1)如果a<0,b>0,那么,ab____0;

  (2)如果a<0,b<0,那么,ab____0;

  (3)当a>0时,a____2a;

  (4)当a<0时,a____2a.

  板书设计

  1.4有理数的乘法

  法则:练习

  教学设计思路

  本节课是在小学已接触到的乘法、初中刚学习过的有理数的加减法基础上进行的。通过对实际问题的解决,引入有理数的乘法法则。在讲解运动的例子时运用现代化教学手段,把图形中的“静”变“动”,增强了直观性,初步培养想象能力。

  教学反思

  强调学生与教师一起共同参与教学活动,我们坚持把教学活动过程体现在教学中,又激发学生的思维积极性,让学生学会分析问题和解决问题。

七年级数学上册教案15

  一、教学目标

  (一)认知目标

  1.借助频率或考虑实验观察到的结果,区分不可能发生、可能发生和必然发生这三个概念.

  2.借助频数或频率,初步体会随机事件发生的可能性是有大有小的.

  (二)情感目标

  让学生在解决现实问题的同时,能受到爱国主义教育,增进对数学价值的认识.

  二、教学重点

  正确区分“不可能”、“必然”和“可能”.

  三、教学难点

  怎样分清不确定的现象和确定的现象.

  四、教学过程

  (一)导入新课

  同学们还记得抛掷硬币的游戏吗?再抛10次试一试,记录一下,看看有________次正面朝上,有_______次反面朝上.

  提问:在刚才的'抛掷硬币游戏中,你发现正反面同时朝上有几次?

  学生回答:0次;一次也没有;不可能.

  回答得很好.在我们的周围有很多事情有可能发生,也有不可能发生的.下面再请同学们拿出准备好的骰子.

  (二)新授

  骰子都是正方体,它有六个面,每一面的点数分别是从1到6这六个数字中的一个.骰子的质地是均匀的,也就是说每个数字被掷得的机会都是一样的.

  下面两人一组做掷骰子的游戏.

  要求:一个同学掷骰子,另一个同学做记录,用“正”字法把每个点数出现的频数记录下来,填入备好的表里.掷完20次以后,两人交换角色,再记录下数据.

  提问:“点数7”出现了多少次?

  学生回答:0次.

  从每个小组的频数表中,我们可以看到,不管如何,“点数7”出现的次数总是0.这并不是因为我们掷的时间还不够长或掷的次数还不够多,而是因为骰子上根本没有“7”.所以,无论再挪多少次,“点数7”都不会出现.我们可以说“掷得的点数是7”这件事是不可能发生的.

  提问:在刚才的游戏中,还有什么事是不可能发生的?

  学生进行简单讨论.

  让学生自由发言:大干“点数7”的点数,像8、9都不可能发生.

  那么,可能发生的事是什么呢?

【七年级数学上册教案】相关文章:

数学七年级上册教案04-16

湘教版数学七年级上册教案01-09

[优]数学七年级上册教案06-13

七年级数学上册教案01-11

七年级数学上册教案[精选]06-16

七年级数学上册教案(精选)06-14

七年级上册数学教案01-19

七年级上册数学教学教案06-01

七年级上册数学教案12-16

数学新七年级上册教案模板01-24