现在位置:范文先生网>教案大全>数学教案>七年级数学教案>七年级数学上册教案

七年级数学上册教案

时间:2024-07-16 07:07:31 七年级数学教案 我要投稿

[推荐]七年级数学上册教案

  作为一位杰出的教职工,时常要开展教案准备工作,借助教案可以让教学工作更科学化。我们该怎么去写教案呢?下面是小编帮大家整理的七年级数学上册教案,仅供参考,希望能够帮助到大家。

[推荐]七年级数学上册教案

七年级数学上册教案1

  教学目标

  1,掌握相反数的概念,进一步理解数轴上的点与数的对应关系;

  2,通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;

  3,体验数形结合的思想。

  教学难点

  归纳相反数在数轴上表示的点的特征

  知识重点

  相反数的概念

  教学过程

  (师生活动)设计理念

  设置情境

  引入课题问题1:请将下列4个数分成两类,并说出为什么要这样分类

  4,-2,-5,+2

  允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。

  (引导学生观察与原点的距离)

  思考结论:教科书第13页的思考

  再换2个类似的数试一试。

  归纳结论:教科书第13页的归纳。以开放的形式创设情境,以学生进行讨论,并培养分类的'能力

  培养学生的观察与归纳能力,渗透数形思想

  深化主题提炼定义给出相反数的定义

  问题2:你怎样理解相反数定义中的“只有符号不同”和“互为”一词的含义?零的相反数是什么?为什么?

  学生思考讨论交流,教师归纳总结。

  规律:一般地,数a的相反数可以表示为-a

  思考:数轴上表示相反数的两个点和原点有什么关系?

  练一练:教科书第14页第一个练习体验对称的图形的特点,为相反数在数轴上的特征做准备。

  深化相反数的概念;“零的相反数是零”是相反数定义的一部分。

  强化互为相反数的数在数轴上表示的点的几何意义

  给出规律

  解决问题问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?

  学生交流。

  分别表示+5和-5的相反数是-5和+5

  练一练:教科书第14页第二个练习利用相反数的概念得出求一个数的相反数的方法

  小结与作业

  课堂小结

  1,相反数的定义

  2,互为相反数的数在数轴上表示的点的特征

  3,怎样求一个数的相反数?怎样表示一个数的相反数?

  本课作业

  1,必做题教科书第18页习题1。2第3题

  2,选做题教师自行安排

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征。这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用。所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想。

  2,教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法。

  3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地。

七年级数学上册教案2

  一、教学目标

  知识与技能

  1.理解单项式及单项式系数、次数的概念。

  2.会准确迅速地确定一个单项式的系数和次数。

  过程与方法

  通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。

  情感态度与价值观

  初步培养学生观察、分析、抽象、概括等思维能力和应用意识。

  二、重点难点

  重点

  列单项式表示数量关系,单项式及其系数、次数的意义.

  难点

  列单项式表示数量关系.

  三、学情分析

  本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习。要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫。

  四、教学过程设计

  问题设计师生活动设计意图

  [活动1]

  举世瞩目的青藏铁路于20xx年7月1日建成通车,实现了几代中国人梦寐以求的愿望。青藏铁路是世界上海拔最高、线路最长的高原铁路。青藏铁路线上,在格尔木到拉萨之间有一段很长的.冻土地段。列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答问题:

  列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?

  提问:字母表示数有什么意义?

  学生独立思考,尝试解决

  解答:

  1002=200千米

  1003=300千米

  100t=100t千米

  我们用含字母t的式子100t表示路程。用字母表示数后,可以用含有字母的式子把数量关系简明地表达出来,更适合一般规律的表达。

  从学生已有的数学经验和现实问题情境出发,感受用字母表示数的意义。

  以青藏铁路为引例,对学生进行爱国主义教育的德育渗透。

七年级数学上册教案3

  教学内容:

  小学数学六年级下册P112-113练习二十二1~7题。

  教学目标:

  1.通过练习,进一步掌握统计与概率的相关知识。

  2.能解决统计与概率相关的简单实际问题。

  3.感受数学与生活的紧密联系,提高学习数学的兴趣和学好数学的自信心。

  重点、难点:

  1.掌握统计与概率的基本知识和方法。

  2.灵活应用统计与概率的相关知识解决实际问题。

  教学准备:

  教学挂图,小黑板,自主检测题等。

  教学过程

  一、情境引入,回顾再现

  1.回顾统计与概率的相关知识。

  组织学生简单回忆,说一说:

  本单元学习了统计图,统计表;平均数,中位数,众数;以及游戏公平,可能性等概率问题。

  2.揭示课题。

  师:那么这节课我们就来对本部分知识进行练习。

  板书课题:统计与概率练习

  二、分层练习,强化提高

  (一)基本练习。

  1.

  (1)该公司去年全年的销售情况如何?

  (2)该公司的发展前景怎样?

  (3)你还能提出哪些问题?

  ①组织学生独立解答.

  ②汇报订正,说解题思路。

  教师引导学生从图中的变化趋势上来分析问题,从而得出结论:该公司去年总体经营情况很好,产量和销量不断增长,第四季度增长幅度较快,而且出现了销量大于产量的良好势头。由此可以作出预测:该公司在未来的一段时间内将有良好的发展。

  2.

  ①组织学生独立解答.

  ②汇报订正,说解题思路

  教师注意提醒学生考虑事件发生的等可能性以及几率的多少。

  (二)综合练习。

  ①组织学生独立解答第一小题。

  ②小组交流讨论,解答第二小题。

  师根据学生的汇报,让学生明确在研究一组数据的分布情况时,用平均数、中位数或众数作为数据的代表都是可以的。但是在一般情况下,用平均数作为数据代表的时候较多,它与这组数据中的每个数据都有关系,但它易受极端数据的影响,所以为了减少这种影响,在评分时就采取去掉一个分和一个最低分,再计算平均数,这样做是合理的。

  ①组织学生独立思考。

  ②小组交流讨论,汇报结果。

  本题是有关众数的应用的练习。从进货和销售数量的差来看,尺码是35、37、39三种型号的鞋进货有些多了,下一次进货时可考虑适当降低数量;但从销量来看,37码的鞋仍然排名第一,36和38码的列第二、三名,所以每种型号的鞋的进货量的比例总体上不会有大的.变化。研究一组数据的频数大小分布情况时,应用了众数的知识。

  (三)提高练习。

  ①组织学生独立思考。

  ②小组交流讨论,汇报结果。

  六(2)班同学的血型情况如图,

  (1)从图中你能得到哪些信息?

  (2)该班有50人,各种血型有多少人?

  本题是有关可能性的习题,对简单事件发生的可能性作出预测。从两队的历史战绩来看,各是两胜一平两负,不相上下;从这一点来判断,两队获胜的可能性都是二分之一。但是,仔细观察可以发现:在离比赛日最近的两场比赛中均是乙队获胜,说明最近乙队的状态好于甲队,由此可以预测:乙队获胜的可能性稍大一些。这种判断也有一定道理。

  三、自主检测,评价完善

  自主检测

  1.填空:

  (1)人们对收集的统计数据经过分析整理后可以制成( )还可以制成( )

  (2)( )统计图可以清楚地表示出各部分同总数之间的关系。

  (3)( )统计图既能表示出数量的多少,又能反映出数量变化情况

  2.选择:

  (1)评价一个班整体学习成绩情况,看( )比较合适?

  A.平均数B.中位数C.众数

  (2)为了清楚地表示出20xx年各月平均气温变化情况,应绘制( )。

  A.条形B.折线C.扇形

  3.做一做:

  有A—J 10张字母卡片,小明翻字母卡片,小红猜小明的字母卡片,如果小红猜对,小红获胜,如果小红猜错了,小明获胜。

  (1)你认为这个游戏规则对双方公平吗?对谁有利?

