五年级下册数学教案15篇【精选】
作为一名教学工作者,有必要进行细致的教案准备工作,编写教案助于积累教学经验,不断提高教学质量。那么应当如何写教案呢?以下是小编为大家整理的五年级下册数学教案,欢迎大家分享。
五年级下册数学教案1
教学目标
1、与技能
了解并熟记长方体表面积的概念长方体的面数,熟练计算长方形面积。
2、知识与方法
掌握计算长方体表面积的几种不同方法。
3、情感态度和价值观
通过对长方体表面积的计算,提高空间构想思维以及解决现实生活中实际问题。
教学过程
一、知识回顾
1、方体有哪些特点:8个顶点,6个面,12条棱。
2、长为3、宽为4的长方形,它的面积是12。
3、长为10、宽为8的长方形,它的面积是80。
4、边长为5的正方形,它的面积是25。
二、新课引入
1、计算
这是一个长方体的展开图,填写下列表格。
前、后两面的面积和70左、右两面的面积和42上、下两面的面积和30长方体的表面积142
2、你能想出别的方法计算上述展开图的面积吗?
3、一个边长为5的正方体,它的表面积如何计算?
(正方体六个面的面积都相等)
4、总结归纳
(1)长方体六个面的面积之和叫做它的`表面积。
(2)长方体相对的面的面积相等。
5、练习
在下面的长方体展开图上,先把相对的面涂上相同的颜色,再标出每个面的长和宽。(单位:cm)
说一说,如何得到这个长方体的面积。
解:
三、例与练
例一:做一个长54cm、宽50cm、高95cm的洗衣机包装箱,需要多大面积的硬纸板?
解:
答:洗衣机包装箱需要12580cm2的硬纸板。
例二:求下列图形的表面积。(单位:cm)
例三:制作一个棱长为35cm的正方体无盖玻璃鱼缸,至少需要多大面积的玻璃?
解:
答:鱼缸至少需要6125cm2的玻璃
练习:淘气的房间长3.5m、宽3m、高3m。除去门窗4.5cm2,房间的墙壁和房顶都贴上墙纸,这个房间至少需要多大面积的墙纸?
解:
答:这个房间至少需要45cm2的墙纸。
四、课堂小结
五、扩展延伸
如图,包装一个长方体纸盒,选择下列哪种尺寸的包装纸比较合适?与同伴交流你的想法。
解:
答:选②更加合适。
五年级下册数学教案2
教学目标:
知识与技能
1、理解容积的含义,体会容积和体积的关系。
2、认识常用的容积单位,感知建立升和毫升的容积观念。
3、掌握容积的计算方法,能进行单位之间的换算。
过程与方法
1、经历容积概念的探究与理解过程。
2、通过比较,明确容积单位与体积单位的区别和联系。
情感态度与价值观
1、培养学生的观察能力和探究意识。在探索未知的过程中体验学习数学的乐趣,培养学生积极、主动地参与学习和探究活动的态度。
2、渗透“事物之间是相互联系的”这一辩证唯物主义的思想。
教学重点:建立容积的观念,掌握容积单位之间的进率。
教学难点:理解容积与体积的联系与区别。
教学过程:
一、创故事情景
今天老师带来一位神通广大、变化多端的孙悟空,它可厉害呢,有72变。
二、复习导入
第一变 回忆
(1) 什么叫体积?
(2) 体积单位有哪些?它们之间的进率是什么?
(3) 体积的计算方法是什么?
三、探究新知
第二变 思考
1、教学容积概念。
运用你的预习知识,把魔方、电饭褒、雪梨、汽车的油箱这四种物品分成两类,你是怎样分的?说明理由。
生:空心的 能装东西的
师:你在生活中见过哪些空心的,能装东西的物品?
生:举实例 (饭盒、矿泉水瓶、奶牛盒……)
师:你想知道这些容器里面能装多少东西吗?
这就是我们今天学习的内容:容积和容积单位 (板书)
什么叫容积?从中国文字的字面解释 容:容纳 积:体积。合起来:像电饭褒、汽车的油箱等所能容纳物体的体积,叫它的容积。
练习
根据容积定义判断:
(1)电饭褒的体积就是它的容积( )
计量容积一般可以用体积单位( )
(2)数学书P53页第一题。
突出:体积 (外面量数据) 容积(里面量数据)板书
2、教学容积单位:升和毫升
师:请同学们再仔细观察你带来的.物品,看看能否找到有关容积的数学信息?
生:500毫升 18.9升
师:升、毫升就是我们今天要学习的容积单位。板书
生:净含量:250毫升 1升……
师:表示什么意思?净含量:250毫升表示瓶子里水的体积是250毫升。而不是瓶子的容积是250毫升,也不是瓶子的体积是250毫升
(选1升和1立方分米来对比,为实验作铺垫)
回应:计量容积,一般用体积单位,什么时候用容积单位?计量液体的体积,用容积单位 板书
练习:(1)四人小组互相说说各自收集物品的容积。
(2)老师也收集了一些物品,考考大家的眼力。出示:数学书P53第三题
3、教学容积单位与体积单位之间的换算。
师:谁知道这两个容积单位之间的进率是多少?生:1000。
师:你是怎么知道的?
生:书上写的。
师:你对这个关系不表示怀疑吗?真理总是通过实践来证明的,想验证一下,你有方法吗?
由学生做实验:1升的冰红茶、500毫升的量杯、1立方分米的容器。
师:从实验中你证实了1升=1000毫升,还得出什么结论?
生:1升=1立方分米。
如此类推:你还能推理出什么关系?
生:1毫升=1立方厘米 1立方米=1000升
练习:数学书P52做一做第一题和P53第四题
第三变:计算
4、教学容积的计算
出示例5,一种小汽车的油箱,里面长5d m ,宽4d m ,高2d m 。这个油箱可以装汽油多少升?
指一名学生读题。(突出容积的计算方法与体积计算方法相同)
(1)分析理解题意:求“这个油箱可以装汽油多少升?”就是求这个油箱的什么?必须知道什么条件?是否具备?怎样算?结果是什么?怎么办?(为什么要改单位?求容积)
(2)学生做完后集体订正。
第四变:运用
四、应用知识,解决问题
咳两声,讲了一节课,老师口干了,很想喝水。
师:谁知道一个正常人每天要喝多少水才合适才健康?
生:1500毫升、1000毫升……
师:你是从哪里知道的?
生:书里介绍的。
师:我们一起来看看数学书P52了解更多的课外知识。同时渗透节约用水的教育。
小组活动:
(要求组长分工要明确:不同的人负责倒水、记录、计算以及汇报,倒水要注意别溢出来,注意纪律。)
(1)将一瓶约( )毫升的矿泉水倒在纸杯中,看看可以倒满几杯。
(2)估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1 L,正常人一天喝多少杯才健康?
全班分享
五、总结质疑
今天学习了容积和容积单位,你有什么收获?
