(通用)六年级数学下册教案15篇
在教学工作者实际的教学活动中,通常需要准备好一份教案,借助教案可以让教学工作更科学化。如何把教案做到重点突出呢?以下是小编精心整理的六年级数学下册教案,仅供参考,希望能够帮助到大家。
六年级数学下册教案1
教学目标
1.在操作和探究中理解并掌握圆锥的体积计算公式。
2.引导学生探究、发现,培养学生的观察、归纳等能力。
3.在实验中,培养学生的数学兴趣,发展学生的空间观念。
教学重点
圆锥体积的计算公式的推导过程。
教学难点
圆锥体积计算公式的理解。
教学过程
一、情景铺垫,引入课题
教师出示画面,画面中两个小孩正在商店里买蛋糕,蛋糕有圆柱形和圆锥形两种。圆柱形蛋糕的标签上写着底面积16cm2,高20cm,单价:40元/个;圆锥形的蛋糕标签上写着底面积16 cm2,高60 cm,单价:40元/个。
出示问题:到底选哪种蛋糕划算呢?
教师:图上的两个小朋友在做什么?他们遇到什么困难了?他们应该选哪种蛋糕划算呢?谁能帮他们解决这个问题?
学生明白首先要求出圆锥形蛋糕的体积。
教师:怎样计算圆锥的体积?这节课我们一起研究圆锥体积的计算方法。
揭示课题。板书课题:圆锥的体积
二、自主探究,感悟新知
1.提出猜想,大胆质疑
教师:谁来猜猜圆锥的体积怎么算?
2.分组合作,动手实验
教师:圆锥的体积和圆柱的体积之间究竟有没有关系呢?如果有关系的话,它们之间又是一种什么关系?通过什么办法才能找到它们之间的关系呢?带着这些问题,请同学们分组研究,通过实验寻找答案。
教师布置任务并提出要求。
每个小组的桌上都有准备好的器材:等底等高空心的或实心的圆柱和圆锥、河沙或水、水槽等不同的器材,以及一张可供选用的实验报告单。四人小组的成员分工合作,利用提供的器材共同想办法解决问题,找出圆锥体积的计算方法。并可根据小组研究方法填写实验报告单。
学生小组合作探究,教师巡视指导,参与学生的活动。
3.教师用展示实验报告单
教师:你们采用了哪些方法研究等底等高的圆柱和圆锥之间的关系?通过实验,你们发现了什么?
方案一:用空心的圆锥装满水,再把水倒在与这个圆锥等底等高的空心圆柱形容器中,倒了三次,刚好装满圆柱形容器,因为圆柱的体积=底面积×高,所以圆锥的体积=1/3×圆柱的体积。
方案二:方法与一小组的方法基本一样,只不过装的是河沙。我们的结论和一小组一样,圆锥的体积也是这个等底等高圆柱体积的三分之一。
教师:二个小组采用的实验方法不一样,得出的结论都一样。老师为你们的探索精神感到骄傲。
教师把学生们的实验过程演示一遍,让学生再经历一次圆锥体积的探究过程。
4.公式推导
教师:圆柱的体积怎样计算?圆锥的体积又怎样计算?
教师引导学生理解只要求出与这个圆锥等底等高的圆柱的体积,再乘以三分之一,就得到圆锥的体积。
板书:圆柱的体积=底面积×高
V=S×h
↓〖4↓〖6↓
圆锥的`体积=1/3×底面积×高
V=1/3×S×h
教师:圆柱的体积用字母V表示,圆锥的体积也用字母V表示。怎样用字母表示圆锥的体积公式?
抽学生回答,教师板书:V=1/3Sh
教师引导学生理解公式,弄清公式中的S表示什么,h表示什么。
要求学生阅读教科书第39页和第40页例1前的内容。勾画出你认为重要的语句,并说说理由。
5.运用所学知识解决问题
教学例1。
一个铅锤高6 cm,底面半径4 cm。这个铅锤的体积是多少立方厘米?
学生读题,找出题中的条件和问题。
引导学生弄清铅锤的形状是圆锥形。
学生独立解答。抽学生上台展示解答情况并说出思考过程。
三、拓展应用,巩固新知
1.教科书第42页第1题
学生独立解答,集体订正。
2.填一填
(1)圆柱的体积字母表达式是(),圆锥的体积字母表达式是()。
(2)等底等高的圆柱的体积是圆锥体积的()倍。
抽生回答,熟悉圆锥的体积计算公式。
3.把下列表格补充完整
形状 底面积S(m2) 高h(m) 体积V(m3)
圆锥 15 9
圆柱 16 0.6
学生在解答时,教师巡视指导。
4.教科书第42页练习九第2题
分组解答,抽生板算。教师带领学生集体订正。
5.应用公式解决实际问题
教师:现在我们再来帮助这两个同学解决他们的难题。
要求学生独立解答新课前买蛋糕的问题。
抽学生说出计算的结果。明白两个蛋糕的体积一样大,因此买两种形状的蛋糕都可以。
四、课堂总结
教师:这节课的学习中,你都有哪些收获?有关圆锥体积的知识还有哪些不清楚的?
六年级数学下册教案2
复习内容:
人教版九年义务教育六年制小学数学第12册<<代数初步知识。>>的整理和复习。
复习目的:
1。通过系统的整理,帮助学生形成代数初步知识结构,提高学生对代数初步知识的掌握水平。
2。使学生加深理解用字母表示数的意义和作用,以及方程、方程的解、解方程的意义;使学生熟练掌握简易方程的解法。
3。使学生感受数学与实际生活的联系,让学生运用知识解决实际问题,从而培养学生的创新精神和实践能力。
4.进一步教会学生抓住联系整理知识的方法和针对重难点进行复习的方法,提高学生的学习能力。
复习重点:
代数初步知识的整理和复习。
教学过程:
一、谈话引入
1、师生谈话。
师:(对一个学生)你今年多大了?你们知道老师比他大多少岁吗?你们能用一个式字表示出老师比他大的岁数?
生:x表示老师的岁数,(x—12)就表示出老师比他大的岁数。
2。揭示课题。
师:像这样,用字母表示数的方法实际上是一种重要的代数方法。这节课,老师就和大家一块儿来整理复习代数初步知识。
二、整理知识
1。回忆整理。
提问:请同学们回想一下,在小学阶段我们学习过哪些代数初步知识?请大家打开课本98页边看边回忆。
教师根据学生的回忆在屏幕上逐一出示知识点:用字母表示数、数量关系、运算定律、计算公式、简易方程、方程、方程的解、解方程、比和比例。
师:这些都是过去学过的代数初步知识,它们之间有联系吗?要看出它们之间的联系,就需要对这些知识进行整理。下面,请同学们小组合作,根据这些知识要点和知识间的联系进行整理,并记录出整理的结果。我们来比一比,看哪个小组将知识间的联系整理得简洁、清晰,又有特色!学生分组整理,教师巡视指导。
2.汇报交流。
各小组选一名代表展示、交流整理的结果和过程。结合交流过程,师生共同评价各组的整理情况。
3.归纳概括。
提问:请大家比较一下刚才这些方案,你更喜欢哪一种?
小结:其实这些方案都很出色,虽然形式不同,但它们都是根据什么来进行整理的?它们都抓住了整理的关键,也就是根据知识要点和知识间的联系进行整理。这是一种很好的整理方法,咱们还可以用这种方法去整理其它知识。
师:刚才大家都把代数初步知识分成了哪三个部分?(板书:用字母表示数、简易方程、)这节课,我们着重复习"用字母表示数"和"简易方程"。
三、复习提高
1、复习用字母表示数。
师:"用字母表示数"包括哪些?(板书:数量关系、定律、公式)
用字母表示数量关系、定律和公式,同学们有疑问吗?用字母表示数要注意些什么呢?我们一块儿来复习。
课件出示题目:用含有字母的式子表示下面的数量关系,想一想:书写含有字母的式子应该注意什么?