  (2)请设计一个双方公平的游戏规则。

  四、课堂总结

  1.教师评价:通过本节课的练习大都分同学掌握较好,值得表扬。

  2.学生谈收获:通过本节课练习你有什么新的收获?

  板书设计:

  统计与概率练习

  统计表

  统计图:条形统计图;折线统计图;扇形统计图

  统计量:平均数;中位数;众数

  可能性:等可能;公平;

  作业设计

  基础:

  1.简单的统计图有( )统计图、( )统计图和( )统计图。

  2.( )统计图是用长短不同、宽窄一致的直条表示数量,从图上很容易看出( )。

  3. 4、7.7、8.4、6.3、7.0、6.4、7.0、8.6、9.1这组数据的众数是( ),中位数是( ),平均数是( )。

  4.在一组数据中,( )只有一个,有时( )不止一个,也可能没有( )。(填众数或中位数)

七年级数学上册教案4

  知识目标

  使学会解比例的方法,进一步理解和掌握比例的基本性质。

  能力目标

  联系的生活实际创设情境,体现解比例在生产生活中的广泛应用。

  情感目标

  利用所学知识解决生活中的问题,进一步培养综合运用知识的能力及情度、价值观的发展。

  重点

  使学会解比例的方法,进一步理解和掌握比例的基本性质。

  难点

  体现解比例在生产生活中的广泛应用。

  教学过程

  教学预设个性修改

  目标导学,复习激趣,自主合作,汇报交流,变式训练

  创境激疑一、旧知铺垫

  1、什么叫做比例?

  2、什么叫做比例的基本性质?怎样用比例的基本性质判断两个比能否组成比例?那么组成一个比例需要几项呢?

  3、比例有几种表示形式?

  合作探究二、探索新知

  1、出示埃菲尔铁挂图

  2、出示例题

  (1)、读题。

  (2)、从这道题里,你们获得了哪些信息?

  (3)、在这信息里,关键理解哪里?(埃菲尔铁模型与埃菲尔铁塔的高度比是1:10)

  (4)、这句话什么意思?(就是埃菲尔铁塔模型的高度:埃菲尔铁塔的高度=1:10)(板书)

  (5)、还有一个条件是什么?(埃菲尔铁塔的高是320米)

  (6)、我们把这个条件换到我们的这个关系中,就是(板书:埃菲尔铁塔的高度:320=1:10)

  (7)、这道题怎么列比例式解答呢?请同学们想想,想出来的同学请举手。

  (8)、根据学生的反馈板书:“解:设埃菲尔铁塔模型的高度设为x米”,把这个x代入这个数学模式中就组成了一个比例式(板书x:320=1:10)

  (9)、这样在组成比例的四个项中,我们知道其中的几个项?还有几个项不知道?

  (10)、不知道的`这个项,我们来给它起个名字,好不好?叫做什么?(板书:未知项)

  (11)、指着x:320=1:10,问:“这个未知项是多少呢?那怎么办?”谁上来做做? (指名板演)

  (12)、为什么可以写成这样的等式呢?10x=320×1(根据比例的基本性质)

  (13)、对了,把上面的比例式改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,把比例式改写成了一个等式,这个等式还是一个什么样的等式呀?(含有未知数的等式)

  (14)、这样含有未知数的等式,叫做方程。那么求出方程中的未知数就叫做什么?(解方程)那么在这个比例式中,我们知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)出示比例的意义。

  (15)、我们解出的答案对不对呢?怎么知道?可以怎样检验? (把结果代入题目中看看对应的比的比值是不是能成比例.)

  (16)这道题还有其他的解法吗?(引导学生从比例的意义上来解。

  2、教学例3

  过渡:我们知道比例还有另一种表示形式,当是=这样形式的时候,又该怎么解呢?

  (1)、出示例3,问:这题与刚刚那个比例有哪些不同?

  (2)、解这种比例时,要注意些什么呢?(找出比例的外项、内项)

  (3)、在这个比例里,哪些是外项?哪些是内项?

  (4)、解答(提问:你们是怎么解答的?)、检验。

  (5)、 =

  拓展应用在一个比例中,两个外项的乘积正好互为倒数,已知一个内向是3,另一个内项是多少?

  总结这节课主要学习了什么内容?

  作业布置教材43页5题

  板书设计解比例

  例3、解比例=

  解:2.4 =1.5×6

  =( )×( )

  ( )

  教学札记

七年级数学上册教案5

  教学目标

  1.经历观察、分析、操作、欣赏以及抽象,归纳等过程,经历探索图形平移性质的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识。

  2.通过实例认识平移,理解平移的含义,理解平移前后两个图形对应点连线平行且相等的性质.

  重点、难点

  重点:探索并理解平移的性质.

  难点:对平移的认识和性质的探索.

  教学过程

  一、引入新课

  1.教师打开幻灯机,投放课本图5.4-1的图案.

  2.学生观察这些图案、思考并回答问题.

  (1)它们有什么共同的特点?

  (2)能否根据其中的一部分绘制出整个图案?

  3.师生交流.

  (1)这引进美丽的图案是由若干个相同的图案组合而成的,图5.4-1 上一排左边的图案(不考虑颜色)都有“基本图形”;中间一个正方形,上、下有正立与倒立的`正三角形,如图(1);上排中间的图案(不考虑颜色)都有“基本图形”:正十二边形, 四周对称着4个等边三角形,如图(2);上排右边的图案(不考虑颜色)都有“基本图形”;正六边形,内接六角星,如图(3);下排的左图中的“基本图形”是鸽子与橄榄枝; 下排右图中的“基本图形”是上、下一对面朝右与面朝左的人头像组成的图案.

  《5.4平移》同步讲义练习和同步练习

  1在△ABC中,∠C=90°,AC=BC=5,现将△ABC沿着CB的方向平移到△A′B′C′的位置,若平移的距离为2,则图中的阴影部分的面积为   .

  2、把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24cm,WG=8cm,WC=6cm,求阴影部分的面积为   cm2.

  3、绐正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为l的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第20xx次“移位”后,则他所处顶点的编号是   .

  《5.4平移》同步测试卷含答案

  1. 将图形平移,下列结论错误的是( )

  A.对应线段相等

  B.对应角相等

  C.对应点所连的线段互相平分

  D.对应点所连的线段相等

  解析: 根据平移的性质,将图形平移,对应线段相等、对应角相等、对应点所连的线段相等,而对应点所连的线段不一定互相平分,故选C.

  12. 国旗上的四个小五角星,通过怎样的移动可以相互得到( )

  A.轴对称 B.平移 C.旋转 D.平移和旋转

  解析: 国旗上的四个小五角星通过平移和旋转可以相互得到.故选D.

七年级数学上册教案6

  教学内容:

  人教版小学数学教材六年级下册第107~108页例2及相关练习。

  教学目标:

  1.在学习过程中引导学生探索研究数与形之间的联系,寻找规律,发现规律,学会利用图形来解决一些有关数的问题。

  2.让学生经历猜想与验证的过程,体会和掌握数形结合、归纳推理、极限等基本数学思想。

  重点难点:

  探索数与形之间的联系,寻找规律,并利用图形来解决有关数的问题。

  教学准备:

  教学课件。

  教学过程:

  一、直接导入,揭示课题

  同学们,上节课我们探究了图形中隐藏的数的规律,今天我们继续研究有关数与图形之间的联系。(板书课题:数与形)

  【设计意图】直奔主题,简洁明了,有利于学生清楚本节课学习的内容和方向。

  二、探索发现,学习新知

  (一)教师与学生比赛算题

  1.教师:你知道等于多少吗?(学生:)

  教师:那等于多少呢?(学生计算需要时间)教师紧接着说:我已经算好了,是,不信你算算。

  2.只要按照这个分子是1,分母依次扩大2倍的规律写下去,不管有多少个分数相加,我都能立马算出结果。有的同学不相信是吗?咱们试试就知道。为了方便,我请我们班计算最快的同学跟我一起算,看看结果是否相同。谁来出题?