六、拓展延伸,发展思维
作业:
1 、到商店、超市调查标有容积单位的商品及净含量,编一道有道容积计算的题目并解答。
2、调查一大桶约18升的矿泉水和一瓶500毫升矿泉水的单价,算一算,一大桶矿泉水相当于几瓶这样的小瓶矿泉水,买哪种比较合算?
教学反思:通过这节课,我体会到教师应在尊重教材的基础上,根据学生的实际有目的地对教材内容进行改编和加工,使教材变得生动,更贴近学生实际。例如课本上是在认识容积和容积单位后学习容积的计算的,而在后面的设计中我让学生先观察自己手中的盒子(自备的墨水盒、饼干盒等)的空间形状,再动手操作量出盒子里面的长、宽、高,并计算出盒子的容积,这就变成了学生身边的实际问题,有利于激发学生解决这些问题的欲望。在解决实际问题的过程中,学生应用知识解决问题的能力得到了提高,也让学生体会到“数学是解决实际问题的一种方法。”
教学反思:
在练习题目中,涉及到新课的内容可以再次点出,再次让学生加深印象,这样就节约了时间。在常规课堂中,切忌概念的讲授花费很多时间,概念讲得越多,学生可能越糊涂。其实学生头脑里已经对新概念有所认识和体会,我们只需要把新概念与旧概念的区别和联系讲清楚就行。
五年级下册数学教案3
教学目标:
1、使学生认识长方体正方体,掌握长方体、正方体的特征,初步学会看立体图形。
2、使学生认识并理解长方体、正方体的长、宽、高。
3、能比较区别长方体与正方体的特征。
4、通过引导学生观察、操作,培养学生的探索意识和实践能力,培养学生初步的空间观念和想象能力。
教学重、难点:
1、掌握长方体、正方体的特征,认识长、宽、高。
2、初步建立“立体图形”的概念,形成表象。
教学准备:
多媒体课件;长方体、正方体模型;长方体框架。
课前谈话:师:老师听说我们班的孩子是最聪明的,这样,老师课前先和大家玩个游戏——猜相对词。仔细听,东——,南——,天——,上面——,右面——,前面——。难不倒大家呀,看来大家真是名不虚传。老师期待着课堂上大家的精彩表现。
一、新课导入。
1、看,老师带来了一些物品,都认识吧。如果我不小心触碰到桌子,哪件就不能平稳地摆在那里呢?我就取走它。如果我还想将剩下的物体分成两类,你会怎样分?(分成长方体和正方体)
2、师:这一组叫——长方体,这一组叫——正方体。(粘贴)他们呀,都是我们的老朋友了,今天我们将再次拜访他们,进一步认识它们。
二、新课教学。
1、长方体的认识。
(1)为什么这些物体在桌子被触碰时依旧能平稳摆放呢?原来秘密藏在它们的面上,你来摸摸?有什么感觉?(光滑平整)你也来摸摸,有何感觉?这些叫做长方体的面。(出示)长方体有几个面围成的?谁来为我们数数?他指,我们一起说出是哪个面?长方体一共有几个面?(评价:我发现他在数的时候做到了一对一对地数,很有顺序,这样就不容易重复或遗漏;如果我们在数的时候能做到按一定的顺序,就不容易重复或遗漏了,谁能能重新试一试吗?)我们把这些一对一对的面叫做相对面。
(2)下面,高举你的长方体,徐老师说出哪个面,你就边说边摸它的相对面,好吗?长方体一共几个面?(板书:6个面)
(3)孩子们,当你把手从一个面滑向另一个面时,你摸到了什么?你来摸摸。(摸一个面后,再摸一个面)老师想问问你,当你把手从一个面滑向另一个面时,你碰到了什么?这条线叫——长方体的棱。注意,它读棱。你也来摸摸。长方体的棱在哪里?(两个面相交的地方)对,两个面相交的线叫长方体的棱。
(4)请你选择一条棱,从它的一端摸到另一端,立定。老师也选择一条棱,看,我们相遇了,相遇的地方就是长方体的顶点。顶点在哪里吗?(三条棱相交的点叫做顶点)
(5)长方体有几条棱,几个顶点呢?小组长带着大家一起数数,想想按照怎样的顺序数才能不遗漏不重复。你发现他是怎样数的?(这四条棱都是水平方向,方向相同,它们就叫相对的棱。再数纵向相对的棱,垂直方向相对的棱。)长方体一共有几条棱?(板书:12)长方体有几个顶点呢?谁来数数?(表扬数法)长方体有几个顶点?(板书:8个顶点)
(6)6,12,8,可是非常特殊的几个数字。下面,老师快速考考大家,长方体有6个——,12条——,8个——。
(7)长方体的面和棱还有什么特点?下面请看导学提示:
长方体的六个面都是什么图形,相对的面还有什么特点?长方体12条棱的长度有什么特点?
友情提醒:小组成员合作,通过观察自己准备的小长方体,利用各种工具,看一看,量一量,剪一剪,比一比等多种方法发现长方体面和棱的奥秘。
(8)下面我们来交流大家的发现。长方体的面是什么图形?(长方体的每个面都是长方形)
师:对,一般情况下,长方体的面都是长方形。老师为什么要加“一般情况”,说明还有——你们发现特殊情况了吗?(出示特殊长方体)它就有两个相对的面是正方形。
长方体的面还有什么特点?(长方体相对的面完全相同)
就是说上面和——完全相同,左面和——,前面和——。你说相同就相同呀?我不信,你得拿出证据出来,说说你是是怎样验证的?(剪,量等)
勤动脑,勤动手,真理就在勤奋的人面前呈现。这回我心服口服了。让我们睁大双眼,见证真理的诞生。看来,长方体不仅一般情况下六个面都是长方形,有时也有两个相对的面是正方形,而且相对的面完全相同。(出示)
(8)长方体的棱还有什么特点?(长方体相对的`棱长度相等)
谁来找出一组相对的棱,有几条,它们的长度怎样?谁再来找一组相对的棱,它们的长度怎样?你还能找到一组相对的棱吗?它们的长度又怎样?总之一句话,长方体相对的棱长度——口说无凭,你是怎样验证的?让我们一起见证奇迹。电脑展示。
由此可见长方体相对的棱长度相等。(出示)
(9)这就是长方体的特点,你记住了吗?老师要开考了,(出示填空)学生口答。评价。
(10)我们把长方体上相较于同一顶点的三条棱分别叫做它的长、宽、高。快速数数,长方体的十二条棱中包含几条长,几条宽和及条高?
(11)学到这里,一个同学将长方体的特点编成了一首儿歌,我们一起伴随着节奏快乐地读读吧。
出示:四四方方一座城,六面八点十二棱。相对两面全相同,相对四棱长相等。
(12)再次走近长方体,大家都学得那么快乐。想不想自己也动手做一个长方体,让美在我们手中诞生呢?组长带着组员们用老师准备的材料,做一个长方体,比一比哪一组做得又快又好。
(13)谁来介绍介绍你们的作品?