(1)学校去年植树a棵,今年植树的棵数比去年的2倍还多6棵,今年植树()棵。
(2)同学们做操排成a行,每行a人,一共有()人。
(3)一本书有120页,小丹每天看x页,看了y天,还剩()页。
(4)一种足球每个原价a元,打折后现价b元,原来买100个足球的钱,现在可以买()个。
学生独立完成,集体订正答案。
提问:谁能总结一下,书写含有字母的式子应该注意什么?
小结:通过刚才的复习咱们知道,象这样,用含有字母的'式子可以简明的表达出数量之间的关系。
2.复习简易方程。
师:简易方程包括哪些内容?(板书:方程、方程的解、解方程)
在你们的记忆中,什么是方程?方程的解和解方程有什么区别?请同桌的同学互相说一说。
师:下面我们就用这些概念来解决几个问题。
课件出示题目:
①判断下面各式是不是方程?
②x+42=78÷3()2x-16()5x-2x=150()x<0。1()
学生用手势判断。提问:为什么第2和第4个式子不是方程?
②解下面的方程。想一想:解方程的依据是什么?解方程时要注意什么?
x+42=78÷35x-2x=150
展示学生的解答过程。
提问:解方程的依据是什么?解方程时要注意什么?
师:可见咱们解方程时不仅要考虑每步的依据,而且要注意书写格式,养成检验的好习惯。
小结:刚才我们复习"用字母表示数"和"简易方程"是针对这两部分的重点和难点进行的,这是一种重要的复习方法,我们还可以用这种方法去复习其它知识。
四、应用创新
课件出示题目:
一位朋友从济南乘火车到美丽的城市青岛,准备在那儿停留5天,最后乘火车按原路返回济南。请同学们用含有字母的式子表示出这位朋友青岛一行的全部开支。
板书:每天用餐a元,住宿b元。
在解决这个问题中应引导思考:哪些开支是固定不变的?哪些开支是可变的?请同学们根据自己的生活经验设计一下,这位朋友这次出差带多少钱比较合适。请同学们分小组讨论,看哪组设计得最合理。(根据学生回答教师板书不同的设计。)
提问:同学们设计出了这么多种方案,你们认为哪种设计最合适呢?
小结:通过这个问题可以看出,用字母表示一些不确定的量,能够帮助我们很好的解决一些实际问题。
五、全课小结
师:这节课,我们对代数初步知识进行了整理和复习,你最大的收获是什么,谁能谈一谈学习的体会?
六年级数学下册教案3
【教材分析】
正比例是刻画某一现实背景中两种相关联的量的变化规律的数学模型,从常量到变量,是学生认识过程的一次重大飞跃。通过学习,学生可以进一步加深对过去学过的数量关系的理解,初步学会从变量的角度来认识两种量之间的关系,感受函数的思想方法。同时这部分知识在日常生活和生产中有着广泛的应用,学号这一内容,既可以锻炼学生用数学的眼光观察现实生活的意识,通过解决问题的能力,又可以为进一步学习函数知识奠定扎实的基础。
【学情分析】
学生已经认识了比、比例的意义,掌握了一些常见的数量关系。虽然学生在过去学习用字母表示数和运算律的过程中,对变量的思想有一些感知,但真正用函数的观念探索两种相关联的量的变化规律是从本课开始的。在学习过程中,使学生结合生活实例通过观察、操作、讨论等学习方式初步理解正比例的意义。
【设计理念】
数学学习应从学生的认知发展水平和已有的知识经验出发,让学生亲身经历、体验、探索。”在认真分析教材,深入了解学生的实际认知水平的基础上,本节课的设计,我注意了以下几个方面:
1.从学生已有的知识经验出发,将数学学习与生活实际相联系。
2.让学生经历发现和提出问题、分析和解决问题的过程,自主探索、合作交流。
3.注重积累数学学习经验,渗透数学思想方法。
4.注重学生过程的评价,让学生在评价中不断认识、调整自我,建立自信心。
【教学目标】
1.使学生结合具体实例认识正比例的量,初步理解正比例的意义,能正确判断两种相关联的量是不是成正比例。
2.使学生在认识正比例的量的过程中,初步体会变量的特点,感受用数学模型表示特定数量关系及其变化规律的过程和方法,获得从生活现象中抽象出数学知识和规律的意识,发展数学思维能力。
3.使学生在参与数学活动的过程中,进一步体会数学与日常生活的密切联系,获得一些学习成功的体验,激发对数学学习的兴趣。
【教学重点】
理解正比例的意义。
【教学难点】
掌握成正比例的量的变化规律及其特征,学会根据正比例的意义判断两种相关联的量是不是成正比例。
【教学准备】
教学课件。
【教学过程】
一、激趣设疑,铺垫衔接。
1.谈话:看到“正比例的意义”这个课题,你有什么疑问?
2.结合现实情境回忆常见的数量关系。
【设计说明:数学课堂教学应激发学生兴趣,调动学生积极性,引发学生思考。正比例的意义建立在对常见的数量关系间变化规律探索的基础之上,适当的回顾既有利于激活学生已有的知识经验,又为探究新知做好准备,有效沟通新旧知识间的内在联系。】
二、合作探究,发现规律。
1.教学例1
出示例1的表格,让学生说一说表中列出的是哪两种量。并联系这辆汽车的行驶过程,体会表中行驶时间和路程之间有什么关系。
谈话:请同学们仔细观察和比较表中数据,说一说这两种量分别是怎样变化的。
组织反馈,并通过交流,使学生认识到这里的路程和时间是两种相关联的量,汽车的行驶时间变化,路程也随着变化。
谈话:请大家进一步观察表中数据,这辆汽车行驶的时间喝路程的变化是否有一定的规律?
预设:
(1)一种量扩大到到原来的几倍,另一种量也随着扩大到原来的几倍;一种量缩小到到原来的几分之几,另一种量也随着缩小到原来的几分之几。
(2)路程除以对应时间的商都是一样的,也就是相对应的路程和时间的比值都是80。
根据学生的交流的实际情况,如果学生不能主动发现规律的,及时引导学生写出机组相对应的路程和时间的比,并求出比值。
提问:这个比值表示什么?你能用一个式子来表示上面几个量之间的关系吗?
根据学生的回答,板书:
提问:括号里的“一定”表示什么意思?你能结合这个式子说一说上面的例子中汽车行驶路程和时间的变化规律吗?
小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例关系,行驶的路程和时间是成正比例的量。
请学生完整地说一说表中的路程和时间成什么关系。
【设计说明:正比例的意义比较抽象,建立正比例的概念,首先要对变量有比较充分的感知。为此,在呈现表格后,先引导学生联系汽车行驶的过程体会到汽车行驶的时间和路程是在不断变化的,再通过观察和比较进一步体会到时间和路程是两种相关联的量,时间变化,路程也随着变化。这既有利于学生联系已有的生活经验感知变量的`特点,又渗透了变量和自变量的含义,有利于学生初步体会变量之间的关系。在此基础上,引导学生观察表格,讨论时间和路程的变化规律,并对学生中可能出现的情况作充分预设,既为学生自主发现规律提供了足够的空间,凸显了学生的主体地位,又突出了本课的教学重点,使每一个学生都能在观察、比较、分析、归纳等具体活动中经历学习过程,获得对正比例意义的充分感知。在揭示文字表达式后,让学生交流这里的“一定”表示什么意思,并结合文字表达式说一说两种量的变化规律,促使学生对已经积累的感性认识进行抽象和概括,为进一步揭示正比例的意义做好准备。】
2.教学“试一试”。
让学生自主读题,根据表中已经给出的数据把表格填写完整。
谈话:请同学们仔细观察表格,先想一想购买铅笔的数量和总价是怎样变化的,再写出几组对应的总价和数量的比,并比较比值的大小,看这两种量是按什么样的规律变化的。
提问:这里总价好数量的比值表示什么?你能用式子表示它们之间的关系吗?