  在学生出题后,老师都能立刻算出结果,并且是正确的,学生感到很惊奇。

  3.知道我为什么算得那么快吗?因为我有一件神秘的法宝,你们也想知道吗?

  【设计意图】一方面,教师通过与学生比赛计算速度,且每次老师胜利,使学生产生好奇心,再通过教师幽默的语言,吸引学生的注意力,激发学生的学习兴趣和求知欲。另一方面,为接下来学习例题做好铺垫。

  (二)借助正方形探究计算方法

  1.这件法宝就是(师边说边课件出示一个正方形),让我们来把它变一变,聪明的同学们一定能看明白是怎么回事了。

  2.进行演示讲解。

  (1)演示:用一个正方形表示“1”,先取它的一半就是正方形的(涂红),再剩下部分的一半就是正方形的(涂黄)。

  想一想:正方形中表示的涂色部分与空白部分和整个正方形之间有什么关系呢?(涂色部分等于“1”减去空白部分)空白部分占正方形的几分之几?()那么涂色部分还可以怎么算呢?(),也就是说。

  (2)继续演示,谁知道除了通分,还可以怎么算?

  根据学生回答,板书。

  (3)演示:那么计算就可以得到?()。

  3.看到这儿,你发现什么规律了吗?

  4.小结:按照这样的规律往下加,不管加到几分之一,只要用1减去这个几分之一就可以得到答案了。

  5.这个法宝怎么样?谁来说说它好在哪里?你学会了吗?

  6.尝试练习

  【设计意图】将复杂的数量运算转化为简单的图形面积计算,转繁为简,转难为易,引导学生探索数与图形的联系,让学生体会到数形结合、归纳推理的数学思想方法。

  (三)知识提升,探索发现

  1.感受极限。

  (1)刚才我们已经从一直加到了,如果我继续加,加到,得数等于?()再接着加,一直加到,得数等于?()随着不断继续加,你发现得数越来越?(大)无数个这样的.数相加,和会是多少呢?

  (2)这时候你心中有没有一个大胆的猜想?(学生猜想:这样一直加下去,得数会不会就等于1了。)

  (3)想象一下,如果我们在刚才加的过程中在正方形上不断涂色,那空白部分的面积就越来越?(小)而涂色部分的面积越来越接近?(1)也就是求和的得数越来越接近?(1)最终得数是1吗?你有什么方法来证明得数就是1?

  (学情预设:学生提出书本的圆形图和线段图,若没有学生提出,教师自己提出。)

  2.利用线段图直观感受相加之和等于“1”。

  (1)书本上有两幅图,我们一起来看看(课件出示)。一幅是圆形图,一幅是线段图,你能看懂它的意思吗?请你想一想,然后告诉大家你的想法。

  (2)学生看书思考。

  (3)全班交流,课件演示,得出结论:这些分数不断加下去,总和就是1。

  【设计意图】利用数与形的结合,让学生直观体会极限数学思想,并让学生经历猜想得数等于“1”,到数形结合证明得数等于“1”的过程,激发学生学习兴趣,培养学生探索新知的精神。

  3.课堂小结。

  对于这种借用图形来帮助我们解决问题的方法,你有什么感受?

  教师小结:是的,“数”与“形”有着紧密的联系,在一定条件下可以相互转化。当用数形结合的方法解决问题时,你会发现许多难题的解决变得很简单。

  4.举一反三。

  其实在以前的学习中,我们也常用到数形结合的数学方法帮助我们解题,你能想到些例子吗?(如学生有困难,教师举例:一年级加法,分数的认识,复杂的路程问题线段图等。)

  【设计意图】让学生体会“数形结合”是数学学习中常用的方法。

  三、练习巩固

  1.基础练习。

  (1)学生独立计算。

  (2)全班交流反馈。

  【设计意图】通过练习,回顾新知,巩固新知,使学生对新知识掌握得更扎实。

  2.小林、小强、小芳、小兵和小刚5人进行象棋比赛,每2人之间都要下一盘。小林已经下了4盘,小强下了3盘,小芳下了2盘,小兵下了1盘。请问:小刚一共下了几盘?分别和谁下的?

  解决问题

  (1)全班读题,学生独立思考。

  (2)指名回答。

  (3)根据学生回答情况,连线(课件演示)。

  (4)结合连线图得出:小刚一共下了2盘,分别和小林、小强下的。

  【设计意图】让学生进一步体会数形结合的直观性和变难为易的特点。

  四、课堂总结

  快下课了,请你来说说这节课有什么收获?

  课后反思:

  图形的直观形象的特点,决定了化数为形往往能达到以简驭繁的目的,例2中,用举例的方法求出等比数列的有限和,都不能证明无限多项相加结果为1,但是接近 1,但这个无限接近于1的数是多少呢?电子白板呈现出圆形模型和线段模型来表示“1”,使学生结合分数意义,在圆上和线段上分别有规律地表示这些加数,当这个过程无止境地持续下去时,所有的扇形和线段就会把整个圆和整条线段占满,即和为“1”,用画图的方法来表示计算过程和结果,让学生感受到什么叫无限接近,什么叫直观形象,同时,一个极其抽象的极限问题,变得十分直观和便捷。

七年级数学上册教案7

  教学目标

  【知识与能力目标】

  1、巩固理解有理数的概念;

  2、掌握数轴的意义及构成特点,明确其在实际中的应用;

  3、会用数轴上的点表示有理数。

  【过程与方法目标】

  【情感态度价值观目标】

  通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

  教学重难点

  【教学重点】

  数轴的意义及作用。

  【教学难点】

  数轴上的点与有理数的直观对应关系。

  课前准备

  《数学》人教版七年级上册,自制课件

  教学过程

  一、探索新知(投影展示)

  问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7、5m处分别有一棵柳树和一棵杨树,汽车站西3m和4、5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。

  学生结合上述问题分组讨论,明确以下问题:

  1、怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)?

  2、举例说明生活中类似的事例;

  3、什么叫数轴?它有哪几个要素组成?

  4、数轴的用处是什么?

  5、你会画数轴吗并应用它吗?

  “问题”解决:课件投影课本p8图1、2-1,同时说明其产生的过程及合理、简明的特点;

  结论:正数、0和负数可以用一条直线上的点表示出来。

  3、展示温度计图形,比较其与图1、2-1的共同点和不同点:

  共同点:温度计也可以看作将正数、0和负数用一条直线上的点表示出来的情形;

  不同点:温度计是竖直的,方向感不直观。

  4、描述数轴的意义(课本p9中间,由学生阅读,并尝试画一条数轴,强调)

  (1)数轴的构成三要素:原点、方向、单位长度;

  (2)数轴的用处是:把数用数轴上的点来表示,例(课本p9图1、2-3),说明有理数都可以用数轴上的点表示;

  5、归纳

  (1)一般地,设a是一个正数,则数轴上表示数a的点在原点的边,与原点的距离是个单位长度;表示数-a的点在原点的边,与原点的距离是个单位长度。

  (2)数轴的出现将图形(直线上的点)和数紧密联系起来,使很多数学问题都可以借助图直观地表示,是“数形结合”的重要工具。

  二、例题分析

  例1.先画出数轴,然后在数轴上表示下列各数:

  -1、5,0,-2,2,-10/3

  例2、数轴上与原点距离4个长度单位的点表示的`数是。

  三、巩固训练

  课本p10练习

  自我检测

  (1)数轴的三要素是;

  (2)数轴上表示-5的点在原点的侧,与原点的距离是个长度单位;

  (3)数轴上表示5与-2的两点之间距离是单位长度,有个点;

  (4)如图,a、b为有理数,则a0,b0,ab

  课堂小结

  (1)数轴概念:规定了原点、正方向、单位长度的直线叫做数轴。

  (2)数轴的三要素:原点、正方向、单位长度。

  (3)数学思想:数形结合的思想。

  五、作业

  1、课本14页习题1、2

  2、完成“自我检测”

  3、个性补充

  ⑴画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75。

  ⑵画一条数轴,并表示出如下各点:1000,5000,-20xx。

  ⑶在数轴上标出到原点的距离小于3的整数。

  ⑷在数轴上标出-5和+5之间的所有整数。

七年级数学上册教案8

  教学目标

  1 知识与技能:

  使学生理解和掌握整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。

  2 过程与方法:

  通过观察、操作、讨论的活动,使学生经历探究口算方法的全过程。

  3 情感态度与价值观:

  让学生感受数学与生活的联系,培养学生用数学知识解决简单实际问题的能力。

  教学重难点

  1 教学重点:

  掌握用整十数除的口算方法。

  2 教学难点:

  理解用整十数除的口算算理。

  教学工具

  多媒体设备

  教学过程

  1 复习引入

  口算。

  20×3= 7×50= 6×3=

  20×5= 4×9= 8×60=

  24÷6= 8÷2= 12÷3=

  42÷6= 90÷3= 3000÷5=

  2 新知探究

  1、教学例1

  有80面彩旗,每班分20面,可以分给几个班?

  (1)提出问题,寻找解决问题的方法。

  师:从中你能获取什么数学信息?

  师:怎样解决这个问题?

  (2)列式 80÷20

  (3)学生独立探索口算的方法

  师:怎样算80÷20呢,请同学们先自己想一想、算一算,再说给同桌听一听。

  学生汇报:

  预设学生可能会有以下两种口算方法:

  A.因为20×4=80,所以80÷20=4 这是想乘算除

  B.因为8÷2=4, 所以80÷20=4 这是根据计数单位的组成

  为什么可以不看这个“0”? ( 80÷20可以想“8个十里面有几个二十?”)

  这样我们就把除数是整十数的转化为我们已经学过的表内除法。

  (4)师小结:

  同学们有的用乘法算除法的,也有用表内除法来想的`,都很好,那么你喜欢哪种方法呢?

  把你喜欢的方法说给同桌听。

  (5)检查正误

  师:我们分的结果对不对?请同学们看屏幕(课件演示分的结果)

  (6)用刚学会的方法再次口算,并与同桌交流你的想法

  40÷20 20÷10 60÷30 90÷30

  (7)探究估算的方法

  出示:83÷20≈ 80÷19≈

  师:你能知道题目要求我们做什么吗?你怎么知道的?你是怎样计算的?和同学们交流一下。

  生:求83除以20、80除以19大约得多少,从题目中的约等号看出不用精确计算。

  师:谁想把你的方法跟大家说一说。

  预设:83接近于80,80除以20等于 4,所以83除以20约等于4。

  19接近于20,80除以20等于 4,所以80除以19约等于4。

  2、教学例2

  (1)创设情境引出问题

  师:谁会解决这个问题?

  150÷50

  (2)小组讨论口算方法

  (3)你是怎么这样快就算出的呢?

  A.因为15÷5=3,所以150÷50=3。

  B.因为3个50是150,所以150÷50=3。

  这一题跟刚才分彩旗的口算方法有不同吗?

  都是运用想乘算除和表内除法这两种方法来口算的。

  师:在解决分彩旗和刚才的问题中,我们共同探讨了除法的口算方法,(板题:口算除法)口算时,可以用自己喜欢的方法来口算。

  口算练习:150÷30 240÷80 300÷50 540÷90

  3、估算

  (1)探计估算的方法

  师:你能知道题目要求我们做什么吗?

  你能估吗?请先估算,再把你的估算方法与同伴交流,看看能否互相借鉴。

  (2)谁想把你的方法跟大家说一说。

  (3)总结方法:把被除数和除数都看作与原数比较接近的整十数再用口算方法算。

  (4)判断估算是否正确:122÷60=2 349÷50≈8 为什么不正确?

  3 巩固提升

  1、独立口算

  观察每道题,怎样很快说出下面除法算式的商?

  如果估算的话把谁估成多少。

  2、算一算、说一说。

  (1)除数不变,被除数乘几,商也乘几。

  (2)被除数不变,除数乘几,商反而除以几。

  3、解决问题

  (1)一共要寄240本书,每包40本。要捆多少包?

  你能找到什么条件、问题。你会解决吗?

  240÷40 = 6(包)

  答:要捆6包。

  (2)这个小朋友也是一个爱看书的好孩子,她在看一本故事书。

  出示条件:一共有120个小故事,每天看1个故事。

  问题:看完这本书大约需要几个月?

  问:要求看完这本书大约需要几个月?必须要知道哪些条件,你会求吗?

  120÷30 = 4(个)

  答:看完这本书大约需要4个月。

  课后小结

  这节课你有什么收获?还有什么问题?

  本节课学习了整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。

  板书

  口算除法

  有80面彩旗,每班分20面,可以分给几个班?

  80÷20=

七年级数学上册教案9

  一、背景知识

  《有理数》选自浙江版《义务教育课程标准实验教科书·数学·七年级上册》第一章《从自然数到有理数》中的第二节,这一章是开启整个初中阶段代数学习的大门。《有理数》是本章的第二节。本节内容让学生在现实的情境中理解负数的引入确实是实际生活的需要,感受到有理数应用的广泛性,是在小学学习自然数和分数之后,数的概念的第一次扩充,是自然数和分数到有理数的衔接与过渡,并且是以后学习数轴、绝对值及有理数运算的基础。

  二、教学目标

  1、知识目标:理解有理数产生的必然性、合理性;会判断一个数是正数还是负数,能灵活运用正、负数表示生活中具有相反意义的量;会将有理数从不同的角度进行分类。

  2、过程与方法:利用学生身边熟悉的事物引入负数、学习有理数;运用有理数表示现实生活问题中的量;让学生经历有理数概念的形成及运用过程,领会分析、总结的方法。

  3、情感与能力目标:通过提供适当的情境资料,吸引学生的注意力,激发学生的学习兴趣;在合作讨论中学会交流与合作,启迪思维,提高创新能力;通过实际问题的解决和从不同角度对有理数分类,可提高学生应用数学能力和培养学生的分类思想。

  三、教学重点、难点

  重点:能应用正、负数表示具有相反意义的量和对有理数进行合理的分类。

  难点:用有理数表示实际生活中的量。

  四、教学设计

  (一)创设情境 探求新知

  如图表示某一天我国5个城市的最低气温。

  请同学们合作讨论下列问题:

  1、-20℃、-10℃、5℃、0℃、10℃ 这几个量分别表示什么?

  2、你还在哪些地方见到过用带有“-”号的数来表示某一种量,请讲出来。

  把学生讲出的较恰当的量写到黑板上,再引导学生把与之相对的量分别写在后边,如:零下20℃——零上10℃, 降低5米——升高8米, 支出100元——收入500元。指出这样的量就是具有相反意义的量,并从以下方面加以理解。

  (1)具有相反意义的量是:意义相反,与值无关。

  (2)区分“意义相反”与“意义不同”。

  反问学生:以上具有相反意义的量能用我们学过的自然数和分数表示出来吗?