2、正方体的认识。
(1)看着同学们做得这么快乐。老师心里也痒痒,看,我也数了十二条棱开动了。咦,我做了个——(正方体)我咋会做成正方体的呢?
(2)正方体的面、棱顶点又有什么特点?请在小组中观察准备好的正方体,很快交流处正方体的特点,并完成导学活动单二。
交流:正方体的面、棱、顶点分别有多少个?它面还有什么特点?棱呢?
出示:正方体有()个面,是()的正方形。它有()条棱,长度都()。它有()个顶点。
(3)交流正方体的特点。
我们同学都长着一双火眼金睛呢,你一定发现了长方体和正方体的相同与不同之处。
(4)认识了长方体和正方体的异同,你一定能很快能说出它们各是什么物体,长宽高分别是多少吗?
(4)看,正方体的长宽高都相等,它是长宽高都相等的一种特殊长方体。(出示)
(5)如果用一个集合圈表示所有的长方体,那么正方体应该画在哪里呢?正方体是一种特殊的长方体。
三、巩固练习
1、马小虎看到大家快乐地创造长方体,他也想试试,可还没搭完,他就出去玩了。聪明的你一定能猜出他搭的是什么物体?如果想让你帮他继续搭完,你还各需要几条多长的小棒?
为什么第三个长方体只要两种小棒?
2、在大家的出谋划策下,一个长方体就搭成了。如果给它的前面、上面、后面都蒙上彩纸,分别需要长、宽多少的彩纸?口答。
四、课堂总结。
同学们,这堂课我们再次见到我们的老朋友长方体和正方体,认识了它们的各种特点。其实,长方体和正方体早已融入我们的生活,只要仔细观察,处处都有它们的身影。(欣赏)带着一双慧眼上路,身边处处皆能发现数学的奥妙。
看,独居老人王大爷想做点小买卖维持生活。他想做一个用铝合金条焊成一个长方体框架,做玻璃柜台。已知柜台的长5米,宽0.8米,高1米,热情的你能帮他算出一共需要多少米铝合金条吗?聪明的你一定能用本堂课所学知识助他一臂之力。
五年级下册数学教案4
教学目标
1、知识与技能
初步认识分数乘法,具备计算整数乘以分数的能力。
2、过程与方法
通过举例以及变式初步理解分数乘法。
3、情感态度和价值观
通过举实例,逐步深入讲解分数乘法,有利于理解运用新知识。
教学重难点
通过举例以及变式初步理解分数乘法
教学过程
一、知识回顾
1、
2、
3、
二、新课引入
1、举例
1个占整张纸条的1/5,3个占整张纸条的几分之几?
两种计算方法:
加法计算:
乘法计算:
2个3/7的.和是多少?
2、观察上述算法,你发现了什么?
3、对比下列两种算法。
4、总结归纳
分数和整数相乘,分子与整数相乘,分母不变。
计算结果可以写成最简分数,能约分的,可以先约分。
5、练习
计算下列题目,并将结果填入表格中。
4211/21/4
x12
48241263
观察并说一说你有什么发现?
三、例与练
例1:4个2/15是多少?
例2:
练习:2/3x4
2/3x4=(2x4)/3=8/3
四、课堂小结
五、拓展延伸
淘气吃了这个蛋糕的1/8,爸爸吃的是淘气的2倍,爸爸吃了蛋糕的几分之几?
1x1/8x2=1/4
答:爸爸吃了蛋糕的1/4。
五年级下册数学教案5
教学目标:
1、结合生活实际,通过各种方式,让学生了解身份证的编码方法,体会编码编排的特点,初步学会编码。
2、让学生在收集信息,编码的过程中,增强学生的合作交流意识,培养学生的个性创新意识,一定程度上提高学生的信息素养。
3、在活动中使学生体会到数学与现实生活的紧密联系,体验学习数学的乐趣。
教学重、难点:
重点:了解身份证编码,体会编码编排的特点,学会编码。
难点:对收集的信息进行分析与处理。
教具准备:
1、多媒体教学课件。
2、课前收集一些生活中的编码资料。
教学过程:
一、导入
让学生说说生活中的编码现象,引出课题:数字与编码
二、探究身份证号码的`规律
1、请同学们观察一组身份证号码:你从中得到哪些信息?
2、(大屏幕出示)身份证的号码信息。
3、结合具体的身份证实例加以说明:330127
19790415
5925
三、实践与运用
1、同学们互相介绍自己的身份证号码。
2、猜一猜,你的身份证号码可能是多少?
3、小马虎在课前收集了爷爷、奶奶、爸爸、妈妈四个人的身份证号码,但是不记得这四个号码分别是谁的了,你能帮帮他吗?
4、听故事想问题。
一个小伙子偷了一户人家的东西之后猖狂逃跑,并连夜赶制了一张假身份证去登记住宿,结果被服务员一眼认出,你猜到底哪里出现问题?
四、总结与提高
1、我们说了这么多关于身份证的知识,你们知道身份证有哪些作用吗?
2、(大屏幕出示)温馨提示
身份证是我国目前唯一的法定个人身份证件,将来要注意妥善保管好自己的身份证,不要随意借给他人使用。
3、昨天,横沿村的一个老奶奶告诉我,让我帮她找位做了好事不留名的学生,她知道这个同学是我们学校的,校徽上写着5125,我们该怎样找到这位学生呢?
4、请你给自己设计一个编码。
5、读一篇短文:《假如生活中没有编码》
五年级下册数学教案6
教学内容:观察物体
教学目标:
1.让学生经历观察的过程,认识到从不同的位置观察物体,所看到的形状是不同的。能辨认从正面、左面、上面观察到的简单物体的形状。
2.培养学生从不同角度观察,分析事物的能力。
3.培养学生构建简单的空间想象力。
重点:帮助学生构建初步的空间想象力。
难点:帮助学生构建初步的空间想象力。
教学过程:
一、谜语导入
请同学们猜谜语:“左一片、右一片,摸得着,看不见,是什么呢?”(耳朵)为什么能看见别人的耳朵,却看不见自己的耳朵呢?因为我们观察的角度不一样,那么今天我们就一起来进一步研究观察物体(板书)
二、合作探究
(一)整体观察
1.教师将一个对面涂有相同颜色的长方体举起静止不动,叫学生观察并提问:
你观察到的正方体是什么样的?
在你的位置上观察,你看到了哪几个面?
2.学生汇报交流。
学生自由走动,观察。汇报交流。
3.解释应用
教师出示两个正方体的立体图,一个有虚线,另一个没有。
提问:谁能用刚学到的知识解释一下正方体为什么这样画?
