[热门]五年级下册数学教案
作为一名优秀的教育工作者,时常要开展教案准备工作,教案是教材及大纲与课堂教学的纽带和桥梁。教案应该怎么写才好呢?以下是小编精心整理的五年级下册数学教案,仅供参考,欢迎大家阅读。
五年级下册数学教案1
一、指导思想与理论依据
《课标》明确指出:“数学教学活动中,教师应向学生提供充分从事数学活动的机会,帮助他们在自主探索的过程中真正理解和掌握基本的数学知识与技能。”要将这个理念落实在课堂教学中,就要求教师能根据教学的具体内容,选择恰当的学习方式,并巧妙创设学生主动探索的机会,变“接受学习”为“创造学习”,让学生在观察、操作、讨论、交流、归纳、整理、概括的过程中学习新知,充分以学生为主体,逐步培养学生的创新意识,形成初步的探索和解决问题的能力。根据以上思想,本节课的设计我主要从尊重学生已有的知识经验;在观察与操作中去亲身体验知识的形成过程,掌握约分的方法。
二、教学背景分析
1、教学内容、地位及作用。
约分是分数基本性质的一种应用,是学生已经掌握了分数的基本性质和求几个数的最大公因数的基础上进行教学的'。同时,约分又是分数四则运算的重要基础。要掌握约分的方法,除了要能很快看出分子、分母最大公因数之外,很重要的一点是能判定约分的结果是不是最简分数。
2、学情分析
在学习约分之前,学生已经学习了了分数的基本性质,大多学生能较快的找出两个数的公因数、最大公因数,同时理解了互质数的概念。这些知识点的掌握为约分方法的学习提供了认知基础,学习本课应该较为容易。但快速并准确地判断约分的结果是不是最简分数对少部分学生应该有一定的难度。
三、教学方法与教学手段
在教法、学法上,我主要采用了问题启发法、操作探究法、验证发现法、归纳概括法,让学生在动手操作中,发现新知;在合作交流中探究新知;在实践验证中,理解新知,在归纳总结中提升新知。
根据学生原有的认识基础和认知规律,结合“以学生的发展为本”的理念,力求突出以下三点
第一、将教学内容活动化,让学生在操作中学。
第二、采用小组合作学习,让学生在互动中学。
第三、利用原有认知经验,让学生在迁移中学。
使学生获得了探索的乐趣和成功的体验。
四、教学目标
1、理解约分的意义。掌握约分的方法.
2、设置情景与激趣,让学生通过小组合作学习,利用旧知自主探究新知识.
3、培养学生迁移能力,归纳概括的能力及遇到问题积极思考,主动学习的学习习惯.
五、教学重点
理解最简分数及约分的意义和方法,六、教学难点
能很快看出分子、分母的公约数,并能准确地判断约分的结果是不是最简分数。
七、教学用具
教师准备:幻灯片,投影
学生准备:分别涂有红色,和绿色的卡片。
八、教学过程
口算复习
1、说出下面分数分子、分母的最大公因数。
3/5 2/8 4/6 5/15
五年级下册数学教案2
教学目标:
1、了解体积单位有立方厘米、立方分米、立方米。
2、能够根据生活中的常识和已有的经验,建立体积单位的实际的能力,具有解决物体体积和容积问题的正确方法和思路。
3、学生想探究问题,愿意和同伴进行合作交流;乐物用学过的知识解决生活中的相关的实际问题。
教学重点难点:
进一步能够有效的建立体积的'空间观念;初步感知体积单位的大小。
教学准备:
1立方米、1立方分米、1立方厘米的正方体实物教具。
教学过程:
一、创设情境,导入新课
比比谁的体积大:
1、师:现在请你比一比,我和xx,谁的体积大?(老师的体积比xx的体积大)
2、现在请大家找一找我们身边的物体,比比谁的体积大?谁的体积小?
(预设:我的体积比数学书的体积大,空调的体积比电脑的体积大……)
3、下面的电视机、影碟机和手机,它们哪个体积大些?
师:刚才这些都很特殊,一眼就可以比较出来谁的体积大。现在来个难一点的。
二、例题讲解
(一)引出体积单位
1、师:(课件出示两个长方体)怎样比较这两个长方体的体积大小呢?(教师同时拿着两个长方体让学生看看)
(学生猜想:哪个长方体体积大。)
2、师:如果老师给大家数据,你能猜出哪个长方体的体积大吗?(在左边的长方体出现:45,在右边的长方体出现:40)
(预设:左的体积大些。还是不能知道它们哪个大些?)