根据学生的回答,板书:
让学生结合上面的关系式,判断铅笔的总价和数量是否成正比例,并说明理由。
【设计说明让学生继续结合具体的实例进一步感知成正比例的量的特点,积累对成正比例的量的感性经验,为理解正比例的意义提供更丰富的感性认识。】
3.抽象概括
请大家回顾一下,例1和“试一试”中分别是什么样的两种量?成正比例的两种量有什么共同特点?
启发:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用什么样的式子来表示?
根据学生的回答,板书:,并揭示课题。
请大家想一想,生活中还有哪些成正比例的量?
【设计说明:引导学生回顾例1和“试一试”的学习过程,说一说成正比例的量有什么共同特点,并在充分交流的基础上,通过抽象和概括得到正比例关系的字母表达式,既可以促使学生主动把已经积累的的感性经验上升的理性认识,获得对正比例意义的准确把握,又有利于学生初步感悟数学抽象的过程和方法,体验符号化的思想,发展数学思考。】
三、分层练习,丰富体验
1.“练一练”第1题。
出示题目后让学生说一说表中列出了哪两种量,这两种量是怎样变化的。
讨论:这两种相关联的量是按什么规律变化的的呢?请大家先写几组相对应的的生产零件的数量和所用时间的比,并比较比值的大小,再想一想这个比值表示什么,可以用什么样的式子表示题中几种量之间的关系。
学生按要求活动,并组织反馈。
提问:张师傅生产零件的数量和时间成正比例吗?为什么?
2.“练一练”第2题。
出示题目后,请学生说一说表中列出的是哪两种量,它们是怎样变化的,在独立进行判断,并交流判断时的思考过程。
3.练习十第1题。
先请学生说一说是怎样发现订阅数量与总价的变化规律的,可以用什么样的式子表示它们的关系,为什么说订阅的总价和数量成正比例关系?
4.练习十第2题。
出示题目后,让学生按要求在方格纸上把正方形放大,并演示放大后的正方形,并说说是怎样画出放大后的正方形的,放大后的正方形的边长各是多少厘米。
出示题中的表格,让学生独立填表并比较填出的数据,说一说正方形的周长和边长是按什么规律变化的,它们是否成正比例;正方形的面积和边长是按什么规律变化的,它们是否成正比例。
结合学生的回答小结。
追问:判断两种相关联的量是否成正比例关系,关键看什么?
【设计说明:紧紧围绕本节课的重点和难点,有层次、有针对地设计练习,既有利于学生进一步加深对正比例意义的理解,掌握判断两种量是否成正比例关系的过程和方法,又有利于学生初步体会变量的特点,感悟函数的思想,发展用数学语言表达的能力。】
四、反思回顾,提升认识
谈话交流:这节课我们学习了什么?怎样判断两种相关联的量是不是成正比例关系?你还有哪些收获和体会?
【板书设计】
正比例的意义
两种相关联的量
六年级数学下册教案4
【教学内容】人教20xx年课标版 六年级下册《认识负数》第一课时
【教材分析】《负数》是新人教版小学数学六年级下册第一单元的内容,该内容是在学生认识了自然数、分数、小数的基础上进行学习的。教材内容主要包括了温度中的负数、收支中的负数、数轴上的负数等,从生活情境入手,既唤起了学生已有的生活经验,又体现了数学的生活应用的价值(温度、时差、海拔、位置、收支……)。
小学阶段只要求学生能够初步认识负数,能在具体情境中理解负数的意义,初步建立负数的概念。
【学情分析】在学习“生活中的负数”之前,学生已经系统认识了整数和小数,并且对“分数”也有了初步的认识。知道这些已学过的数的个数都是无限的。学生由于生活经验,可能在某些地方已经知道了负数的存在。基于这样的学习起点,本节课必须在学生认知冲突产生矛盾的前提下让学生体会“负数”产生的必要性。并通过熟悉的生活情境让学生体会负数的意义。同时在本节课上也应尽量通过数学思想的渗透,使知识形成一个完整的结构,为今后进一步学习正、负数打下基础。
【教学目标】
1、在具体情境中初步认识负数,正确读、写正数和负数;
2、初步学会用正、负数表示生活中的一些相反意义的量,理解正、负数的意义,体会负数产生的必要性;
3、知道0既不是正数也不是负数,渗透分类讨论思想;
4、初步掌握用数轴上的点表示负数、0、正数,渗透数形结合的思想。
【教学重难点】
教学重点:初步学会用正、负数表示生活中的一些相反意义的量,理解正、负数的意义。
教学难点:理解“0”的意义。
【教学过程】
(课前游戏:体现“相反”)
一、设疑导入,引出新知
1、引出负数
师:我们已经认识了许多数。比如整数、分数、小数……有一个数与O相差3,它可能是几?
生:3。
师:还有吗?
生:﹣3。
师:﹣3是什么数呢?
生:负数。
师:今天我们就一起来研究负数。(板书:认识负数)
2、联系生活
师:生活中,你见过负数吗?谁能和大家来分享?
学生一一举例在生活中见过的负数。
师:看来,负数在生活中的应用还真广泛!
3、学习读、写
师:你会写负数吗?老师请三位同学到黑板上各写一个负数,其他同学在自己的纸上写,好吗?
学生各自写出一个负数。
师:(描红负号)这是什么符号?
生:减号
师:表面上看,像减号,实际上在负数中,它叫做……
生:负号。
师:(板书-、-2、5……)这是负数吗?
生:这也是负数!
师:是呀,不光有负整数,还有负分数、负小数。
师:这些负数你会读吗?请你来读一读。
指名学生读,教师板书读法,再全班齐读。
师:有负数,那么相应地就有“正数”。有-2、5,就有+2、5。正号一般可以省略。(板书:正数)
二、情境解读,探究意义
师:负数我们已经会读、会写了。那负数究竟表示什么意义呢?下面我们就重点来研究-3。同学们请看,这几个﹣3分别表示什么意义呢?结合你自己的理解,四人小组内说一说,好吗?开始吧。
学生分小组讨论。
师:好,哪位同学能选择其中一个﹣3来说说你们小组的理解。
1、某天杭州最低气温是-2℃。
师:温度计上的﹣3℃在哪呢?谁能上来指一指。
一生上台指到0往下第三根刻度线。
师:你是从开始数的?
生:从0开始数。
师:现在温度是多少?(课件动态演示温度计的变化)
生:3℃。
师:+3℃和﹣3℃有什么区别?
生:+3℃是零上3度,﹣3℃是零下3度。
师:有没有共同点?
生:都是从0开始数3根刻度线,和0都相差3度。
师:1和-10这两个数,哪个大,你能通过温度来判断吗?
生:1更大,因为1℃比-10℃暖和。
师:1和-20呢?1和-30呢?夜晚,月球背面温度可降低到-183℃。-183和1比呢?为了科学研究的需要,实验环境必须达到为-999℃。-999和1比呢?(体现冷暖,夸张而又自然)
师:-183和-999比呢?