  显然是不能的。为了解决这样的实际问题,我们需要引进一种新的数——负数。

  我们把一种意义的量(如零上)规定为正,用学过的数(零除外)来表示,这样的数叫做正数,正数前面可以放上正号“+”来表示(常省略不写),;把另一种与之意义相反的量规定负,用学过的数(零除外)前面放上负号“-”来表示,这样的数叫做负数(负号不能省略)。

  如:“+2”读做“正2”、“-3.3”读做“负3.3”等。

  这样我们学过的数中又增加了新的数——负整数和负分数;相应地我们学过的自然数和分数分别称为正整数和正分数。

  (二)运用新知 体验成功

  填空:

  1)规定盈利为正,某公司去年亏损了2.5万元,记做__________万元,今年盈利了3.2万元,记做__________万元;

  2)规定海平面以上的海拔高度为正,新疆乌鲁木齐市高于海平面918米,记做海拔__________米;吐鲁番盆地最低处低于海平面155米,记做海拔__________米;

  3)汽车在一条南北走向的高速公路上行驶,规定向北行驶的路程为正。汽车向北行驶75km,记做________km(或_______km),汽车向南行驶100km,记做________km;

  4)下降米记做米,则上升米记做__________米;

  5)如果向银行存入50元记为50元,那么-30.50元表示__________;

  6)规定增加的百分比为正,增加25%记做__________,-12%表示__________.

  利用第3)题说明在表示具有相反意义的量时,把哪一种意义的量规定为正,是相对的`例如我们可以把向南100米记做+100km,那么向北记做-75km.但习惯上,人们常把上升、运进、零上、增加、收入等规定为正。

  (请同学独立完成,然后同桌同学相互评价。)

  (三) 师生互动,继续探究

  (合作学习)读一读这些数0,880,-20xx,+123,-233,-2.5,+3.2,+918,-155,+75,-100,25%,-12%,请根据你认定的数的特征进行分类,并说出分类的特征。

  让学生四人小组合作讨论完成。

  估计可能出现的正确结论有:

  ;

  ;

  对于较为正确的分类,并能说出特征的都将给予肯定,重视个体差异,体现多元评价的思想,发挥评价的激励作用,保护学生的自尊心,增强学生的自信心.然后教师给出规范的分类:

  正整数、零和负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。

  说明:①分类的标准不同,结果也不同;②分类的结果应无遗漏、无重复;③零是整数,零既不是正数,也不是负数.

  (四) 分层练习,巩固提高

  为了使学生实现从掌握知识到运用知识的转化,使知识教育与能力培养结合起来,设计分层练习。

  例 下列给出的各数,哪些是正数?哪些是负数?哪些是整数?哪些是分数?哪些是有理数?

  -8.4, 22, ,0.33, , -9.

  练习1 判断表中各数属于什么数,在相应的空格内打“√” .

  正整数

  整数

  分数

  正数

  负数

  有理数

  20xx

  √

  √

  √

  √

  -4.9

  0

  -12

  探究活动:

  练习2 如图,两个圈内分别表示所有正数组成的正数集合和所有整数组成的整数集合.请写出3个分别满足下列条件的数:

  1)属于正数集合,但不属于整数集合的数;

  2)属于整数集合,但不属于正数集合的数;

  3)既属于正数集合,又属于整数集合的数.

  将它们分别填入图中适当的位置.你能说出这两个圈的重叠部分表示什么数的集合吗?

  通过多角度的练习,并对典型错误进行讨论与矫正,使学生巩固所学内容,同时完成对新知的迁移。

  (五)概括梳理,形成系统

  采取师生互动的形式完成。即:

  学生谈本节课的收获,教师适当的补充、概括,以本节知识目标的要求进行把关,确保基础知识的当堂落实。

  (六)布置作业

  1、课后作业

  2、设计题可根据自己的喜好和学有余利的同学完成。

七年级数学上册教案10

  教学目标:

  1、正确理解数轴的意义,理解数轴的三要素。

  2、掌握有理数在数轴上的表示法,以及利用数轴比较有理数的大小。

  3、理解相反数的意义及求法。

  4、对学生渗透数形结合的思想方法,培养学生的观察、归纳与概括的能力。

  重点难点

  1、正确掌握数轴的画法;用数轴上的点表示有理数;求已知数的相反数。

  2、有理数和数轴上的的点的对应关系。

  教学方法

  合作探究交流

  学法指导

  观察归纳概括

  教学过程

一、情景引入:

  (1)你会读温度计吗?完成课本43页最上面的读温度计的问题。

  (2)我们能否用类似温度计的图形表示有理数呢?

  二、讲授新课:认真阅读课本第43页至45页,完成下列问题

  (1)画一条水平直线,在直线上取一点O(叫做▁▁▁),选取某一长度作为▁▁▁▁,规定向右的方向为▁▁▁,就得到了数轴。

  于是,+3可以用数轴上位于原点右边3个单位的点表示,—4可以用数轴上位于原点左边4个单位的点表示,在数轴上位于原点右边点表示,在数轴上位于原点左边1、5的点表示,任何有理数都可以用数轴上的一个点来表示。

  三、例题讲解、巩固提高

  例1、如图,指出数轴上A、B、C、D各点表示什么数?

  A D CB

  –2 –1 0 1 2 3

  解:点A表示—2;点B表示2;点C表示0;

  点D表示—1

  练习:画出数轴并用数轴上的点表示下列个数:

  —5,0,5,—4,—、

  四、继续探究

  2与—2有什么相同点与不同点?它们在数轴上的位置有什么关系?5与—5,与–呢?

  如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数、特别地0的相反数是0、

  在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的`距离相等、

  练习:1、5的相反数是▁▁;▁▁的相反数是—3、5。

  议一议

  数轴上的两个点,右边点表示的数与左边点表示的数有怎样的大小关系?

  数轴上表示的数,▁▁▁边的总比▁▁▁边的大;正数▁▁▁0,负数▁▁▁0,正数▁▁▁负数。

  练习:比较大小:—3▁5;0 ▁—4;—3 ▁—2、5。

  3、合作交流

  (1)什么是数轴?怎样画数轴。

  (2)有理数与数轴上的点之间存在怎样的关系?

  (3)什么是相反数?怎样求一个数的相反数?

  (4)如何利用数轴比较有理数的大小?

  5、随堂练习:

  (1)下列说法正确的是()

  A、数轴上的点只能表示有理数

  B、一个数只能用数轴上的一个点表示

  C、在1和3之间只有2

  D、在数轴上离原点2个单位长度的点表示的数是2

  (2)语句:①—5是相反数?②—5与+3互为相反数③—5是5的相反数④—5和5互为相反数⑤0的相反数是0⑥—0=0。上述说法中正确的是()

  A、①②⑥ B、②③⑤ C、①④ D、③④⑤⑥

  (3)大于—4而小于4的整数有▁▁▁▁▁▁。

  (4)用“﹤”或“﹥”号填空

  ①—5▁▁—7②0 ▁▁—2③0、01▁▁▁—0、1

  (5)写出下列各数的相反数

  3、4,—3,0,a,2a—3。

七年级数学上册教案11

  1.进一步理解字母表示数的意义,会用含字母的式子表示实际问题中的数量关系.

  2.经历用含有字母的式子表示实际问题数量关系的过程,体会从具体到抽象的认识过程,发展符号意识.

  进一步理解字母表示数的意义,会用含字母的式子表示实际问题中的数量关系.

  分析题目中的数量关系,用式子表示数量关系.

  (设计者: )

  一、创设情境 明确目标

  青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段的行驶速度是100 km/h,列车在冻土地段的行驶时,根据已知数据求出列车行驶的路程.