3、师:为什么还不知道?(因为45和40都没有单位,无法比较。)
4、师:对了,你思考得真全面。所以,当要准确比较物体的大小时,要用统一的体积单位来测量。
5、回顾常用的长度单位及面积单位
6、师:今天我们要测量一个物体的体积,我们应该用什么单位呢?(体积单位)
7、师:常用的体积单位有哪些?(生回答:立方厘米、立方分米、立方米)
师板书:立方米、立方分米、立方厘米(介绍字母表示法)
(二)认识常用的体积单位
1、师:那1立方厘米、1立方分米、1立方米的正方体究竟有多大呢?
下面,同学们小组内学习课本38页内容,完成学习报告表(出示报告表)。
2、小组内学习并完成报告表。
3、学生汇报,并感受1cm3、1dm3、1m3的大小。
学生通过看,摸感觉1cm3、1dm3、1m3的大小,师小结:棱长是1厘米的正方体,它的体积是1立方厘米。记作:cm3
棱长是1分米的正方体,体积是1立方分米,记作:dm3
棱长是1米的正方体,体积是1立方米,记作:m3
三、联系生活,学以致用
1、立方厘米,立方分米,立方米这三种体积单位的大小相差很大,所以在生活中我们测量物体的体积时,要懂得选择正确的体积单位。
师:测量录音机应该用哪个体积单位较合适?(游泳池、大货车、钢笔……)
师小结:一般情况下,表示体积小的物体时,使用立方厘米作单位,表示体积大的物体时,用立方米作单位。
2、课本39页“练一练”第1、2题,第40页第6题。
五年级下册数学教案3
教材分析:
转化是解决问题时经常采用的一种策略,能把较复杂的问题变成较简单熟悉的问题。掌握转化策略不仅有利于问题的解决,更有益于思维的发展。教学不应仅仅停留在能够解决某一类问题、获得某一类问题的结论和答案,而应超越具体问题的解法和结论,指向策略的形成和应用意识。通过例1的教学让学生联系实际感悟转化的含义,体会无论在过去还是现在,转化都是解决问题的有效方法。
学情分析:
本课是在学生已经学习了用画图和列表,以及列举等策略解决问题的基础上,教学用转化的策略解决相关的实际问题。在此之前,学生已经初步积累了一定的用转化策略解决问题的经验,也掌握了一些技巧和方法,但当时这些技巧和方法更多是针对解决具体问题而言的,因而是零散的、无意识的。
教学目标:
知识与能力:使学生初步学会运用转化的策略分析问题、灵活确定解决问题的思路,并能根据问题的特点确定具体的转化方法,从而有效地解决问题。
过程与方法:使学生通过回顾曾经运用转化策略解决问题的过程,从策略的角度进一步体会知识之间的联系,感受转化策略的应用价值。
情感、态度、价值观:使学生积极主动参与数学活动,乐于和同伴交流解决问题时所运用的策略,能主动克服在解决问题中遇到的困难,获得成功的体验。
教学重点:
会运用转化的策略分析问题、解决问题 。初步掌握转化的方法和技巧
教学难点:
能根据问题的特点确定具体的转化方法,初步形成策略意识。
教学准备:
课件、方格纸、彩笔、卡片(长方形、平行四边形、三角形、梯形、圆形)、题纸。
教学过程:
一、感知转化
师:同学们喜欢听故事吗?
(多媒体出示《曹冲称象》的'画面)
提出问题:曹冲是用什么方法称出大象重量的呢?
(曹冲先把大象运上船,做上记号,然后把大象赶下船,装上石头,再做上相同的记号,称出石头的重量,就称出了大象的重量。)
也就是说,曹冲是用称石头的方法称出了大象的重量。小曹冲所用的这种方法,我们数学上称为转化。 转化是我们平时常用的一种解决问题的策略。(板书:转化)
二、自主探索,初步感受转化策略
1.任意出示两个图形,学生观察,哪个图形面积大?
学生会用数方格的方法比较两个图形面积的大小,教师肯定数方格是个好办法。
2.再出示例1图,仔细比比,哪个图形面积大?