学生解释说明。
(二)分别从三个面进行观察(出示例1)
1.教师提问:我们分别从几个不同的方向去观察这个图形,看看它的正面、左面以及上面分别是什么形状的图形,把它们分别划出来。
学生离开座位自由观察。
2.小组之间相互交流,然后全班交流,学生以组为单位在投影以上展示交流。
总结学生的发言:从不同的方向观察,所看到的形状是不一样的。
三、拓展应用
1.做教科书例2
2.智力游戏:两个同学为一组做游戏,一个同学画,另一个同学猜,负责猜的`同学要想办法通过你提问的问题确定这个物体是什么,猜完后,在把物体拿出来验证一下,看是否猜对了。
学生玩游戏,教师指导。
四、总结
本节课你学会了什么?
五、作业布置
兴趣探索,根据以下几幅图找出1的对面是几,2的对面是几,3的对面是几。
1.不同角度观察一个物体,看到的面都是两个或三个相邻的面,不可能一次看到长方体或正方体相对的面。
2.从一个面看到物体的形状,可以有多种不同的摆放方式。
3.知道从两个面看到的物体的形状,可以确定小立方体的个数范围。
五年级下册数学教案7
教学目标:
1、探索并掌握分数除以整数的计算方法和意义。
2、通过涂一涂、算一算、小组合作交流等活动探索并理解分数除法意义。
3、培养学生合作探究的能力。
教学重点:掌握分数除以整数的计算方法和意义。
教学难点:理解分数除以整数的意义。
一、复习导入,出示目标、
师出示口算乘法
师(阅读课本第55页的内容,回答下面问题。)
一读:本节主要讲了( )除以( )的小数除法。(各自独立完成,有困难的'同学可以互相帮助)
二读:这一节以4/7÷2=为例,它表示把( )平均分成( )份,求每份是多少。(自己完成后同桌之间交流)
三读:动手画一画,想一想,4/7÷2=和4/7÷3=分别是怎样计算出来的?(完成后在小组内进行交流)
思考:通过刚才的学习过程,你对分数除以整数有了怎样的的收获?说出来和大家分享。
师:我们已经学过了分数乘法,通过刚才的口算练习,发现大家对分数乘法掌握的非常好。今天我们一起来学习分数除法。
二、探究新知,合作交流
三、大组汇报,质疑问难
我发现了除以一个整数(0除外)等于乘这个数的倒数。
五、课堂检测
1、分数除以整数(0除外),等于分数( )这个整数的( )。
2、8/9÷4=8/9×( )=( )
3、5/6÷2=5/6×( )=( )
4、教材56页“练一练”的第一题
(巩固分数除以整数的计算方法)
5、教材56页“练一练”第二题
让学生独立解决(进一步加深理解分数除法的意义)
6、教材56页“练一练”第三题
(设计这道题的主要目的是渗透分数除法与分数乘法的联系,也是为后面用到列方程解决问题作铺垫)
拓展提高:
如果a是一个不为零的自然数,那么
1/3÷a等于多少?
1/ a÷3等于多少?
板书设计 分数除法一
分数除以整数
分数除以整数(0除外)等于乘这个数的倒数。
五年级下册数学教案8
教学内容
教科书第71页例4,练习十五第2,3题。
教学目标
1.在具体情境中,理解、掌握有括号的分数加减混合运算的计算方法,并能正确计算。
2.能综合运用所学的知识和技能解决计算中的问题,发展应用意识。
3.在合作交流中,培养同学们合作学习的意识和能力。
教学重、难点
找单位"1";结合具体实例,理解进行有括号的分数加、减混合运算时,要先算括号里的道理。
教学过程
一、创设情境,引入新知
课件展示例4同学们打扫卫生的情境图。出示:全班同学中,擦门窗的占1/4,擦桌子的占2/9,其余的扫地。
师:观察图,你获得了哪些数学信息?
生:全班同学中,擦门窗的占1/4,擦桌子的占2/9,其余的扫地。
师:根据这些信息,你能提出哪些数学问题呢?
生1:擦门窗的和擦桌子的一共占全班同学的几分之几?
生2:扫地的同学占全班同学的几分之几?
……
师:现在我们先来解决"扫地的同学占全班同学的几分之几?"
二、合作交流,探究新知
1.教学例4
师:怎样解决这个问题?
小组合作学习解决以下几个问题。(课件展示)
(1)擦门窗的占1/4是占谁的1/4?擦桌子的占2/9是占谁的2/9?
(2)这里是把谁看作单位"1"?
要求学生独立思考,讨论后再回答。
生1:擦门窗的占1/4是占全班同学的1/4,擦桌子的占2/9是占全班同学的2/9。
生2:它们是把全班同学看作单位"1"时产生的分数。
学生试着列出算式并解答出来。
展示学生的解题结果。
解法一:1-29-14=99-29-14=79-14=3636-1736=1936
解法二:1-(29+14)=1-1736=2836-936=1936
师:能说说你们的想法吗?
生1:我是用连减的方法,把全班同学看成单位"1",先减去擦桌子占的2/9,再减去擦门窗
占的'1/4,剩下的就是扫地的占全班同学的几分之几。
师:计算时你是怎样想的?为什么把1看成9/9来计算?
生1:我按从左到右的运算顺序分步通分计算。因为2/9的分母是9,所以把1看成9/9。
生2:我也是把全班同学看成单位"1",我和他不一样的是先算出擦门窗的和擦桌子的共占全
班同学的几分之几,然后再用1去减它们的和,其中把1看成36/36是因为17/36的分母是36。
师:为什么要先算括号里面的,再算括号外面的?
生2:因为要先算出擦门窗的和擦桌子的共占全班同学的几分之几,然后再算扫地的占全班同
学的几分之几,所以要先算出括号里面的,再算括号外面的。
学生把教科书第71页例4中的结果填完整。
师:看书思考,这两种解法有什么异同?
学生独立思考,小组内交流后再回答。
生:运算顺序不同。解法一是连减,按从左到右的顺序计算;解法二有小括号,先算小括号里
面的,再算括号外面的。它们的计算结果相同。
2.尝试练习,理解有括号的分数混合运算的顺序
35+(34-12)1112-(16+34)
学生先独立解答,然后展示作业。(不同的算法都展示出来)
师:这两道题是什么样的算式?运算顺序是怎样的?
生:异分母有括号的分数混合运算,应先算括号里面的,再算括号外面的。
师:说说自己的算法。
生:异分母分数混合运算要先通分,化成同分母分数,再相加减。
生:可以分步计算,分步通分,还可以一次通分,再计算。
……
总结:今天我们学习的是异分母有括号的分数混合运算,它的运算顺序和整数有括号的混合运
算顺序相同,都是先算小括号里面的,再算括号外面的。在计算时分母不同的要化成同分母分数来
计算,可分步通分,也可一次通分。可以根据题目的特点和自己的方便来选择方法。(板书课题)
注意:第二小题结果是0/12,把它写成0。因为分子是0的分数等于0,当计算时出现分子是0
的分数时都直接把结果写成0。
三、巩固新知,拓展练习
教科书第73页练习十五第2题第二横排和第3题。
四、课堂总结
今天你学了哪些知识?知道了什么?还有哪些不懂的?