  (1)2 h行驶的路程是多少?3 h呢?t h呢?

  (2)字母t表示时间有什么意义?如果用v表示速度,列车行驶的路程是多少?

  (3)回顾以前所学的知识,你还能举出用字母表示数或数量关系的例子吗?

  二、自主学习 指向目标

  自学教材第54至55页,完成下列问题:

  1.假设列车的行驶速度是100 km/h,根据路程、速度、时间之间的关系:路程=速度×时间,请写出:

  (1)列车2 h行驶的路程为__200__km.

  (2)列车3 h行驶的路程为__300__km.

  (3)列车t h行驶的路程为__100t__km.

  2.在含有字母的式子中如果出现乘号,通常将乘号写作__·__或__省略不写__.

  三、合作探究 达成目标

  用字母表示数

  活动一:(1)苹果原价是每千克p元,按8折优惠出售,用式子表示现价;

  (2)某产品前年的产量是n件,去年的产量是前年产量的m倍,用式子表示去年的产量;

  (3)一个长方体包装盒的长和宽都是a cm,高是h cm,用式子表示它的体积;

  (4)用式子表示数n的相反数.

  【展示点评】解答过程见教材第54页例1的解.含有字母的式子中如果出现乘号,写成“·”或省略不写.如第(3)小题,就不能写成a2·h.

  【小组讨论】用字母表示数有什么意义?

  【反思小结】字母可以表示任意的数,也可以表示特定意义的公式,还可以表示符合条件的某一个数,甚至可以表示具有某些规律的数,总之字母可以简明的将数量关系表示出来.

  【针对训练】见“学生用书”.

  用字母表示简单的数量关系

  活动二:阅读教科书例2中的四个问题,思考:

  顺水行驶时,船的速度=________+________;

  逆水行驶时,船的速度=________-________.

  解答过程见教材第55页例2的解答过程.

  【展示点评】列式表示关系时,一定要搞清“和”、“差”、“积”、“倍”等关系.

  【小组讨论】用含有字母的式子表示数量关系时,关键是什么?应注意什么问题?

  【反思小结】用含有字母的'式子表示数量关系时,关键是找准题目中的数量关系.

  注意:1.用字母表示数时,数字与字母,字母与字母相乘,中间的乘号可以省略不写或用“·”表示;

  2.字母和数字相乘时,省略乘号,并把数字放到字母前;

  3.出现除式时,用分数的形式表示;

  4.结果含加减运算的,需要带单位时,式子要用“()”;

  5.系数是带分数时,带分数要化成假分数.

  【针对训练】见“学生用书”.

  四、总结梳理 内化目标

  1.用字母表示数的意义.

  2.用含有字母的式子表示数量关系的意义.

  3.用含有字母的式子表示数量关系时要注意的问题.

  实际问题―→用字母表示数―→用字母表示数量关系

  《2.1整式》同步练习含答案

  1. 其中长方形的长为a,宽为b.

  (1)阴影部分的面积是多少?

  (2)你能判断它是单项式或多项式吗?它的次数是多少?

  《2.1整式》课后练习含答案

  知识要点

  1.单项式:只含有数和字母的乘积的代数式叫做单项式.单独的一个数或一个字母也是单项式.它的本质特征在于:

  (1)不含加减运算;

  (2)可以含乘、除、乘方运算,但分母中不能含有字母.

  2.单项式的次数、系数:一个单项式中,所有字母的指数和叫做这个单项式的次数.单项式中的数字因数叫做这个单项式的系数.

  3.多项式:几个单项式的和叫做多项式.多项式中,每个单项式叫做多项式的项,其中不含字母的项叫常数项.一个多项式中,次数最高的项的次数,叫做这个多项式的次数.

  4.整式:单项和多项式统称整式.

七年级数学上册教案12

  教学目标

  1、使学生理解单项式及单项系数、次数的概念,并会找出单项式的系数、次数、

  2、初步培养学生的观察分析和归纳概括的能力,使学生初步认识特殊与一般的辩证关系、

  重点

  掌握单项式及单项式系数、次数的概念,并会找出单项式的系数、次数、

  难点

  识别单项式的系数和次数、

  教学过程

  一、创设情境,导入新课

  师:出示图片、

  青藏铁路线上,在格尔木到拉萨之间有段很长的冻土地段,列车在冻土地段的行驶速度是100千米/小时,在非冻土地段的行驶速度可以达到120千米/小时,请根据这些数据回答:

  (1)列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?利用怎样的一个等量关系来解决?

  (2)t小时呢?

  二、推进新课

  (一)用含字母的`式子表示数量关系、

  师:出示第54页例1、

  生:解答例1后,讨论问题,用字母表示数有什么意义?

  学生经过讨论得出一定的答案,但可能不会太规范,教师总结、

  师:用字母表示数,在具有某些共性的问题上具有更广泛的意义,在形式上更简单,使用上更方便(可考虑补充:像这样的用运算符号把数或字母连接起来的式子叫做代数式、一个数或表示数的字母也是代数式)、

  师生共同完成例2,进一步体会用字母表示数的意义、

  巩固练习:第56页练习、

  (二)单项式的概念、

  师:出示问题、

  引言与例1中的式子100t,0.8p,mn,a2h,—n这些式子有什么特点?

  生:通过观察、对比、讨论得出,各式都是数或字母的积、

  师:指出单项式的概念,特别地,单独的一个数或字母也是单项式、

  巩固练习:下列各式是单项式的式子是____________、

  《整式的加减》同步练习

  1、代数式a2+a+3的值为8,则代数式2a2+2a﹣3的值为?

  2、甲、乙二人一起加工零件、甲平均每小时加工a个零件,加工2小时;乙平均每小时加工b个零件,加工3小时、甲、乙二人共加工零件___个。

  《整式的加减》单元测试卷含答案

  9、已知a是一位数,b是两位数,将a放在b的左边,所得的三位数是()

  A、ab B、a+b C、10a+b D、100a+b

  【考点】列代数式、

  【分析】a放在左边,则a在百位上,据此即可表示出这个三位数、

  【解答】解:a放在左边,则a在百位上,因而所得的数是:100a+b、

  故选D、

  【点评】本题考查了利用代数式表示一个数,关键是正确确定a是百位上的数字、

  10、原产量n吨,增产30%之后的产量应为()

  A、(1﹣30%)n吨B、(1+30%)n吨C、n+30%吨D、30%n吨

  【考点】列代数式、

  【专题】应用题、

  【分析】原产量n吨,增产30%之后的产量为n+n×30%,再进行化简即可、

  【解答】解:由题意得,增产30%之后的产量为n+n×30%=n(1+30%)吨、

  故选B、

  【点评】本题考查了根据实际问题列代数式,列代数式要分清语言叙述中关键词语的意义,理清它们之间的数量关系、

七年级数学上册教案13

  一、教材分析

  (一)教材的地位和作用

  本节内容是一元一次方程应用的延伸与拓展,它进一步让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,同时又渗透了函数与不等式的思想,为以后内容学习奠定了必要的数学基础,本节内容具有承上启下的作用.学生能深刻地认识到方程是刻画现实世界有效的数学模型,领悟到“方程”的数学思想方法.总之,本节内容无论在知识上还是在数学思想方法上,都是十分很好的素材,能很好培养学生的探索精神、应用意识以及创新能力.

  (二)教材的重难点

  本节的重点是探索并掌握列一元一次方程解决实际问题的方法.而方程的建模思想学生还是初步接触,寻找相等关系对学生来说仍相当困难,所以确定“找出已知量与未知量之间的关系,尤其是相等关系”为本节的难点之一,列方程解应用题的最终目标是运用方程的解对客观现实作出合理的解释,这是本节的难点之二.