由于图形比较复杂,学生通过数方格可能会出错,也可能会出现几种不同答案,建议学生拿出题纸,同位一起研究研究有没有其他好方法。
3.用课件演示用平移和旋转转化成长方形比较大小的过程。
教师指出:这其实是运用了一种解决问题的策略,叫做“转化”。(板书课题:解决问题的策略——转化)
4.提问:
(1)这是把什么转化成了什么?
学生体会到这是把不规则图形转化成长方形。(适时板书:不规则图形→长方形)实际上我们是把不规则图形面积这个新问题(板书:新问题),转化成了长方形面积这个我们熟悉的、已经解决的问题(板书:已经解决的问题)。这样一转化(板书: →),新问题也就迎刃而解了。
(2)转化过程中什么变了?什么没变?(形状变了,大小没变)
三、回顾旧知,体会转化策略的运用
1.回想一下:在以前的学习中,有没有运用转化策略解决过问题呢? 学生可能回忆并列举出:平行四边形面积、三角形面积、梯形面积公式的推导过程及除数是小数的除法计算。老师适时课件或学具演示,并在黑板上将转化关系用图示表示出来。
2.转化策略曾经帮助我们解决过这么多新问题,像这样的例子还有很多,你们每个人手里都有一组题,动动笔算算,体会体会哪儿运用了转化策略?有发现,可以和组内的同学交流一下。
四人小组内每个学生的题纸各不相同,学生独立计算、观察、体会到转化后,四人小组进行交流。
3.举个例子说说你的发现。
学生可能举例:①计算异分母分数加、减法是,把异分母分数转化成同分母分数
②计算小数乘法时把小数乘法转化成整数乘法
提问:这里都用了转化策略,有什么共同地方?
引导学生观察并思考,体会到转化的实质——转化前和转化后计算结果不变。
小结:这么多地方用到转化的策略,说说你有什么体会?
学生可能体会到:转化策略应用很广泛;转化策略能解决新问题;转化策略能把复杂的问题变简单。
四、解决问题,深化转化策略
1.明明和冬冬在同样大小的长方形纸上分别画了一个图案(图中直条的宽度都相等)。这两个图案的面积相等吗?为什么?
学生会想到把右边图形中的直条边通过平移,转化成和左边相同的图案,肯定学生不仅善于观察,还善于想象。
2.观察下面两个图形,要求右边图形的周长,怎样计算比较简便?如果每个小方格的边长是1厘米,右边图形的周长是多少厘米?
师:指名学生用手指出右边图形的周长是由哪些线段围成的
生:(边指边说)是这些线段围成的总长度
师:对,那如何来计算它的周长呢?谁来说说你的想法?
生:我想把这条边移到这儿,这条边移到这儿?这样就成了一个长方形。
师:听明白了吗?谁再来说一说?
生:这两条横着的边移到这儿,这两条竖着的边移到这儿。
师:(演示)我们一起来看看这种方法:把这两条竖着的线段向右平移,这两条横着的线段向上平移。这样一来,原来的图形就转化成了一个长方形,而它的周长有没有改变?
生:没有。
师:现在你能快速计算它的周长了吗?
生:(3+5)×2=16(厘米)
师:完全正确!通过这个练习,我感觉同学们的转化水平又提高了
3.用分数表示各图中的涂色部分。
先让学生独立思考,并把自己的想法说给小组成员听,再全班交流。 ①通过割、补的方法,把涂色部分转化为扇形,从而一下子就可以看出占了整个圆面积的1/4。
②通过平移的方法,把涂色部分转化为正方形,从而一下子就可以看出占了长方形的1/2。
③把两个空白的三角形拼成一个长方形,空白部分一共占了6个方块,剩下的10个方块就是涂色部分,因此涂色部分占5/8 。
4.一块草坪被四条一米宽的小路平均分成了9小块,草坪的面积是多少平方米?
师:要求学生先独立思考,看如何计算比较简便?
生:可以把小路通过平移移到草坪的四周,这样很容易看出要求草坪的长为(45-2)米,宽为(27-2)米。
师:对于一些复杂的图形都能被大家轻松攻破了,真不错。
五、总结延伸,渗透思想
提问:通过今天的学习,你有什么收获?