2、老师把车停在-2楼。
师:你能不能找出老师停车的楼层?你是以哪里开始作为起点数的?
生:从入口处往下数三楼。
师:(指着3楼),那这一楼呢?
生:3楼。
师:你也是以哪里作为起点?
生:从入口处往上数三楼。
师:不错,不管是3楼还是-3楼,都是以入口处的地面作为分界点的。
3、某地的海拔高度是-2米。
师:高度怎么会是负数呢?
生:海平面以下3米就是-3米。
师:和海平面一样高呢?
生:那就是0。
师:如果我们把讲台面看成是海平面,那么这么高大约记作多少?(教师指着低于讲台面约1米处。)
生:-1米。
师:+1米大概在什么位置,谁能上来指一指?
生指出讲台面上方约1米处。
师:原来是这样啊!你知道中国海拔最高的地方是哪里吗?说说这里8844的意思。
师:中国海拔最低的地方是新疆艾丁湖,说说这里﹣154的意思。
师:海拔高度有的是正数,有的是负数。主要看什么?
4、我的银行卡里还剩-2元。
师:这是张老师的信用卡,你来看看老师的钱是怎么变成负数的'。
师:信用卡里的钱什么时候是负数,什么时候是正数呢?
师:不停地花,花到0元了,再继续就变为负数了。还回去又是正数了,是这样吧?
师:-3究竟是什么含义,今天我们从四个不同的情境解读了它,其实-3的意义远不止这些。通过-3,我们知道了,0℃以上记作正,那么0℃以下就记做负。请你来补充。
海平面以上记作正,……
地上楼层记作正,……
还回的钱记做正,……
师:正数和负数之间是怎样的关系啊?
生:相反的关系。
小结:正数和负数刚好用来表示两种“相反意义的量”。
师:生活中像这样相反意义的量广泛存在。看,一起来完成小试牛刀。
学生独立完成,并集体反馈。
师:这里有没有相反意义的词出现?
师:向东5米记做+5米,向西8米记作-8米。能不能向西记做正呢?
生:也可以。
师:究竟记作正数还是负数其实有时候只是一种规定。向南10米记作+10米,那么向……
生:向北。
师:为什么不可以向东?
生:南和北才是相反的。
师:说得太好了!必须是相反意义的量才能用正数、负数来表示!
三、抽象建构,研究数轴
师:我们回过头再来看看这根温度计,0以下的都记住负数,那如果我把温度计转一转,哪边记作负数呢?
生:左边。
师:没错,在数学中,有一种数直线,一般都会把向右方向记作正。你能不能在这条直线上找出﹣3、3、-5和0、5
学生独立完成,投影展示。
师:想一想,-3与0相距几格?3呢?你有事吗发现?
生:与0的距离一样。
师:有水平!像-3和3这样,与0的距离相同的一对数,在这条数线上还有吗?
师:这些数都是一对一对地存在,那0呢?
师:如果请你来给所以得数分分类,你会分成哪几类啊?
小结:0 既不是正数,也不是负数!
师:-1和- 0、5 比,谁大?还有比-0、5更大的负数吗?
师:越靠近0,这个负数就越大,能找到最大的负数吗?
师:-3和3之间有几个负数?有几个负整数?
四、深化练习,拓展提高
1、盈亏--正负数求和
师:这是晨光文具店一天的营业额,能看出他的是否赚了吗?
生:不能,还要考虑成本。
师:你还挺会做生意的噢!的确,加上房租、人工、和物品本身进价,这一天的成本如上。这一天的盈亏该用哪个数表示?
生:-100元。
师:你能不能帮文具店老板算一算周一至周五的盈亏情况?
师:这五天下来,文具店究竟有没有盈利?你是怎么算的?
2、身高--平均数
师:我们继续来看,测量身高时,测量员记录了小明的身高是-2厘米,你知道是怎么回事吗?
师:小明真实的身高是多少呢?
师:其它4位小朋友的身高也分别记录成这些数,他们5人的平均身高达到140cm了吗?
学生独立完成,再集体反馈。
五、回顾课堂,课外延伸
1、同学们,今天我们学习负数,我们是怎么研究它的?
2、你知道负数是怎么产生的吗?
六年级数学下册教案5
教学目标:
1.让学生在圆柱的体积和容积的知识基础上,探索生活中一些不规则物体体积的测量方法,学会综合运用所学知识测量计算不规则物体体积,加深对已学知识的理解。
2.培养学生的动手实践能力,提高学生综合应用数学知识和方法解决实际问题的水平。
3.让学生感受数学知识之间的相互联系,体会数学与生活的密切联系,树立运用数学解决实际问题的自信。
教学重点:探索不规则物体体积的测量方法。
教学难点:理解水面上升的体积就是不规测物体的体积。
教学关键:使学生进一步体会图形与实际生活的联系,感受立体图形学习的价值,提高数学学习的兴趣和
学好数学的信心。
教学准备:
1.将全班分成8小组,每组确定一名组长,组织本组的实验。
2.每组准备一个长方体或圆柱体透明容器,水、尺子、记号、笔、天平、土豆、铁块、铜块、铝块等。
3.实验记录单。
教学过程:
一、情境导入
谈话:你们听过乌鸦喝水的故事吗?谁愿意来给大家讲一讲。
导入:是啊,石子放入瓶中,水面就升高了,聪明的乌鸦就是用这样的方法喝到了水。瓶中放入石子,水面就升高了,说明什么呢?(石子占据了一定的空间)看来,每个物体都有它的体积,今天这节课我们
继续来研究测量物体的体积。(板书课题)
二、铺垫:
1、出示一堆物体,其中有规则物体(长方体、正方体、圆柱、圆锥),也有不规则物体[乒乓球(凹陷的)、苹果、木块、泡沫塑料;橡皮泥、鸡蛋、石块、铁块、玻璃球;足球(瘪气的)、螺丝帽等],设问:
(1)这些物体哪些会计算体积?怎样计算?
(2)哪些不会计算体积?这些不规则物体的体积能够直接计算出来吗?怎样计算呢?
师板书课题:测量不规则物体的体积
三、自主探索
1.活动一:测量计算土豆的`体积。
(1)谈话:我们已经学会了求长方体、正方体、圆柱喝圆锥的体积,但生活中还有大量形状不规则的物
体,它们的体积又该如何测量呢?
(2)提出问题:像这个土豆,你准备怎样测量它的体积呢?(学生自由发言说方案)
(3)总结引领:是呀,我们可以先在圆柱形状的容器里放适量的水,测量出水面的高度;然后讲土豆完
全没入水中,测量出水面上升后的高度,最后通过计算上升的水的体积就可以得到土豆的体。
(4)小组活动:老师给每个小组准备一些材料(长方体、正方体圆柱体容器若干),现在就用你们想到的
这种办法来测量土豆的体积,并填写表格。
活动提示:
1、观测数据时要注意科学准确。
2、要注意保持教室和桌面的卫生。
3、容器中的水要适量,既不能太多,也不能太少。
学生活动,教师巡视指导。
(5)反馈交流
①说一说土豆的体积是怎样算的,并讨论为什么可以这样计算。(多媒体课件进行动态演示)
②提问:实际操作时,应注意什么?(一定要把土豆完全没人水中)
2.活动二:测量计算铁快的体积。
(1)谈话:我们通过计算上升的水的体积知道了土豆的体积,现在我们用同样的方法来分别测量两块铁快的体积,并用天平称一称它们的质量,再填写下表。
(2)小组活动,教师巡视指导。(提醒学生最好先称出质量,再测量体积)
(3)反馈交流。
比一比:观察上表,你有什么发现?