  二、教学目标分析

  (一)知识技能目标

  1.目标内容

  (1) 结合生活实际,会在独立思考后与他人合作,结合估算和试探,列出一元一次方程解决本节的三个实际问题,并能解释结果的实际意义及其合理性.

  (2) 培养学生建立方程模型来分析、解决实际问题的能力以及探索精神、合作意识.

  2.目标分析

  (1) 本节的内容就是通过列方程、解方程来解决实际问题,这是必须掌握的知识,估算与试探的思维方法也很重要,这是发现和解决问题的有效途径.

  (2) 七年级的学生对数学建模还比较陌生,建模能突出应用数学的意识,而探索精神和合作意识又是课标所大力倡导的,因而必须加强培养学生这方面的能力.

  (二)过程目标

  1.目标内容

  在活动中感受方程思想在数学中的作用,进一步增强应用意识.

  2.目标分析

  利用方程解决问题是有用的数学方法,学生在前两节的数学活动中,有了一些初步的经验,但是更接近生活,更富有挑战性的问题则需要师生合作,探索解决.

  (三)情感目标

  1.目标内容

  (1) 在探索中获得成功的体验,激发学生学习数学的热情,享受与他人合作的乐趣,建立自信心.

  (2) 通过对实际问题的解决,进一步体会“数学来源于生活,且服务于生活”的辩证思想.

  2.目标分析

  七年级学生的年龄特征决定了他们好奇心强、思想活跃、求知心切.利用教材培养学生良好的学习习惯、方法和品质,这是落实新课标倡导的教育理念的关键.

  三、教材处理与教法分析

  本节内容拟定两课时完成,今天说课的内容是第一课时(探究Ⅰ、探究Ⅱ).根据本节课的特点及七年级学生的心理特征和认知特征,本节课采用探索发现法进行教学,在活动中充分体现学生是学习的主人,教师是学习的组织者、引导者、合作者.本课借助多媒体辅助教学,给学生以直观形象的演示,增强感性认识,增强教学效果.课中以设疑提问、分组活动等方式,激发学生的兴趣,引导学生自主探索与合作交流,主动获得知识.

  四、教学过程分析

  (一)教学过程流程图

  探究Ⅰ

  (二)教学过程Ⅰ

  (以探究为主线、形式多样化)

  1.问题情境

  (1) 多媒体展示有关盈亏的新闻报道,感受生活实际.

  (2) 据此生活实例,展示探究Ⅰ,引入新课.

  考虑到学生不完全明白“盈利”、“亏损”这样的商业术语,故针对性地播放相关新闻报道,然后引出要探索的问题Ⅰ.

  2.讨论交流

  (1) 学生结合自己的生活实际,交流对“盈利”、“亏损”含义的理解.

  (2) 学生交流后,老师提出问题:某件商品的进价是40元,卖出后盈利25%,那么利润是多少?如果卖出后亏损25%,利润又是多少?(利润是负数,是什么意思?)

  (3) 要求学生对探究Ⅰ中商店的盈亏进行估算,交流讨论并说明理由.在讨论中学生对商店盈亏可能出现不同的观点,因此引导学生用数学方法解决问题,统一认识.

  (4) 师生互动,要知道究竟是盈是亏,必须先知道什么?从而引出要算出每件衣服的进价.

  让学生讨论盈利和亏损的含义,理解其概念,建立感性认识;乍一看,大多数学生可能在大体估算后得到不亏不盈,直觉上也是如此,但要解决实际问题,还要知其原价(未知量),从这一分析引入未知量,为后面建立模型,做了必要的铺垫.

  3.建立模型

  (1) 学生自主探索,寻找已知量与未知量之间的关系,确定相等关系.

  (2) 学生分组,根据找出的相等关系列出方程,其中一组计算盈利25%的衣服的进价,另一组计算亏损25%的衣服的'进价.

  (3) 师生互动:①两件衣服的进价和为________;②两件衣服的售价和为________;③由于进价________售价,由此可知两件衣服的盈亏情况.

  (教师及时给出完整的解答过程)

  学生分组、计算盈亏;教师参与、适当提示;师生互动、得到决策.这样设计,让学生体会到合作交流、互相评价、互相尊重的学习方式,有利于学生知识的形成与发展,也有利于学生健康人格的养成.这样设计易于突出重点,突破难点,巩固应用一元一次方程作工具来解决实际问题的方法,也很好地让学生从已有的经验中、活动中,有意义地构建自己的知识结构,获得富有成效的学习体验.

  4.小结

  一个感悟:估算与主观判断往往与实际情况大相径庭,需要我们通过准确的计算来检验自己的判断.

  培养学生科学的学习态度与严谨的学习作风.

  探究Ⅱ

  (三)教学过程Ⅱ

  1.在灯具店选购灯具时,由于两种灯具价格、能耗的不同,引起矛盾冲突.

  恰当的问题情境激发学生探索的欲望,同时让学生体会到数学来源于生活,又服务于生活的实用性.

  启发:选择的目的是节省费用,费用又是由哪些因素决定的?学生讨论得出结论:

  2.列代数式

  费用=灯的售价+电费

  电费=0.5×灯的功率(千瓦)×照明时间(时)

  在此基础上,用t表示照明时间(小时).要求学生列出代数式表示这两种灯的费用.

  节能灯的费用(元):60+0.5×0.011t.

  白炽灯的费用(元):3+0.5×0.06t.

  分析各个量之间的关系,列出代数式,为后面列方程,并进一步探索提供了基础.

  3.特值试探

  具体感知

  学生分组计算:

  t=1000、20xx、2500、3000时,这两种灯具的使用费用,填入下表:

  时间(小时)

  1000

  20xx

  2500

  3000

  节能灯的费用(元)

  白炽灯的费用(元)

七年级数学上册教案14

  教 案

  第一章 有理数

  (1)本周小张一共用掉了多少钱?存进了多少钱?

  根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?

  夯实基础

  (1)序号为几的零件最接近标准?

  ④-(-) 0.025.

  第2课时 加法运算律

  教学目标:

  1.能运用加法运算律简化加法运算.

  2.理解加法运算律在加法运算中的作用,适当进行推理训练.

  教学重点:如何运用加法运算律简化运算.

  教学难点:灵活运用加法运算律.

  教与学互动设计:

  (一)情境创设,导入新课

  思考:在小学里,我们学过的加法运算有哪些运算律?它们的内容是什么?能否举一两个例子来?那这些加法运算律还适用于有理数范围吗?今天,我们一起来探究这个问题.

  (二)合作交流,解读探究

  计算:20+(-30)与(-30)+20两次得到的和相同吗?

  得出结论:20+(-30)=(-30)+20

  换几组数去试:得到加法交换律:a+b= (学生填).

  其实,学生在小学中就已经接触到运算律,此时,可以让学生回忆在小学中除了学习了加法的交换律,还学习了加法的哪种运算律?(结合律)

  计算:(1)[8+(-5)]+(-4);

  (2)8+[(-5)+(-4)].

  得出结论:加法结合律:(a+b)+c= .

  【例1】计算:

  16+(-25)+24+(-35)

  【例2】课本P20例3

  说明:把互为相反数的一对数结合起来相加,可以使运算简化,这种方法是使用加法交换律和加法结合律.

  总结:在进行多个有理数相加时,在下列情况下一般可以用加法交换律和加法结合律简化运算:①有些加数相加后可以得到整数时,可以先行相加;②有相反数可以互相消去,和为0,可以先行相加;③有许多正数和负数相加时,可以先把符号相同的数相加,即正数和正数相加,负数和负数相加,再把一个正数和一个负数相加.

  (三)应用迁移,巩固提高

  【例3】 利用有理数的加法运算律计算,使运算简便.