师:有位数学家说过:“什么叫解题?解题就是把题目转化为已经解过的题。”学完今天这节课后你如何理解这句话?学习数学的过程就是不断转化的过程。将复杂转化为简单,陌生转化为熟悉,抽象转化为具体,未知转化为已知。所以,掌握转化的策略,对学好数学至关重要。
今天我们学习了用“转化”的策略解决问题,在解决问题时我们要善于运用转化、用好转化的策略,才能有效解题。
六、作业布置,用转化策略解决实际问题
谈话:转化策略应用非常广泛,大家课后可查阅资料看多媒体中给出的问题是他通过什么策略解决的。
相信今后同学们能主动运用转化策略,让它帮助你解决更多学习中和生活中的问题。
板书设计:
解决问题的策略
五年级下册数学教案4
教学目标
1、知道单位”1”可以是一个物体,也可以是多个物体。认识分数单位,理解分数是分数单位的累积。理解分数的意义,体会分数表示的部分与整体的关系。
2、运用直观教学手段,经历分一分、画一画、折一折、比一比等活动,理解分数的意义,培养学生的动手操作的能力和抽象概括能力,形成从不同角度思考问题的意识。
3、学生在轻松和谐的氛围中主动参与、充分体验,感受数学与生活的密切联系,发展学生的数感。
教学内容分析:
小学阶段对于分数的研究大致分为5个阶段:低年级的平均分和除法、倍的认识、三年级的分数初步认识、五年级的分数再认识、分数的计算、六年级的比。从这些安排来看可以看出五年级的分数再认识是小学阶段一次系统的学习分数,这部分内容是在学生已对分数有了初步的认识的基础上,教材安排的一次理论上的概括。它不仅是前面所学知识的归纳、总结,更是对分数认识上由感性上升到理性的开始,是学习分数四则运算和应用的重要前提。
重难点
重点:
知道单位”1”可以是一个物体,也可以是多个物体。认识分数单位,理解分数是分数单位的累积。
难点:
运用直观教学手段,经历分一分、画一画、折一折、比一比等活动,理解分数的意义,培养学生的动手操作的能力和抽象概括能力,形成从不同角度思考问题的意识。
教学过程
活动1【导入】
一、沟通“1”、整数、分数的联系,度量中感受分数的产生和意义。
师:同学们学习过整数吗?如果用这张红色的纸条表示1,那么你能想办法表示出2吗?3怎样表示呢?我们发现有几个这样的“1”就可以用几来表示。
师:老师这里还有一张纸条(更长的纸条),你知道它表示几吗?(用1作为标准去量发现有不足1的)。
师:这段不足1的长度怎样表示呢?(用分数表示)
在测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。
师:猜一猜,这段不足1的长度是这个标准的几分之几呢?
老师给每个组的同学都提供了一些学具,请利用手中的学具验证你们的猜想。
预设1:两张绿色纸条拼成一个红色纸条,绿色纸条是红色纸条的
预设2:红色纸条对折,不足1的部分是红色纸条的
预设3:两张桔色的纸条。一张桔色的纸条是红色纸条的,两个就是。
我们发现我们只要找到不足1的部分与标准之间的关系,就可以用分数表示了。
在刚才的测量过程中我们发现不足1的`部分没办法再以1为标准去测量了,但是我们发现可以用标准的去测量。下面我们就用标准的测量一下,看看粉色纸条是几个,你知道5个是几分之几吗?
活动2【讲授】
二、分物中体会单位“1”可以是多个物体
师:刚才我们找到了,生活中其他的地方有没有呢。
大米
1000克
拿出小片子,请你分别表示出它们的。
我们表示的都是,可是为什么对应的数量却都不相同呢?
回顾一下找的过程,你对分数又有了哪些新的体会?
师小结:除了可以把一个物体或一个图形平均分找到分数,也可以把多个图形或多个物体看作整体通过平均分找到分数。大家平均分的一个物体、一个图形、一个计量单位、一个整体,可以用自然数“1”表示,通常叫做单位“1”
活动3【讲授】
三、分物中认识分数单位,深入体会分数的意义。
师:刚才同学们准确的找到了这些糖的,下面同学们可以自由地利用这些糖来表示你喜欢的分数。
合作建议:
独立思考:想一想、画一画,用这些糖还能表示出哪些分数。
小组讨论:在小组内说一说你找到的分数所表示的意义。
预设:
观察这两个分数你有什么发现吗?
相同点:都是把6块糖平均分成6份
不同点:取的份数不同
联系:2个是
师:你会表示吗?
师:我们发现有几个就是六分之几。
师:你会表示吗?