五年级下册数学教案9
教学目标
1、理解、掌握分数加减混合运算的顺序,能正确计算分数加减混合运算。
2、培养学生独立思考,解决问题和积极参与活动的能力。
3、能用所学的分数的加、减混合运算的知识解决实际问题。
教学重点
理解分数加减法混合运算的顺序,能正确计算分数加减混合运算,理解分数中的剩余问题。
教学难点
理解分数加减法混合运算的顺序,能正确计算分数加减混合运算,理解分数中的剩余问题。
教学过程:
一、激发兴趣,导入新课。
师:同学们,课前老师布置了要你们去调查自己同桌的“星期日的安排”。现在我们来看看淘淘和笑笑给我们带来的“星期日的安排”调查表。(揭示课题:星期日的安排)
二、提供探索机会,经历学习过程。
1、提问:你观察到了什么?求什么?(课件出示淘淘和笑笑调查图)
2、提问:留在家中的男同学占男生总数的几分之几,怎么列算式呢?
3、学生交流讨论,汇报自己的.算法。(要求学生说出自己汇报的算式里每个数字所表示的含义)
4、全班交流。围绕把全班总数看做“1”的问题进行交流,教师归纳小结,明确算式的算理。
5、师:刚才有很多同学汇报了他们的探索过程,那么为什么同样的算式,计算过程不一样,是不是都正确呢?(课件展示学生两种不同的算法。)
6、小组讨论:这两种算法对吗?各有什么特点?
7、全班围绕运算过程进行交流,教师归纳小结,第一种算法是先将分数全部通分在进行加减运算,按照从左往右的顺序。第二种算法是把同分母的放在一个括号里先计算,再算括号外面的,分数混合运算的顺序和整数一样。
8、再试着用刚才的两种算法算一算,留在家中的女生人数占女生总数的几分之几?
9、学生独立思考,自主探索。汇报自己的算式。
师:那么为什么同样的算式,计算过程不一样,是不是都正确呢?各有什么特点?讨论分数混合运算的算理。
10、让学生用自己的话来说分数加减混合运算的算理。
11、师:分数加减混合运算时,主要有以下两种计算方法:一是先将所有的分数全部通分,再进行计算的;二是先根据需进行部分的通分。这两种方法哪种合适,则需要根据具体的算式特点来确定的。
12、观察淘淘和笑笑计算时不同的算法,说一说她们两个这么算对吗?为什么?
13、学生讨论交流,举手发言。
14、老师总结指出:整数加法的交换律和结合律对分数加法同样适用,而且更简便。
三、巩固练习
1、用简便方法计算
2、一个人一天中大约有1/3时间在学习和工作,1/8的时间在用餐,1/6的时间参加文娱或体育活动,剩下的时间睡觉,睡觉的时间占一天时间中的几分之几?
四、总结
提问:今天大家都学会了那些数学知识?分数加减混合运算的顺序是怎样的?具体运算过程中需要注意写什么?
五年级下册数学教案10
教学目标:
1.在理解题意的基础上寻找等量关系,初步掌握列方程解两、三步计算的简单实际问题。
2.从不同角度探究解题的思路,初步体会利用等量关系分析问题的优越性。
教学重点:在理解题意的基础上寻找等量关系,能列方程解“相遇问题”。
教学难点:从不同角度探究解题的思路,初步体会利用等量关系分析问题的优越性。
教学准备:配套课件
一、导入阶段
1.复习行程问题中的速度、时间、路程的基本数量关系。(口答
甲每分钟行50米,乙每分钟行40米,1分钟两人共行几米?
2分钟两人共行几米?
5分钟两人共行几米?
2.根据题意写出含有字母的式子。
一辆卡车每小时行45千米,一辆轿车每小时行60千米,卡车和轿车同时行了x小时,问:卡车行了多少千米?
轿车行了多少千米?
两车共行了多少千米?
二、结合实例,探究新知
1. 出示例题1
沪宁高速公路全长约270千米,一辆轿车和一辆客车分别从上海和南京两地同时出发,相向而行。轿车平均每小时行100千米,客车平均每小时行80千米,经过几小时两车在途中相遇?
2. 学生读题,找出未知量与已知量之间的等量关系。
(1) 你可以从题目中收集到哪些数学信息?
(2) 学生介绍,教师画线段图。
(3) 分析: 设经过x小时两车在途中相遇,那么客车行的路程可以用80x千米表示,轿车行的路程可以用100x千米表示。
(4) 寻找等量关系:客车行的路程+轿车行的路程=沪宁高速公路全长。
(5) 列方程解决问题:
解:设经过x小时两车在途中相遇。
80x+ 100x = 270
180x = 270
x = 1.5
答:经过1.5小时两车在途中相遇。 (检验)
三、巩固深化,灵活应用
1. 练一练
(1) 小亚和小巧同时从相距路程为960米的两地出发,相向而行,小亚平均每分钟走58米,小巧平均每分钟走62米,几分钟后两人在途中相遇?(学生尝试画线段图,反馈交流)
解:设x分钟后两人在途中相遇。
58x+ 62x = 960
120x = 960
x = 8
答:8分钟后两人在途中相遇。(检验)
(2) 两个城市之间的'路程为405千米,一辆客车和一辆货车同时从这两个城市出发,相向而行,客车平均每小时行44千米,4.5小时后两车相遇,货车平均每小时行多少千米?
客车行的路程+货车行的路程=两个城市之间的路程
解:设货车平均每小时行x千米。
44×4.5+4.5x = 405
198+4.5x = 405
4.5x = 207
x =46
答:货车平均每小时行46千米。(检验)
2. 看图解题
分析比较,与例题比较,哪些题用方程解容易想?为什么?
3. 补充练习。(学生尝试着独立完成)
(1)一辆客车和一辆货车同时从路程为260千米的两地同时出发,相向而行,客车平均每小时行60千米,货车平均每小时行44千米,几小时后两车在途中相遇?
(2)小巧和小胖合作打一篇1850字的文章,小巧平均每分钟打36个字,小胖平均每分钟打38个字,完成这篇文章需要多少分钟?
(3)甲乙两人同时从路程为546米的两地出发,相向而行,6分钟后在途中相遇,已知甲平均每分钟走50米,乙平均每分钟走多少米?
四、全课总结
五年级下册数学教案11
教学目标:
1、知识目标:结合实践活动,认识体积、容积单位之间的进率,会进行体积、容积单位之间的换算。
2、能力目标:在观察、操作中,发展空间观念。
3、情感目标:学生想探究问题,愿意和同伴进行合作交流;乐于用学过的知识解决生活中的相关的实际问题。
教学重点:
观察、操作中会进行体积、容积单位之间的换算。
教学难点:
观察、操作中会进行体积、容积单位之间的换算。
教学准备:
多媒体课件,教学模具
教学过程:
一、复习导入:
1、同学们,上节课我们学习了几个体积单位,常见的体积单位有哪些?