比较发现:桶一种材料,质量与体积比的比值是一定的。
(4)算一算:运用以上知识,称出第三快铁快的质量并计算出它的体积。
①小组合作,称出铁快的质量。
②独立算出它的体积。
③交流反馈:铁快的质量与体积的比值约是7.8∕Cm3,怎样理解
这个比值?说一说你列式的理由。
三、拓展延伸
1.谈话:金属在人们生活中有着广泛的运用。你们知道吗?不同的材料,质量与体积的比值是不同的。(出示表)
2.组织活动
(1)借助这些比值,我们能不能计算出这些物体的体积呢?
(2)在老师给你准备的材料中选择一个物体,称出它的质量,计算它的体积。
请小组成员汇报交流以下情况
(1)所测量的物体。
(2)具体测量方案。
(3)具体测量结果。
(4)在活动过程中,是否还有无法解决或者带有疑问的问题?
3.交流反馈。
四、总结回顾评价反思
1、这次数学实践活动我们都测量了哪些物体的体积?
2、你都有哪些收获或体会?
3、如果你想继续探索,还有那些问题需要帮助解决?
六年级数学下册教案6
一、教学内容:
北师大版六年级数学下册第一单元《圆锥的体积》。
二、教学目标:
1、知识技能目标:
通过实验探究,发现圆锥和圆柱体积之间的关系,理解和掌握圆锥体积的计算方法。
使学生会应用公式计算圆锥的体积并解决一些实际问题。
2、思维能力目标:
提高学生实践操作、观察比较、抽象概括的能力,发展空间观念。
3、情感态度目标:
使学生在经历中获得成功的体验,体验数学与生活的联系。
三、教学重点、难点:
重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题
难点:探索圆锥体积的计算方法和推导过程。
四、教具准备:
1、多媒体课件。
2、等底等高、等底不等高、等高不等底的圆锥和圆柱共六套,沙、米,实验报告单;带有刻度的直尺,绳子等。
五、教学过程:
(一)创设情境,导入新课
投影出示圆锥形小麦堆。
师:看,小麦堆得像小山一样,小麦丰收了。张小虎和爷爷笑得合不拢嘴。这时,爷爷用竹子量了量麦堆的高和底面的直径,出了个难题要考考小虎:你能算出这堆小麦大约有多少立方米吗?
这下可难住了小虎,因为他只学了圆柱的体积计算,圆锥的体积怎么计算还没有学,怎么办?今天我们就一起来探究圆锥体积的计算方法。
【设计意图】通过学习感兴趣的情境,巧妙至疑,激发学生的学习欲望。
(二)互动新授
1、提出问题。
教师:我们已经会计算圆柱的体积,如何计算圆锥的体积呢?
根据学生的各种猜想,教师进一步引导学生思考,我们学过那些图形的体积计算?圆锥的体积与那种图形的体积有关?
进一步观察、比较、猜测。教师举起圆柱、圆锥教具,把圆锥体套在透明的圆柱体里,让学生想想它们的体积之间会有什么关系?
学生可能会猜测:圆柱的体积可能是圆锥的2倍,3倍,4倍或其他。
2、实验探究。
(1)教师布置实验任务。
出示教材例2.
① 从准备好的圆柱、圆锥体容器中找出等底、等高的圆柱和圆锥体容器来。
② 用倒水的方法量一量等底、等高的圆柱体积和圆锥体积之间的关系。
布置实验要求:各组根据需要选用实验用具,小组成员分工合作,轮流操作,做好实验数据的收集整理。(每组发一张实验记录单)
一号圆锥 二号圆锥 三号圆锥
次数
与圆柱是否等底、等高
(2)开展实验探究。
① 找出等底、等高的圆柱和圆锥形容器。
② 实验研究。
教师巡视指导。
学生一边实验,一边收集整理数据,完成实验记录单。
(3)分析数据,作出判断。
① 各组说说各种实验结果。
② 观察分析数据,你发现了什么?
(发现大多数情况下,圆柱能装下三个圆锥的水,也有两次或四次等不同的结果)
③ 进一步观察分析,什么情况下圆柱刚好能装下三个圆锥的水?
(各组互相观察各组的圆柱圆锥,发现只要是等底等高,圆柱的`体积都是圆锥体积的3倍,也就是说在等底等高的情况下,圆柱体积是圆锥体积的3倍。)
④ 是不是所有符合等底等高条件的圆柱、圆锥都具备这样的关系呢?(教师用标准教具装水实验一次)
(4)总结结论
结论1:圆锥的体积V等于和它等底等高圆柱体积的三分之一。
结论2: 圆柱的体积V等于和它等底等高的圆锥体积的3倍。
3、启发引导 推导公式
师:对于同学们得出的结论,你能否用数学公式来表示呢?
生:因为圆柱的体积计算公式V=sh;所以我们可以用1/3 sh表示圆锥的体积。
师:其他同学呢?你们认为这个同学的方法可以吗?
生:可以。
师:那我们就用1/3 sh表示圆锥的体积。
计算公式:V= 1/3 sh
师: (1)这里Sh表示什么?为什么要乘1/3?
(2)要求圆锥体积需要知道哪两个条件?
学生回答,师做总结
4、简单应用 尝试解答
例1:(课件出示教材情景图)在打谷场上,有一个近似于圆锥的小麦堆,底面半径是2米,高是1.5米。你能计算出小麦堆的体积吗?
(学生独立列式计算全班交流)
(三)巩固练习,运用拓展
1、试一试
一个圆锥形零件,它的底面直径是10厘米,高是3厘米,这个零件的体积是多少立方厘米?
2、练一练
计算下面各圆锥的体积:
3、实践性练习
师:请你们将做实验时装在圆柱容器里的水换成沙(或米)试一试,看结论是否一样。然后把它倒出,堆成一个圆锥形沙(米)堆,小组合作测量计算它的体积。
4、开放性练习
一段圆柱形钢材,底面直径10厘米,高是15厘米,把它加工成一个圆锥零件。根据以上条件信息,你想提出什么问题?能得出哪些数学结论?(可小组讨论)
(四)整理归纳,回顾体验
1、上了这些课,你有什么收获?(互说中系统整理)
2、用什么方法获取的?你认为哪组表现最棒?
3、通过这节课的学习,你有什么新的想法?还有什么问题?
【设计意图】通过组织学生对圆锥体积计算方法进行猜测、验证、交流,从而发现圆锥体积的计算方法。整个探究过程充分体现了学生的主体地位,调动了学生的学习积极性。在解决问题的过程中感受到数学知识的价值。
六、板书设计:
圆锥的体积
圆锥的体积等于和它等底等高的圆柱体积的1/3。
六年级数学下册教案7
教学过程:
一、填空题
1、少年宫文艺兴趣班有56人,其中男生人数是女生人数的3/5,男生人数占总人数的( ),女生人数占总人数的( )。(写成分数形式)
2、某小学进行数学竞赛,共180人参加,其中获奖人数占未获奖人数的2/7,有( )人获奖,( )人未获奖。
3、用分数表示各图中的涂色部分。
4、六(1)班男生人数比女生多1/7,女生人数比男生人数少( )。
5、兄弟四人合作修一条路,结果老大修了另外三人总数的一半,老二修了另外三人总数的1/3,老三修了另外三人总数的1/4,老四修了91米,这条路长( )米。
6、桃树棵数的2/5等于梨树棵树的3/4。梨树和桃树棵数的比是 ( )。
7、读一本书,第一天读了一部分后,已读的页数是剩下页数的1/4。第二天又读了一部分后,已读的是剩下的2/5。
(1)第一天读了一部分后,已读的占总页数的( )/( );
(2)第二天又读了一部分后,已读的占总页数的( )/( );
(3)第二天读的页数占总页数的( )/( )。
8、杨树:8段
松树:5段(图片传不上)
杨树棵树与松树棵树的比是( ),杨树棵树是松树棵树的( )/( ),松树棵树是杨树棵树的( )/( ),杨树棵树比松数棵树多( )/( ),松树棵树比杨树棵树少( )/( )。
二、计算
1、简便计算
(1)1/2+1/4+1/8+1/16+1/32 (2)1/2+1/6+1/12+1/20+1/30
2、求图中阴影部分的`面积
三、解决问题
1、某小学共有640人,其中男生人数是女生的7/9,男生有多少人?