师:那么有几个就是三分之几。
像、这样的表示一份的分数就叫做分数单位。而像、、这样的分数,我们可以理解为它们都是由分数单位不断累积而成的。
师:有些同学还找到了一样的分数,对吗?
师:表示了这么多分数,谁能来说说分数的意义。
活动4【导入】
四、巩固练习
1、填一填
2、猜一猜
师:请你对自己今天课堂学习的表现和收获进行评价。这里有10颗星星,你认为你可以得到几颗呢?请在纸上进行涂色。
师:谁来说说你获得了这些星星的几分之几呢?请同学们根据他所说的分数想一想他给自己评了几颗星?
师:谁再来说说你自己评了几颗星,同学们想一想他获得了全部星星的几分之几?
师:同学们想不想知道我给大家今天的学习情况评几颗星呢?
出示
师:你知道这是几分之几吗?
有的同学在为没有得到全部的星星而感到遗憾,其实没有点亮的那半颗星才是我今天送给大家最宝贵的礼物,不满足是进步的首要条件,在陈老师心里你们每个人拥有着无限的潜能,我永远期待着你们更精彩的表现。
五年级下册数学教案5
教学内容
教科书第71页例4,练习十五第2,3题。
教学目标
1.在具体情境中,理解、掌握有括号的分数加减混合运算的计算方法,并能正确计算。
2.能综合运用所学的知识和技能解决计算中的问题,发展应用意识。
3.在合作交流中,培养同学们合作学习的意识和能力。
教学重、难点
找单位"1";结合具体实例,理解进行有括号的分数加、减混合运算时,要先算括号里的道理。
教学过程
一、创设情境,引入新知
课件展示例4同学们打扫卫生的情境图。出示:全班同学中,擦门窗的占1/4,擦桌子的占2/9,其余的扫地。
师:观察图,你获得了哪些数学信息?
生:全班同学中,擦门窗的占1/4,擦桌子的占2/9,其余的扫地。
师:根据这些信息,你能提出哪些数学问题呢?
生1:擦门窗的和擦桌子的一共占全班同学的几分之几?
生2:扫地的同学占全班同学的几分之几?
……
师:现在我们先来解决"扫地的同学占全班同学的几分之几?"
二、合作交流,探究新知
1.教学例4
师:怎样解决这个问题?
小组合作学习解决以下几个问题。(课件展示)
(1)擦门窗的占1/4是占谁的1/4?擦桌子的占2/9是占谁的2/9?
(2)这里是把谁看作单位"1"?
要求学生独立思考,讨论后再回答。
生1:擦门窗的占1/4是占全班同学的1/4,擦桌子的占2/9是占全班同学的2/9。
生2:它们是把全班同学看作单位"1"时产生的`分数。
学生试着列出算式并解答出来。
展示学生的解题结果。
解法一:1-29-14=99-29-14=79-14=3636-1736=1936
解法二:1-(29+14)=1-1736=2836-936=1936
师:能说说你们的想法吗?
生1:我是用连减的方法,把全班同学看成单位"1",先减去擦桌子占的2/9,再减去擦门窗
占的1/4,剩下的就是扫地的占全班同学的几分之几。
师:计算时你是怎样想的?为什么把1看成9/9来计算?
生1:我按从左到右的运算顺序分步通分计算。因为2/9的分母是9,所以把1看成9/9。
生2:我也是把全班同学看成单位"1",我和他不一样的是先算出擦门窗的和擦桌子的共占全
班同学的几分之几,然后再用1去减它们的和,其中把1看成36/36是因为17/36的分母是36。
师:为什么要先算括号里面的,再算括号外面的?
生2:因为要先算出擦门窗的和擦桌子的共占全班同学的几分之几,然后再算扫地的占全班同
学的几分之几,所以要先算出括号里面的,再算括号外面的。
学生把教科书第71页例4中的结果填完整。
师:看书思考,这两种解法有什么异同?
学生独立思考,小组内交流后再回答。
生:运算顺序不同。解法一是连减,按从左到右的顺序计算;解法二有小括号,先算小括号里
面的,再算括号外面的。它们的计算结果相同。
2.尝试练习,理解有括号的分数混合运算的顺序
35+(34-12)1112-(16+34)
学生先独立解答,然后展示作业。(不同的算法都展示出来)
师:这两道题是什么样的算式?运算顺序是怎样的?