2、很好,那我们以前还学过关于长度和面积的单位,谁来说下常用的长度单位有那些?常用的面积单位有那些?
3、那谁能说一下长度单位、面积单位它们之间的进率是多少?(指名回答)体积单位间的进率又是多少呢,这节课我们就一起研究探讨这个问题。
4、出示学习目标:
二、研究新知:
1、猜一猜:1立方分米=?立方厘米,你认为可能是多少?(可能有认为是100,也有可能认为是1000。)
2、你有办法证明你的猜想或推论吗?
(学生独立或小组讨论推导,自主探究相邻体积单位之间的进率,教师巡视,加以指导)
3、全班交流:谁再来说说,1立方分米=?立方厘米(估计三种说法)
①棱长1分米的正方体体积是1立方分米;棱长10厘米的正方体体积是1000立方厘米,而棱长1分米的正方体和棱长10厘米的正方体体积相等,所以1立方分米=1000立方厘米。
②在棱长1分米的正方体中摆棱长1厘米的正方体,一排能摆10个,能摆10排,摆10层,一共能摆10×10×10=1000个,所以1立方分米=1000立方厘米。
(电脑展示这种思考,然后请每个学生都把推导过程相互说一说。)
③1立方分米=1升,1立方厘米=1毫升,而1升=1000毫升,所以1立方分米=1000立方厘米。
③口头回答:3立方分米=?立方厘米,5000立方厘米=?立方分米
4、提问:用同样的方法,你能推算出1立方米等于多少立方分米吗?
①学生独立思考,并组织语言准备交流,然后请1-2名学生说说推导过程。
(板书:1立方米=1000立方分米)
②口头回答:
8立方米=( )立方分米 96立方厘米=( )立方分米
85毫升=( )升 5.36升=( )毫升
5、补全表格,继续填写:
单位相邻两个单位之间的.进率长度米、( )、厘米10面积平方米、( )、平方厘米100体积立方米、( )、立方厘米1000
(通过汇报,使学生了解长度、面积、体积单位之间的联系和区别。)
三、巩固练习
1、学生独立完成书上45页练一练第3题。(选取其中的几道题让学生说说思考的方法与过程。)
2、a、课本45页练一练第2题(引导学生通过计算,体会第三种包装比较合算。如果学生有其他的比较方式,只要合理,教师应给予肯定和鼓励。)
b、课本45页练一练第3题及第4题
对于第5题启发学生根据生活经验,对电视机包装箱上“60×50×40”这个数据信息进行科学地理解,然后再让学生完成此题。
四、总结
1、这节课我们学到了什么?
2、单位换算的时候要注意什么?
五年级下册数学教案12
教学目标:
1、通过教学,使学生初步理解同分母分数相加减的算理,掌握同分母分数加、减法的计算法则。
2、培养学生数形结合的数学思想,提高学生迁移类推的能力和计算能力。
3、培养学生规范书写和仔细计算的良好习惯。
重点难点:
理解同分母分数加、减法的算理和计算方法。
教学过程:
一、复习导入
1、填空。
(1)3/4的分数单位是( ),它有( )个这样的分数单位。
(2)( )个1/8是5/8,7/12里有( )个1/12。
(3)3个1/5是( ),4/7是4个( )。
2、谈话:我们在三年级已经学过同分母分数的加、减法,今天这节课,我们继续研究这个知识。
二、新课讲授
1、出示教材第89页例1。
(1)提问:观察图,从图中你都知道了哪些数学信息?(把一张饼平均分成8份,爸爸吃了3/8张饼,妈妈吃了1/8张饼,求爸爸和妈妈共吃了多少张饼)。
提问:求爸爸和妈妈共吃了多少张饼?怎样列式?为什么?
学生思考并回答:1/8+3/8,表示把这两个数合并起来,所以用加法。
提问:你能算出结果吗?怎样想的?
引导学生这样思考:1/8是1个1/8,3/8是3个1/8,合起来也就是4/8,提问:1/8+3/8的和是4/8,为什么分母没变?分子是怎样得到的?
(因为1/8和3/8的分母相同,也就是它们的分数单位相同,所以可以直接用两个分子相加,分母不变)。
板书:
1/8+3/8=1+3/8=4/8=1/2
说明:计算的.结果,能约分的要约成最简分数。
(2)提问:怎样计算同分母分数的加法。
小结:分数加法的含义与整数加法相同,都是表示把两个数合并成一个数的运算。在计算同分母分数加法时,分母不变,只把分子相加。
(3)即时练习
1/5+1/5 2/7+3/7 7/10 +1/10
2、同分母分数减法。
(1)教材第90页例题1第(2)问。
教师:爸爸比妈妈多吃多少张饼?
(2)学生讨论。
①应该用什么方法计算?如何列出算式?
②计算的结果是多少?你是怎么想的?
③你有什么体会?
(3)反馈讨论结果。
板书:
3/8-1/8=3-1/8=2/8=1/4
(4)归纳同分母分数减法的计算方法:分母不变,分子相减。
3、小结:观察例1的第1问和第2问,它们有什么共同点?同分母分数加、减法应怎样计算?(学生分组讨论,共同概括)。
教师总结板书:同分母分数相加、减,分母不变,只把分子相加、减。
4、即时练习。
完成教材第90页的“做一做”。
学生独立完成,集体订正。
三、课堂作业
完成教材第91页练习二十三的第1、2、3、4题。
这是同分母加、减法的单项练习。练习时,由学生独立完成,然后全班反馈,反馈时,让学生说说同分母分数加、减法的计算方法,并提醒学生结果应化为最简分数。
四、课堂小结
今天我们学习了同分母分数的加、减法。同分母分数相加、减,分母不变,只把分子相加、减。
教学板书:
1/8+3/8=1+3/8=4/8=1/2
3/8-1/8=3-1/8=2/8=1/4
同分母分数相加、减,分母不变,只把分子相加、减。
教学反思:
1、复习分数单位,让学生回忆以前学过的分数加减法的知识,为推导分数加减法算理与整数加减法算理相同作铺垫,提高了学生的迁移类推能力。
2、注重对算理的分析,以算理引入算法,教学时,通过观察、思考、交流等活动,让学生经历用算理引入算法的重要过程。使学生明白:计算同分母分数加、减法时,“分母不变”是因为分母相同,也就是分数单位相同,所以只用分子进行加、减。所以学生学习的积极性很高。
五年级下册数学教案13
教学目标:
1、会将组合体切割成几个长方体与正方体。
2、会计算简单组合体的体积。
教学重点和难点:
重点:将组合体切割成几个长方体与正方体并计算简单组合体的体积。
难点:合理切割,找准尺寸。
教学媒体:教学平台
课前学生准备:课堂练习本
教学过程:
课前准备:计算下列正方体、长方体的体积。
一、导入阶段:1、介绍组合体的计量方法
(1)这个形体你能直接用公式来计算吗?