  (1)(+9)+(-7)+(+10)+(-3)+(-9)

  (2)(+0.36)+(-7.4)+(+0.03)+(-0.6)+(+0.64)

  (3)(+1)+(-2)+(+3)+(-4)+…+(+20xx)+(-20xx)

  【例4】某出租司机某天下午营运全是在东西走向的人民大道上进行的,如果规定向东为正,向西为负,他这天下午行车里程如下:(单位:千米)+15,+14,-3,-11,+10,-12,+4,-15,+16,-18.

  (1)他将最后一名乘客送到目的地,该司机与下午出发点的距离是多少千米?

  (2)若汽车耗油量为a公升/千米,这天下午汽车共耗油多少公升?

  (四)总结反思,拓展升华

  本节课我们探索了有理数的加法交换律和结合律.灵活运用加法的运算律会使运算简便.一般情况下,我们将互为相反数的数相结合,同分母的分数相结合,能凑整数的数相结合,正数负数分别相加,从而使计算简便.

  (五)课堂跟踪反馈

  夯实基础

  1.运用加法的.运算律计算(+6)+(-18)+(+4)+(-6.8)+18+(-3.2)最适当的是( )

  A.[(+6)+(+4)+18]+[(-18)+(-6.8)+(-3.2)]

  B.[(+6)+(-6.8)+(+4)]+[(-18)+18+(-3.2)]

  C.[(+6)+(-18)]+[(+4)+(-6.8)]+[18+(-3.2)]

  D.[(+6)+(+4)]+[(-3.2)+(-6.8)]+[(-18)+18)]

  2.计算:(-2)+4+(-6)+8+…+(-98)+100.

  提升能力

  3.小李到银行共办理了四笔业务,第一笔存入了120元,第二笔支取了85元,第三笔支取了70元,第四笔存入了130元.如果将这四笔业务合并为一笔,请你替他策划一下这一笔业务该怎样做?

  4.某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负.某天自A地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5.

  (1)问收工时距A地多远?

  (2)若每千米路程耗油0.2升,问从A地出发到收工共耗油多少升?

  第3课时 有理数的减法

  教学目标:

  1.经历探索有理数减法法则的过程,理解有理数减法法则.

  2.会熟练进行有理数减法运算.

  教学重点:有理数减法法则和运算.

  教学难点:有理数减法法则的推导.

  教与学互动设计

  (一)创设情景,导入新课

  观察温度计:

  你能从温度计看出4℃比-3℃高出多少度吗?

  学生普遍能直观地看出4℃比-3℃高7℃,进一步地假定某地一天的气温是-3~4℃,那么温差(减最低气温,单位℃)如何用算式表示?

  按照刚才观察到的结果,可知4-(-3)=7 ①,而4+(+3)=7 ②,∴由①②可知:4-(-3)=4+(+3) ③,上述结论的获得应放手让学生回答.

  (二)动手实践,发现新知

  观察、探究、讨论:从③式能看出减-3相当于加哪个数吗?

  结论:减去-3等于加上-3的相反数+3.

  (三)类比探究,总结提高

  如果将4换成-1,还有类似于上述的结论吗?

  先让学生直观观察,然后教师再利用“减法是与加法相反的运算”引导学生换一个角度去验算.

  计算(-1)-(-3)就是要求一个数x,使x与-3相加得-1,因为2与-3相加得-1,所以x应是2,即(-1)-(-3)=2 ①,

  又因为(-1)+(+3)=2 ②,

  由①②有(-1)-(-3)=-1+(+3) ③,

  即上述结论依然成立.

  试一试:如果把4换成0、-5,用上面的方法考虑0-(-3),(-5)-(-3),这些数减-3的结果与它加上+3的结果相同吗?

  让学生利用“减法是加法的相反运算”得出结果,再与加法算式的结果进行比较,从而得出这些数减-3的结果与它们加+3的结果相同的结论.

  再试:把减数-3换成正数,结果又如何呢?

  计算9-8与9+(-8);15-7与15+(-7)

  从中又能有新发现吗?

  让学生通过计算总结如下结论:减去一个正数等于加上这个正数的相反数.

  归纳:由上述实验可发现,有理数的减法可以转化为加法来进行.

  减法法则:减去一个数,等于加上这个数的相反数.

  用字母表示:a-b=a+(-b).

  (在上述实验中,逐步渗透了一种重要的数学思想方法——转化)

  (四)例题分析,运用法则

  【例】计算:

  (1)(-3)-(-5); (2)0-7;

  (3)7.2-(-4.8);(4)-3-5.

  (五)总结巩固,初步应用

  总结这节课我们学习了哪些数学知识和数学思想?你能说一说吗?

  教师引导学生回忆本节课所学内容,学生回忆交流,教师和学生一起补充完善,使学生更加明晰所学的知识.

七年级数学上册教案15

  教学目标:

  知识与能力

  能正确运用角度表示方向,并能熟练运算和角有关的问题。

  过程与方法

  能通过实际操作,体会方位角在是实际生活中的应用,发展抽象思维。

  情感、态度、价值观

  能积极参与数学学习活动,培养学生对数学的好奇心和求知欲。

  教学重点:方位角的表示方法。

  教学难点:方位角的准确表示。

  教学准备:预习书上有关内容

  预习导学:

  如图所示,请说出四条射线所表示的方位角?

  教学过程;

  一、创设情景,谈话导入

  在现实生活中,有一种角经常用于航空、航海,测绘中领航员常用地图和罗盘进行这种角的测定,这就是方位角,方位角应用比较广泛,什么是方位角呢?

  二、精讲点拔,质疑问难

  方位角其实就是表示方向的角,这种角以正北,正南方向为基准描述物体的方向,如“北偏东30°”,“南偏西40°”等,方位角不能以正东,正西为基准,如不能说成“东偏北60°,西偏南50°”等,但有时如北偏东45°时,我们可以说成东北方向。

  三、课堂活动,强化训练

  例1如图:指出图中射线OA、OB所表示的方向。

  (学生个别回答,学生点评)

  例2若灯塔位于船的北偏东30°,那么船在灯塔的什么方位?

  (小组讨论,个别回答,教师)

  例3如图,货轮O在航行过程中发现灯塔A在它的南偏东60°的方向上,同时在它北偏东60°,南偏西10°,西北方向上又分别发现了客轮B,货轮C和海岛D,仿照表示灯塔方位的方法,画出表示客轮B、货轮C、海岛D方向的射线。

  (教师分析,一学生上黑板,学生点评)

  四、延伸拓展,巩固内化

  例4某哨兵上午8时测得一艘船的位置在哨所的南偏西30°,距哨所10km的地方,上午10时,测得该船在哨所的北偏东60°,距哨所8km的地方。

  (1)请按比例尺1:000画出图形。

  (独立完成,一同学上黑板,学生点评)

  (2)通过测量计算,确定船航行的方向和进度。

  (小组讨论,得出结论,代表发言)

  五、布置作业、当堂反馈

  练习:请使用量角器、刻度尺画出下列点的位置。

  (1)点A在点O的`北偏东30°的方向上,离点O的距离为3cm。

  (2)点B在点O的南偏西60°的方向上,离点O的距离为4cm。

  (3)点C在点O的西北方向上,同时在点B的正北方向上。

  作业:书P1407、9

【七年级数学上册教案】相关文章:

数学七年级上册教案04-16

湘教版数学七年级上册教案01-09

[优]数学七年级上册教案06-13

七年级数学上册教案01-11

七年级数学上册教案[精选]06-16

七年级数学上册教案(精选)06-14

七年级上册数学教案01-19

七年级上册数学教学教案06-01

七年级上册数学教案12-16

数学新七年级上册教案模板01-24