生:异分母有括号的分数混合运算,应先算括号里面的,再算括号外面的。
师:说说自己的算法。
生:异分母分数混合运算要先通分,化成同分母分数,再相加减。
生:可以分步计算,分步通分,还可以一次通分,再计算。
……
总结:今天我们学习的是异分母有括号的分数混合运算,它的运算顺序和整数有括号的混合运
算顺序相同,都是先算小括号里面的,再算括号外面的。在计算时分母不同的要化成同分母分数来
计算,可分步通分,也可一次通分。可以根据题目的特点和自己的方便来选择方法。(板书课题)
注意:第二小题结果是0/12,把它写成0。因为分子是0的分数等于0,当计算时出现分子是0
的分数时都直接把结果写成0。
三、巩固新知,拓展练习
教科书第73页练习十五第2题第二横排和第3题。
四、课堂总结
今天你学了哪些知识?知道了什么?还有哪些不懂的?
五年级下册数学教案6
教学目标:
1、 知识与技能:通过解决实际问题,体会确定位置在生活中的实际应用,进一步了解确定位置的方法。
2、 过程与方法:通过合作探究,体会描述路线的过程,并能确定物体的位置。
3、 情感、态度与价值观:在探究确定物体位置的过程中,发展学生的空间观念,培养学生的探究意识和合作精神。
教学重、难点:
【重点】能利用方向和距离描述物体的位置或描述路线。
【难点】用不同的方法表示物体的位置。
课前准备:ppt课件、学习卡
教学过程:
一、复习准备
师:同学们,上节课我们学习了如何利用方向和角度来确定位置,请看这幅图,看谁对上节所学知识掌握的最扎实。(课件出示)
生:
师:同学们对知识的掌握都很不错。在我们平时学习数学的过程中,总有同学在问,我们为什么要学习这个知识,它有什么用呢?今天我们就来看看确定位置的重要用途。(板书课题:确定位置二)
二、设置情境,激发兴趣,探究新知
1、 描述简单路线
(出示渔民遇险情境图,激发学生学习兴趣)
师:渔民遇到危险了怎么办?
生:赶快救援(很着急)
师:大家急切的心情老师很理解,但实施救援不能盲目,要有计划的进行。只有先找到渔船出事地点才能第一时间赶到进行有效救援。这也正用到了我们的确定位置的数学知识。
请大家拿出学习卡一,看海上平面图确定平面图的方向。
生:图中方向,上北、下南、左西、右东
师:要想找到渔船,我们应该先确定什么?
生:观测点
师:要想找到渔船,还要知道什么条件?
生:确定方向
师:那么渔船在救援船的什么方向?
生:东偏北方向
师:救援船的东偏北是一块很大的区域,要在这么大一片区域里快速找到渔船的具体方向该怎么办?请同学们小组合作找到解决办法。
哪个小组有结论,介绍一下。
生:生汇报,渔船在东偏北方向上。
师:你是怎样测量的
生:以救援船为中心点,东边的线为0刻度线,到渔船的位置是。(一组汇报不完整的师指导其他小组补充改正。)
师:同学们说的非常好。我们已经知道了渔船就在救援船东偏北方向上,现在可以确定渔船的具体位置吗?
生:不能
师:要想确定渔船具体位置,还需要什么?
生:距离
师:好,那利用学习卡快速确定下距离。
你是怎样做的?
生:汇报
师:现在谁能用最简练的语言描述渔船的位置?
生:整理汇报
师:想一想,我们确定了哪些因素才确定渔船的位置的`?
生:汇报,并整理顺序(师板书:观测点、方向、角度、距离)
师:按照我们所制定的路线渔民们被成功的解救了,这就是我们数学知识在生活中的重要用途。以后可不要再小瞧数学了哟!
2、知识巩固
接下来就请同学们用我们刚才的知识再来帮一帮乐乐。
(出示情境图)生读内容,并利用学习卡二小组合作确定位置。
你是怎样做的?
生:汇报(边汇报边幻灯片演示)
师:谁能用最简练的语言描述大本营的位置。
生:
师:同学们说的真好
3、理解数学迷画中大本营的位置
下面这幅图师数学迷用自己的方法画出的大本营的位置,请同学们来看一看,你发现了什么,他是如何确定位置的?
生:他是用数对的方法确定位置的
师:具体如何做的?