(2)介绍组合体,有几个规则形体组合在一起,我们称组合体,怎样来计算组合体的体积呢?
今天我们要继续讨论求组合体的体积。
出示课题:组合体的体积
一、中心阶段:
1.出示例题。
下面是一个铸铁零件,算一算它的体积是多少立方厘米。(单位:厘米)
(1.先把这个组合体切割成几个基本形体,分别计算体积后再相加。
2.我们只会计算长方体、正方体的体积,因此在切割时要切割成几个长方体或正方体。)
请你用这个方法试着算一算它的体积是多少立方厘米?
我把这个组合体分割成了a、b、c三块,其中a与b是相同的。长方体a的长是9厘米,宽是40厘米,高是8厘米;长方体c的长是72厘米,宽是(40-30)厘米,高是8厘米。分别计算出各长方体的体积后再相加,就是这个组合体的体积了。
解:Va=abh
=9×40×8
=360×8
=2880(立方厘米)
Vc=abh
=72×(40-30)×8
=72×10×8
=720×8
=5760(立方厘米)
Va=Vb
V组=Va+Vb+Vc
=2880+2880+5760
=5760+5760
=11520(立方厘米)
答:这个组合体的体积是11520立方厘米。
我把这个组合体分割成了a、b、c三块,其中a与b是相同的。长方体a的长是9厘米,宽是30厘米,高是8厘米;长方体c的长是(72+9+9)厘米,宽是(40-30)厘米,高是8厘米。分别计算出各长方体的体积后再相加,就是这个组合体的体积了。
解:Va=abh
=9×3×8
=270×8
=2160(立方厘米)
Vc=abh
=(72+9+9)×(40-30)×8
=90×10×8
=900×8
=7200(立方厘米)
Va=Vb
V组=Va+Vb+Vc
=2160+2160+7200
=4320+7200
=11520(立方厘米)
答:这个组合体的体积是11520立方厘米。
小结:
求组合体的体积可以怎么求?
在求组合体的体积时要先把组合体切割成几个基本形体,分别计算体积后再相加。因为我们只会计算长方体、正方体的体积,因此在切割时要切割成几个长方体或正方体。注意找到正确的'尺寸。
要注意什么?
合理切割,找准尺寸。
二、练习阶段:
求下面各组合体的体积:(单位:厘米)
我把这个组合体分割成了(1)、(2)两块。长方体(1)的长是5厘米,宽是7厘米,高是6厘米;长方体(2)的长是(8-5)厘米,宽是7厘米,高是(6-4)厘米。分别计算出各长方体的体积后再相加,就是这个组合体的体积了。
解:V(1)=abh
=5×7×6
=35×6
=210(立方厘米)
V(2)=abh
=(8-5)×7×(6-4)
=3×7×2
=21×2
=42(立方厘米)
=210+42
=252(立方厘米)
答:这个组合体的体积是252立方厘米。
我把这个组合体分割成了(1)、(2)两块。长方体(1)的长是8厘米,宽是7厘米,高是(6-4)厘米;长方体(2)的长是5厘米,宽是7厘米,高4是厘米。分别计算出各长方体的体积后再相加,就是这个组合体的体积了。
解:V(1)=abh
=8×7×(6-4)
=56×2
=112(立方厘米)
V(2)=abh
=5×7×4
=35×4
=21×2
=140(立方厘米)
=112+140
=252(立方厘米)
答:这个组合体的体积是252立方厘米。
方法
我把这个组合体分割成了(1)、(2)两块。长方体(1)的长是3厘米,宽是8厘米,高是3厘米;长方体(2)的长是9厘米,宽是8厘米,高3是厘米。分别计算出各长方体的体积后再相加,就是这个组合体的体积了。
解:V(1)=abh
=3×8×3
=24×3
=72(立方厘米)
V(2)=abh
=9×8×3
=72×3
=216(立方厘米)
=72+216
=288(立方厘米)
答:这个组合体的体积是288立方厘米。
总结:
在求组合体的体积时要先把组合体切割成几个基本形体,分别计算体积后再相加。因为我们只会计算长方体、正方体的体积,因此在切割时要切割成几个长方体或正方体。注意找到正确的尺寸。
板书设计
方法一解:Va=abh
=9×40×8
=360×8
=2880(立方厘米)
Vc=abh
=72×(40-30)×8
=72×10×8
=720×8
=5760(立方厘米)
Va=Vb
V组=Va+Vb+Vc
=2880+2880+5760
=5760+5760
=11520(立方厘米)
答:这个组合体的体积是11520立方厘米。
方法二
解:Va=abh
=9×3×8
=270×8
=2160(立方厘米)
Vc=abh
=(72+9+9)×(40-30)×8
=90×10×8
=900×8
=7200(立方厘米)
Va=Vb
V组=Va+Vb+Vc
=2160+2160+7200
=4320+7200
=11520(立方厘米)
答:这个组合体的体积是11520立方厘米。
教学反思:
五年级下册数学教案14
教学目标:
知识与技能:引导同学们联系原有知识经验,主动探索异分母分数加、减法的计算方法,能正确地计算并验算异分母分数的加、减法。
过程与方法:在探索学习的过程中,培养同学们观察、比较、归纳、概括和表达的能力,渗透转化的数学思想。
情感态度与价值观:在学习过程中能获得积极的情感体验,感受探索成功的喜悦,感受到数学与生活的联系。
教学内容:
异分母分数加减法
教学重点:
理解并掌握异分母分数加减法的.算法。
教学难点:
在学生自主探索异分母加减法计算方法过程中,加深对算理的理解。
教具准备:
长方形纸片。
教学过程:
一、复习旧知、谈话导入
练习:在一节手工课上,同学们用同样大小的纸张折了自己喜欢的玩具.小明用这张纸的1/2折了一只小船;小红用这张纸的1/4折了一只小鸟;小李用这张纸的1/5折了一架小风车;小张用这张纸的2/5折了一架小飞机。
你能根据上面的信息提出有关加法的数学问题吗?请说出你的算式?
提问:生说出算式后师课件出示。
追问:在这些算式中我们前面学习过的有哪些?
引入谈话:我们已经掌握了同分母分数加减法的计算方法,如果相加的两个分母分数不同又怎么计算呢?今天我们就一起来学习异分母分数加减法的计算方法。
板书:异分母分数加减法
二、自主合作、主动探索
1、教学例1
(1)引导学生分析题意
师:要求“种黄瓜和番茄的面积一共占这块地的几分之几?”要怎么列式?
指名回答:板书:1/2+1/4
追问这道计算题与复习题的口算题有什么不同?
师指出:因为相加的两个数的分母不同,我们就称为异分母分数加法。
(2)自主探索,同桌交流并尝试解答。
(3)学生展示。
(4)师展示小课件。
(5)师:如果要求“种黄瓜的面积比种番茄的面积多了这块地的几分之几?”要怎么列式?