想:男生人数是总人数的( )/( )。
2、一本硬面本子的价格是一本软面本子的3倍,小健买了10本硬面本子和5本软面本子,一共用去42元。两种本子的单价各是多少元?
3、学校运动队甲、乙两个组人数的比是5:3,如果从甲组调4人到乙组,这时甲乙两组人数的比是3:2。学校运动队共有多少人?
4、甲、乙两人共同加工一批零件,加工完毕时,甲加工了这批零件的60%多30个,正好是乙的3倍,这批零件有多少个?
拓展练习:
一个长方体棱长总和是220厘米,长与宽的比是2:1,宽与高的比是3:2,这个长方体的体积是多少立方厘米?
四、课堂作业:完成补充习题相关内容
六年级数学下册教案8
教学目标:
1、理解圆柱体积公式的推导过程。
2、能够初步地学会运用体积公式解决简单的实际问题。
3、进一步提高学生解决问题的能力。
教学重、难点:
1、理解圆柱体积公式的推导过程。
2、能够初步地学会运用体积公式解决简单的实际问题。
3、理解圆柱体积公式的推导过程。
教学准备:
圆柱切割组合模具、小黑板。
教学过程:
一、创设情境,生成问题
1、什么是体积?(物体所占空间的大小叫做物体的体积。)
2、长方体的体积该怎样计算?归纳到底面积乘高上来。
3、圆的面积怎样计算?
二、探索交流,解决问题
1、计算圆的面积时,是把圆面积转化成我们学过的长方形进行计算的,能不能把圆柱转化成我们学过的立体图形来计算它的体积?
(启发学生思考。)
2、把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?教师演示,引导学生进行观察。
3、思考:
(1)圆柱切开后可以拼成一个什么形体?(长方体)
(2)通过实验你发现了什么?小组讨论:实验前后,什么变了?什么没变?讨论后,整理出来,再进行汇报。
(拼成的`近似长方体体积大小没变,形状变了,拼成的近似长方体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方形的高就是圆柱的高,没有变化。)
4、推导圆柱体积公式
小组讨论:怎样计算圆柱的体积?
学生汇报讨论结果。
长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积也可以用底面积乘高来计算。
师:圆柱的体积怎样计算?用字母公式,怎样表示?
板书:V=Sh
5、算一算:已知一根柱子的底面半径为0.4米,高为5米。你能算出它的体积吗?
三、巩固应用练习。
1、一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,这个水桶的容积是多少升?说明:求水桶的容积,就是求水桶的体积。想一想先求什么?
2、一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?先求底面半径再求底面积,最后求体积。已知底面周长对解决问题有什么帮助吗?必须先求出什么?
四:课堂小结:
通过这节课你学会了哪些知识,有什么收获?
五:课后作业:
教材第9页,练一练第1、3、4、题
六年级数学下册教案9
目标
1、掌握百分数化成分数、小数的方法,感受小数、分数与百分数之间的联系。
2、经历百分数化成分数、小数方法的探索过程,培养学生的自主探索和归纳总结能力。
3、积极参与学习活动,体验互化方法的多样性,并获得成功的体验。
4、在百分数与小数的互化过程中,感受数学的联系之美。
学习重难点重点:理解、掌握百分数化成分数、小数的方法。
难点:能正确、熟练地将百分数化成分数、小数。
学习评价设计在例1的探究活动中,学生对几种百分数化小数的方法进行评价,激发学生积极思考,选择适合自己的方法学习。
教学过程
环节教师活动学生活动五育融合育人点提示
复习引入
1、五一班今天到校48人,病假、事假各1人,今天的'出勤率是多少?
2、学生独立完成,汇报做法。
3、看来大家对前面的知识掌握得不错,今天我们将继续学习百分数的相关知识。学生独立完成,汇报做法。
探究新知
1、感悟百分数化成分数、小数的需要。
(1)收集信息,提出问题。课件出示第6页上空气质量监测的情景图。从这幅图中,你知道了哪些信息?引导学生找到“我们监测了40个城市的空气质量”和“其中有35%的城市达到了二级标准”的信息。根据这些信息,你能提出什么问题呢?(空气质量达到二级标准的城市有多少个?)
(2)引导思考,解决问题。
①要解决“空气质量达到二级标准的城市有多少个”,用什么方法计算?又怎么列式呢?引导学生说出:“求一个数的百分之几是多少”与“求一个数的几分之几是多少”的计算方法相同,用乘法计算,列式为340×35%。
②学生先独立计算,再与同桌交流,教师巡视全班集体汇报、交流。
方法一:340×35% =340× =119(个)想:把百分数化成分数来计算。因为35%=,所以340×35%=340×。
方法二:340×35% =340×0.35 =119(个)想:把百分数化成分数来计算。把因为35%==0.35,340×35%=340×0.35。
(3)归纳小结,引出新课。刚才我们用的什么方法解决了“空气质量达到二级标准的城市有多少个”的问题?在生活中,我们经常会把百分数化成分数或小数。接下来,我们就来研究百分数化成分数、小数的方法。
板书课题:百分数化成分数、小数。
2、教学例1:把百分数化成分数和小数课件出示例1。
(1)把17%,40%化成分数。
①学生先独立计算,再与同桌交流,教师巡视。
②全班集体汇报、交流。指出“40%=”中的“”不是最简分数,要将“”化简成最简分数“”。
③练一练:把35%、125%、430%化成分数④想一想:0.25%和0.5%怎样化成分数?
(2)把46%,128%化成小数。
①学生先独立计算,再与同桌交流,教师巡视。
②全班集体汇报、交流方法。学生可能出现以下情况:
第一种:46%==46÷100=0.46 128%==128÷100=1.28
第二种:46%==0、46 128%==1.28
第三种:46%=0.46 128%=1.28比较分析,优化算法。在这三种转化方法,你喜欢哪种呢?为什么?先让学生在小组内交流,再集体交流。集体交流时,教师引导学生说出:第三种写法更加简便易懂。及时练习,巩固提高。你能把0、5%化成小数吗?先让学生独立完成,再同桌交流,最后集体交流。
(3)归纳整理,小结提升。
议一议:怎样把百分数化成分数或小数的呢?