生:把大鸣山看成(0,0)每1厘米为一格,确定大本营位置是(4,4)
师:根据此图,谁能说说宝塔和小清山的位置。
生:汇报
三、课堂练习
师:看到同学们已经具备了描述简单路线和确定物体位置的方法和能力,下面老师要考验你们一下。请拿出学习卡三
(课件出示,学生在学习卡上测量完成)
生:完成后汇报
四、全课小结
这节课你们有什么收获?对数学知识的学习有什么想法?(学生反馈汇报)
教师总结:生活中处处都有数学,希望同学们能多多观察生活,发现生活中的数学,发现数学的乐趣。
板书设计:
确定位置(二)
要素
观测点 方向 角度 距离
五年级下册数学教案7
教学目标
1.理解小数比大小的方法,会比较两个小数的大小。
2.让学生经历从具体—表象—抽象的学习过程,获得小数比大小的方法,并发展迁移能力。
3、让学生感受小数比大小的方法是有价值的。
教学重点:会比较两个小数的大小。
教学难点:让学生经历从具体—表象—抽象的学习过程,获得小数比大小的方法,并发展迁移能力。
教学过程:
全免费中小学课件、教案、试题尽在“八佰教育网”
一.复习导入:
1、在数射线上放一放下面各数,并选两个数比一比大小。
502510055
2、在○里填上“><=”
○○○
3、揭题:小数的大小比较
二.自主探究新知。
(一)、数射线上比大小。
1、出示情景
这是四(3)班同学在进行跳远比赛呢?
徐夏豪的成绩是:2.90米。
沈珺的成绩是:3.60米。
夏陈的成绩是:3.45米。
你能给他们排出名次吗?
2、学生操作交流并排出名次
3、练一练:
用数射线上的点表示下面各小数,并比较每组数中两个数的大小。
(二)、脑子里比大小。
1、出示
沈佳妮的成绩是:2.98米。
徐璐婕的成绩是:2.89米。
顾雨菲的成绩是:3.05米。
(2)、离开数射线,把三张卡片在桌上排一排。
(3)、交流说出她们排列的名次。
(三)、归纳比较小数大小的一般方法
1、还有其他的方法排出名次吗?
2、小组讨论
3、交流并出示:比较两个小数的大小,先比较整数部分,整数部分大的那个数就大;整数部分相同的,再比较十分位上的数,十分位上的数大的那个数就大;……
4、小结:小数大小的比较方法与多位数大小的比较方法是相通的。
三、巩固运用
1、比较下面每组中两个小数的大小。
3.14○4.130.473○0.46
5.0192○5.01297.281○8.001
2、综合运用。
2004年雅典奥运会男子110m栏决赛真激烈!
加西亚的成绩是13.20秒
刘翔的成绩是12.97秒
特拉梅尔的成绩是13.18秒
(1).提问:刘翔(中国)、加西亚(古巴)、特拉梅尔(美国)跑在前三位,你能给他们排出名次吗?
(2).独立思考:有哪些好办法能很清楚地比较出这三个小数的大小?
(3).学生交流。
思考:跑步比赛与跳远比赛的成绩排名有什么不一样?
四、总结:这节课学习了什么?
你有什么收获?
设计意图:
本设计注意挖掘学生身边的学习资源,为学生创建了一个发现、探究的思维空间,运用大量的实践活动引导学生去发现、去创造,培养学生的.初步创新意识和创新能力:
1、关注学生的生活经验和已有的知识体验。
2、体现了活动是学习的载体,使学生在活动中学习。
3、联系实际,灵活应用,培养了学生的创新精神和创新能力。
4、通过学生间的合作探索,并将学习成果展现,使学生充分感受学习的乐趣,体验成功,建立学习自信心。
教材分析:“分数比较大小”这部分内容是实验教材新增设的内容之一,也是教材改革的新变化之一。数学课程标准在探索规律的内容中明确说明:“发现给定事物中隐含的简单规律”,并给出了具体例子。我在教学时,为了激发学生的学习兴趣,选取了更贴近学生生活实际的素材.让学生通过操作、观察、实验、猜测等活动去发现,从而培养其探索数学问题的能力和发现、欣赏数学美的意识。
教材处理:兴趣是的老师,《数学课程标准》指出,数学教学必须注意从学生的生活情境和感兴趣的事物出发,为他们提供参与的机会,使他们体会到数学就在身边,对数学产生亲切感。在教学中就要努力挖掘学生身边的学习资源,为他们创建一个发现、探究的思维空间,使学生能更好地去发现,去创造。在这一理念的指导下,我采用了“以情激学、导入新课——引导观察、探究规律——实践操作、合作互动——联系生活、开放应用——评价体验、畅谈收获”这一教学模式展开教学活动。让学生在自己喜欢的实践活动中探索,通过找一找、摆一摆、涂一涂、演一演等活动去发现事物的规律,从而培养学生初步的观察、概括、推理能力,以及提高学生间相互合作的意识。
五年级下册数学教案8
教学目标
1、知识与技能
初步认识分数乘法,具备计算整数乘以分数的能力。
2、过程与方法
通过举例以及变式初步理解分数乘法。
3、情感态度和价值观
通过举实例,逐步深入讲解分数乘法,有利于理解运用新知识。
教学重难点
通过举例以及变式初步理解分数乘法
教学过程
一、知识回顾
1、
2、
3、
二、新课引入
1、举例
1个占整张纸条的1/5,3个占整张纸条的几分之几?