(6)学生同桌交流异分母分数加减法的计算方法。
(7)教学“试一试”。
三、组织练习、巩固提高
(1)做“练一练”。
(2)练习一。
(3)数学小诊所。
四、联系实际、拓展提高
五、师生课堂总结
通过本节课的学习,你有什么收获?
六、板书设计:(课件出示)
异分母分数加减法
知识巧记:
异母分数相加减,通分环节是关键。
变成分母相同数,再来计算真简便。
分子加减来计算,最简分数是答案。
特殊情况还要看,分子是“1”有巧算。
五年级下册数学教案15
教材分析:
《体积和体积单位》一课是五年级下册第三单元第三节的第一课时,属于“空间与图形”领域,从知识体系上分析是在学生已经初步认识了长方体和正方体的特点和表面积的基础上进行的,为进一步认识其它立体图形和学习有关体积计算及应用打好基础。
《体积和体积单位》的内容是学生认识了“长方体和正方体”以及“长方体和正方体的表面积”之后学习的,体积对学生来说是一个新概念。由认识平面图形到认识立体图形,是学生空间观念的一次发展。学生对什么是物体的体积,怎样计量物体的体积,以及体积单位之间的进率为什么是千进位等问题,都不易理解。为此,这部分教材加强了对体积概念的认识。体积单位教材是通过迁移类推引出来的。教材呈现两个不易看出大小的长方体,让学生想怎样比较它们的体积大小。引导学生由长度单位和面积单位的学习,想到要比较长方体的体积也需要用统一的体积单位。教材由此指出:计量体积要用体积单位,常用的体积单位有立方厘米、立方分米和立方米。并介绍了这些体积单位的字母表示法。
学情分析:
体积单位教材是通过迁移类推引出来的。教材呈现两个不易看出大小的长方体,让学生想怎样比较它们的体积大小。引导学生由长度单位和面积单位的学习,想到要比较长方体的体积也需要用统一的体积单位。教材由此指出:计量体积要用体积单位,常用的体积单位有立方厘米、立方分米和立方米。并介绍了这些体积单位的字母表示法。
教学目标:
1.通过实验观察,使学生理解体积的含义,认识常用的体积单位:立方米、立方分米、立方厘米。
2.使学生知道计量物体的体积,就要看它所含体积单位的个数。
3.使学生初步了解体积单位与长度单位、面积单位的区别和联系。
4.通过学生对体积意义的探索,发展学生的空间观念,培养学生的推理能力。
教学重点:使学生感知物体的体积,初步建立1立方米、1立方分米、1立方厘米的大小。
教学难点:学生对体积和体积单位概念的理解。
教具准备:盛有清水的玻璃杯一只,鸡蛋一个,1立方分米、1立方厘米的实物各一个,1立方米的框架一个。
教学过程:
一、目标导入
1.回忆《乌鸦喝水》的故事。
师:还记得乌鸦喝水的故事吗?谁来说一说?
学生说完后,师问:“水面真的会升高吗?”
师:看了这个故事,你发现了什么?
生1:我发现乌鸦非常善于动脑。
生2:我发现乌鸦往瓶子里填小石子,水面上升了。
师:为什么往瓶子里填小石子,水面就上升了呢?
生3:因为石头占了瓶子的一部分空间,把水挤上去了。
师:体积和空间之间到底有怎样的关系?让我们一起来做个实验研究研究。
2.实验演示,揭示概念。
老师做实验:拿一个盛水的玻璃杯,再把一个鸡蛋投入杯中,请同学观察水面的情况,为什么会出现这种情况?水与原来相比有没有增减?为什么水面会升高?
从上述情况说明:水面上升是因为鸡蛋占一定的空间。
像我们每个人都占一定的空间,教室里每一件物品都占据一定的空间。
让学生举生活中占空间的例子。……
师:今天我们就一起来学习与之相关的知识(板题:体积和体积单位),首先请看学习目标:理解体积的含义,认识常用的体积单位:立方米,立方分米,立方厘米,建立1立方米、1立方分米、1立方厘米的表象。
过渡:要达到本节课的学习目标,还要靠大家认真自学,怎样自学呢?请看学习指导。
二、学习指导
认真看课本27至28边看边画出重点。思考:
1、什么叫体积?
2、常用的体积单位有哪些?
3、1立方厘米、1立方分米、1立方米有多大?(5分钟后比谁能做对检测题)
三、自主学习
过渡:现在自学竞赛开始,比谁看书最认真,坐姿最端正!
生看书自学,过渡:看完的请举手,指一名后进生说答案。(错了让其他同学更正)下面,老师来检测一下同学们的自学效果怎么样?
四、检测反馈
(1)什么叫体积?
学生回答后,教师课件出示
物体所占空间的大小就叫做物体的'体积。
课件出示电视机、影碟机、手机的图片
师:谁的体积大、谁的体积小呢?
师:有的物体可以通过观察来比较它们的体积大小,那下面两个长方体,你们能比较出大小吗?(生:不好比较。)
师:所以要比较物体的体积大小,需要有一个统一的体积单位。
(2)常用的体积单位有哪些?
板书:立方厘米、立方分米、立方米
(3)1立方厘米、1立方分米、1立方米有多大?
师:1立方厘米有多大?怎样记住它?请具体说说,生活中有哪些物体的体积大约是1立方厘米?出示1立方厘米的小方块让学生观察,你知道了什么?哪些物体的体积比较适合用立方厘米用单位?
1立方分米有多大?怎样的正方体的体积是1立方分米?(出示1立方分米的正方体让学生感受其大小)你还见过哪些物体的体积大约是1立方分米?
1立方米有多大?怎样的正方体的体积是1立方米?出示1立方米的正方体框架让学生感受其大小,举例说说生活中1立方米的物体。
(4)练一练(课件出示)
a.数一数,下面物体的体积是多少。
b.下面的图形是用棱长1cm的小正方体拼成的,说出它们的体积各是多少。
c.说一说1cm、1cm2、1cm3分别是用来计量什么量的单位,它们有什么不同?
(先由后进生来回答,其他学生补充更正)
五、讨论总结。
通过今天这节课,你学到了哪些知识?
六、完成作业
课本第44页1-3题
板书设计:
体积和体积单位
立方厘米(cm3):棱长1cm的正方体的体积是1cm3
立方分米(dm3):棱长1dm的正方体的体积是1dm3
立方米(m3):棱长1m的正方体的体积是1m3
物体含有多少个1立方厘米,体积就是多少立方厘米。
【五年级下册数学教案】相关文章:
五年级下册人教版数学教案01-12
五年级下册数学教案01-04
五年级下册数学教案01-30
人教版五年级下册数学教案01-09
【推荐】五年级下册数学教案01-20
五年级下册数学教案【荐】01-20
五年级下册数学教案【热门】01-19
小学五年级下册数学教案03-11
五年级下册数学教案【热】01-19
五年级下册数学教案【推荐】01-19