小结:百分数化分数,先把百分数写成分母是100的分数,再化成最简分数;百分数化小数,可以直接去掉百分号,同时将小数点向左移动两位。练一练:把5%、430% 、70.5%化成小数交流获取的数学信息。提出数学问题。分析理解题意。独立计算,再同桌交流,全班集体汇报、交流。
归纳小结先独立计算,再同桌交流,全班集体汇报。独立完成。先独立计算,再同桌交流,全班集体汇报。小组内交流,再集体交流。独立完成,再同桌交流,最后集体交流。
讨论小结。独立完成。学生在参与学习活动过程中,体验互化方法的多样性,获得成功体验,增强学习自信心。在百分数与小数的互化过程中,感受数学的联系之美。
巩固练习
1、课堂活动第1题。三人一组对口令。第一人说百分数,第二人说分数,第三人说小数。每玩三次后,就互相交换角色。
2、课堂活动第2题。
(1)学生独立完成,教师巡视指导。
(2)全班集体交流。交流时,让学生指出:做题时,要先将百分数化成分数,再根据分数涂色。三人一组对口令。独立完成,全班集体交流。
课堂小结通过这节课的学习,你有什么收获?谈收获。
课堂作业练习二第1-2题,第9题。独立完成。
板书设计百分数化小数35%= =0.35
方法一:340×35%
方法二:340×35% =340× =340×0.35 =119(个)=119(个)例1: 17%= 40%= =
第一种:46%==46÷100=0.46 128%==128÷100=1.28
第二种:46%==0.46 128%==1.28
第三种:46%=0.46 128%=1.28百分数化小数,可以直接去掉百分号,同时将小数点向左移动两位
教学反思
六年级数学下册教案10
教学内容:教科书第63页的例2,“练一练”和练习十三的第4、5题。
教学目标:
1。能用“描点法”画出表示正比例关系的图像,帮助学生初步认识正比例的图像,进一步认识成正比例的量的变化规律。
2。使学生能根据具有正比例关系的一个量的数值看图估计另一个量的数值。初步体会正比例图像的实际应用,进一步培养观察能力和估计能力。
3。使学生进一步体会数学与日常生活的密切联系,养成积极主动地参与学习活动的习惯。
教学重点:能认识正比例关系的图像。
教学难点:利用正比例关系的图像解决实际问题。
教学准备:多媒体
教学过程:
一、复习激趣
1、判断下面两种量能否成正比例,并说明理由。
数量一定,总价和单价
和一定,一个加数和另一个加数
比值一定,比的前项和后项
2、折线统计图具有什么特点?能否把成正比例的两种量之间的关系在折线统计图里表示出来呢?如果能,那又会是什么样子的呢?
二、探究新知
1、出示例1的表格
根据表中列出的两种量,在黑板上分别画出横轴和纵轴。
你能根据表中的每组数据,在方格图中找一找相应的点,并依次描出这些点吗?
2、学生尝试画出正比例的图像
3、展示、纠错
每个点都应该表示路程和时间的`一组对应数值。
4、回答例2图像下面的问题,重点弄清:
(1)说出每个点表示的含义。
(2)为什么所描的点在一条直线上?
(3)你能根据时间(路程)估计所对应的路程(时间)吗?你是怎么看的?
借助直观的图像理解两种量同时扩大或缩小的变化规律。
三、巩固延伸
1、完成练一练
小玲打字的个数和所用的时间成正比例吗?为什么?
根据表中的数据,描出打字数量和时间所对应的点,再把它们按顺序连起来。
估计小玲5分钟打了多少个字?打750个字要多少分钟?
2、练习十三第4题
先看一看、想一想,再组织讨论和交流。要求学生说出估计的思考过程。
3、练习十三第5题
先独立填表,再根据表中的数据描出长度和总价所对应的点,把它们按顺序连起来。
组织讨论和交流
4、你能根据生活实际,设计出两种成正比例量关系的一组数据吗?
根据表中的数据,描出所对应的点,再把它们按顺序连起来。
同桌之间相互提出问题并解答。
四、反思
这节课你学会了什么?你有哪些收获?还有哪些疑问?
五、作业
完成《练习与测试》相关作业
板书设计
六年级数学下册教案11
教学内容:
折扣应用题的解题技巧
教学目标:
1、使学生理解折扣意义的基础上,懂得求折扣问题的解决问题。
2、能从生活中获取信息,解决实际问题,增强数学的应用意识。
3、激发学生主动参与的热情,主动建构,学会学习。
教学重难点:
懂得求折扣的应用题的数量关系。
教学过程:
一、复习旧知
复习折扣的意义:
1、商店有时降价出售商品,叫做打折扣销售,通称:打折
2、几折就表示:十分之几,也就是百分之几十,它表示的是一种关系,即现价按原价的十分之几或百分之几十销售
二、探究学习方法
同学们,解决问题的技巧主要有以下几点:
1、审题,(初读、再读)
2、找出已知条件和所求问题
3、判断数量关系
4。根据数量关系列出算式
出示例1:爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?
分析题意:已知条件:“自行车的`原价”和折扣数
所求的问题:自行车的现价多少元
数量关系式:原价x折扣=现价
列式解答:180x85%=153(元)
答:买这辆车用了153元。
出示例2、小芳买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?
分析:
1、理解句意:现在只花了九折的钱是指现在买一个随身听只花了原价的90%。
2、理解所求问题:“比原价便宜了多少钱”就是求现价比原价少多少钱
数量关系:
*便宜的钱数=原价—原价x折扣
*便宜的钱数=原价x(1—折扣)
列式解答:
方法一160x(1—90%)方法二:160-160x90%
=160x10% =160—144
= 16(元)=16(元)
答:比原价便宜了16元。
出示例3、一件商品现价180元,比原价便宜了20元,便宜了百分之几?
分析题意:已知条件:现价和节省的钱数
所求的问题:现价比原价便宜了百分之几
数量关系:节省的钱数÷原价=节省的钱占原价百分之几
列式解答:
20÷(180+20)=10%
答:便宜了10%。
三、课堂总结
同学们,今天你收获了什么?
六年级数学下册教案12
教学内容:
教材第76页例6、做一做,第77页例7、8题、做一做,练习十五第3---7题。
教学目标:
1、使学生进一步掌握四则运算顺序,整理运算定律和一结规律,能应用运算定律或规律进行简便运算并能解决实际问题。
2、培养学生合理、灵活地进行运算的能力。
3、通过计算,培养学生认真审题、书写及自觉验算的好习惯。
教学重点:
运用四则运算和运算定律。
教学难点:
能够正确灵活地选择简便算法。
教具准备:
多媒体课件、
教学过程:
一、运算顺序(教材第76页例6)。
1、说一说整数四则混合运算顺序,算一算:(710-184)2=
2、分数、小数四则混合运算顺序与整数一样吗?
3、算一算
在一个没有括号的算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先做第二级运算,后做第一级运算。
在一个有括号的算式里,要先算小括号里面的,再算中括号外面的。
4、组内交流算法
5、完成教材第76页做一做。
二、运算定律(教材第77页例7)
1、根据表格,填一填
名称 用字母表示 举例
加法交换律
加法结合律
乘法交换律
乘法结合律
乘法分配律
2、算一算,学生说说简算过程及应用的运算定律。
3、 2.512.548
=(2.54)(12.58)应用乘法交换律、结合律
=10100
=1000
(21- )71
5.03-2.14-1.86
4、完成教材第77页例7下面做一做。
三、出示例8估算的应用
1、学生交流、讨论。
2、完成例8下面做一做。
四、巩固应用
完成练习十五第3---7题。
五、总结梳理
回顾本节课的`学习,说一说你有哪些收获?
六、作业
板书设计:
数的运算
运算定律 叙述方法 字母表示
加法 加法交换律 两个数相加,交换加数的位置,和不变。 a+b=b+a
加法结合律 三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。 a+b+c=(a+b)+c=a+(b+c)
减法 减法的性质 一个数连续减去两个数,可以从这个数里减去这两个数的和。 a-b-c=a-(b+c)
乘法 乘法交换律 两个数相乘,交换因数的位置,积不变。 ab=ab
乘法结合律 三个数相乘,可以先把前两个数相乘,再与第三个数相乘;或者先把后两个数相乘,再与第一个数相乘,积不变。 (ab)c=a(bc)
乘法分配律 两个数相加的和与一个数相乘,可以把两个加数分别与这个数相乘,再把两个积相加。 (a+b)c=ac+bc
除法 除法的性质 一个数连续除以两个数,可以除以这两个数的积,也可以先除以第一个除数,再除以第二个除数。 abc
=a(bc)
=acb
其它 凑与拆 加上或减去接近整数、整十数的简算。拆成和分数分母相同的数,进行约分。再利用定律进行简算。
教学反思:
在教学中,以学生为主体,教师为主导,训练为主线。先让学生回忆,重温小学阶段四则混合运算及运算定律等有关知识进行系统整理。使学生进一步掌握四则运算顺序,整理运算定律,并能应用运算定律或规律进行简便运算并能解决实际问题。配合相关的练习题,让学生进行训练,培养学生合理、灵活地进行运算的能力。
六年级数学下册教案13
教学内容:
北师大版六年级数学下册93页95页的内容。
教学目标:
1.进一步理解周长、面积、体积等以及相应的单位;
2.沟通几种基本图形面积公式及其推导过程的内在联系,体积计算公式之间的联系,数学知识方法的内在联系,体会转化、类比等数学思想方法,发展初步的推理能力;
3.能正确计算常见平面图形的周长和面积,常见立体图形的表面积和体积,并解决一些简单的实际问题;
4.能综合运用所学过的数学知识和方法解释生活中的现象,解决简单的实际问题。
教学重点:
能正确计算常见平面图形的周长和面积,常见立体图形的表面积和体积
教学难点:
能综合运用所学过的.数学知识和方法解释生活中的现象,解决简单的实际问题。
教学过程:
一、提出问题
平面图形和立体图形在生活中应用得非常广泛,有时我们要计算它们的面积,体积等,这就需要我们了解一些数据,运用到关于测量的知识,这节课我们就一起来复习图形与测量。(板书课题)
二、回顾整理,建构网络
1.长度、面积和体积的认识
(1)我们学校的综合楼准备粉刷和装修,工人叔叔正准备做一些数据的测量,我们也参与到他们中间去,好吗?
(2)大家先想一想,测量哪些地方,会用到什么单位?
问:什么是长度?什么是面积?什么是体积?
2.测量单位及进率
(1)我们知道测量除了数据之外还需要什么呢?现在请同学们回忆一下长度、面积和体积各自的单位,并说出它们之间的进率。
(2)说一说
请大家说一说1米、1分米、1厘米分别有多长,1平方米、1平方分米、1平方厘米、1立方米、1升、1毫升分别有多大?
3.前面我们已经分类复习了平面图形的周长与面积,立体图形的表面积与体积,你最感兴趣的是哪一部分,把它整理出来。
4.汇报交流。交流时要说出每类知识点要注意的问题。
三、重点复习,强化提高
你认为最容易出错的是哪部分内容?有什么好办法避免出错?
六年级数学下册教案14
教学内容:
折扣(课本第8页例1)
教学目标:
1、让学生在商品打折销售的情境中理解折扣的意义。
2、学生在掌握求一个数的百分之几是多少这种问题的基础上自主解决问题,培养学生解决实际问题的能力。
3、养成独立思考、认真审题的学习习惯。
4、在买东西的过程中,商标剪下来后要做好垃圾分类
教学重点:
理解折扣的意义。
教学难点:
解决折扣的实际问题
教学过程:
一、复习
口算
1890%=
20080%=
54070%=
210 50% =
30095%=
30026%=
二、创设情景理解折扣的意义
1、利用课件或挂图出示商场店庆、商品打折的情境,渗透保护动物,不买皮草。
2、打折是什么意思?八五折、九折表示什么?
3、结合实际了解到的信息进行思考和交流,再阅读课本进行对照分析。
4、小结:商店降价出售商品叫做折扣销售,通称打折。几折就表示十分之几,也就是百分之几十。可见,打几折就表示现价按原价的百分之几十出售,它表示的是一种关系。
5、问: 七五折表示什么?五折表示什么?
三、自主探索解决问题的方法
(一)出示例1(1)爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?
1、理解分析:八五折是什么意思?是把谁看作单位1?
求买这辆车用了多少钱也就是在求什么?
2、学生独立解答
3、板书: 18085%=153(元)
(二)出示例1(2)爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?
学生分析题意尝试列式
方法(一)先求现价,再求便宜的`钱数。
16090%=144(元)
160-144=16(元)
(二)先求便宜钱数占原价的百分之几,再求便宜的钱数。
160(1-90%)=16(元)
2、小结:两种方法有什么不同之处?
第一种算法:原价160减去现价(即原价的90%):160-16090%。
第二种算法:现价是原价的90%,也就是现价比原价便宜了(1-90%),160(1-90%)就是便宜的价钱。
想想哪种方法计算起来比较简便。
四、巩固练习
(一) 填空
1、商店有时降价出售商品,叫做( ),通称( ) 。几折就表示( ),也就是( )。
2、(1)九折是十分之九,改写成百分数是( ) 表示现价占原价的( )%。
(2)八五折是( ),改写成百分数是( ) 表示( ) 占( )的( )% 八八折是( ),改写成百分数是( ) 表示( ) 占( ) 的( )%
(二)第8页做一做
学生独立完成并说出各折扣表示的意思。
(三)解决问题
1、一辆自行车,七折出售后是700元,它的原价是多少元?便宜了多少元?
一件羽绒服原价1000元,打折后,现价500元,请问:这件羽绒服是打几折出售的?
五、课堂总结
学生谈谈学习本课有什么新的收获。
六、作业
第13页第1、2、3
六年级数学下册教案15
课前准备
教师准备 PPT课件
教学过程
⊙问题导入
师:同学们,上节课我们复习了平面图形的特征,到目前为止,我们学习了哪些平面图形?
预设
生1:我们学过三角形、长方形、正方形、平行四边形、梯形。
生2:我们还学过圆和圆环。
(学生边说教师边把相应的图形贴在黑板上)
师:什么是平面图形的周长和面积呢?我们今天就一起来复习关于平面图形的周长和面积的相关知识。(板书课题:平面图形的周长和面积)
⊙回顾与整理
1.周长和面积的意义。
师:什么是平面图形的周长?什么是平面图形的面积?
预设
生1:围成一个图形的所有边长的总和叫做这个图形的周长。
生2:物体的表面或封闭图形的大小叫做面积。
2.周长和面积的计算公式。
(1)我们学过哪些图形的周长和面积的计算公式?
长方形、正方形、平行四边形、三角形、梯形、圆的周长和面积的'计算公式。
结合学生的回答,有序地画出相关的平面图形,为构建知识网络做准备。
(2)如何计算这些平面图形的周长和面积?各个面积公式之间有什么联系?
①长方形的周长=(长+宽)×2,用字母表示为C=2(a+b)。
②长方形的面积=长×宽,用字母表示为S=ab。
③正方形是特殊的长方形,正方形的周长=边长×4,用字母表示为C=4a;面积=边长×边长,用字母表示为S=a
【六年级数学下册教案】相关文章:
数学下册教案03-16
数学六年级下册教案07-02
数学六年级下册教案06-14
数学六年级下册教学教案01-06
六年级数学下册教案11-23
六年级下册人教版教案数学12-23
数学六年级下册教案优秀04-23
六年级数学下册教案06-12
数学六年级下册教案(优选)07-07
【精品】数学六年级下册教案07-07