两种计算方法:
加法计算:
乘法计算:
2个3/7的和是多少?
2、观察上述算法,你发现了什么?
3、对比下列两种算法。
4、总结归纳
分数和整数相乘,分子与整数相乘,分母不变。
计算结果可以写成最简分数,能约分的',可以先约分。
5、练习
计算下列题目,并将结果填入表格中。
4211/21/4
x12
48241263
观察并说一说你有什么发现?
三、例与练
例1:4个2/15是多少?
例2:
练习:2/3x4
2/3x4=(2x4)/3=8/3
四、课堂小结
五、拓展延伸
淘气吃了这个蛋糕的1/8,爸爸吃的是淘气的2倍,爸爸吃了蛋糕的几分之几?
1x1/8x2=1/4
答:爸爸吃了蛋糕的1/4。
五年级下册数学教案9
一、教学内容:
教科书第1页的例1、例2和试一试,完成练一练和练习一的第1~2题。
二、教学目标:
理解方程的含义,初步体会等式与方程的联系与区别,体会方程就是一类特殊的等式。
三、教学重点:
理解并掌握方程的意义。
四、教学难点:
会列方程表示数量关系。
五、教学过程:
1、出示例1的天平图,让学生观察。
提问:图中画的是什么?从图中能知道些什么?想到什么?
引导
(1)让不熟悉天平不认识天平的学生认识天平,了解天平的.作用。
(2)如果学生能主动列出等式,告诉学生:像“50+50=100”这样的式子是等式,并让学生说说这个等式表示的意思;如果学生不能列出等式,则可提出“你会用等式表示天平两边物体的质量关系吗?”
2、出示例2的天平图,引导学生分别用式子表示天平两边物体的质量关系。
引导:告诉学生这些式子中的“x”都是未知数;观察这些式子,说一说写出的式子中哪些是等式,这些等式都有什么共同的特点。
3、讨论和交流:写出的式子中,有几个是等式,有几个不是,而写出的等式都含有未知数,在此基础上,揭示方程的概念。
4、完成练一练
(1)下面的式子哪些是等式?哪些是方程?
(2)将每个算式中用图形表示的未知数改写成字母。
5、巩固练习
(1)完成练习一第1题
先仔细观察题中的式子,在小组里说说哪些是等式,哪些是方程,再全班交流。要告诉学生,方程中的未知数可以用x表示,也可以用y表示,还可以用其他字母表示,以免学生误以为方程是含有未知数x的等式。
(2)完成练习一第2题
6、小结
今天,我们学习了什么内容?你有哪些收获?需要提醒同学们注意什么?还有什么问题?
7、作业
完成补充习题
六、板书设计:
方程的意义
X+50=100
X+X=100
像X+50=150、2X=200这样含有未知数的等式叫做方程
五年级下册数学教案10
教学目标:
1.在理解题意的基础上寻找等量关系,初步掌握列方程解两、三步计算的简单实际问题。
2.从不同角度探究解题的思路,初步体会利用等量关系分析问题的优越性。
教学重点:在理解题意的基础上寻找等量关系,能列方程解“相遇问题”。
教学难点:从不同角度探究解题的思路,初步体会利用等量关系分析问题的优越性。
教学准备:配套课件
一、导入阶段
1.复习行程问题中的速度、时间、路程的基本数量关系。(口答
甲每分钟行50米,乙每分钟行40米,1分钟两人共行几米?
2分钟两人共行几米?
5分钟两人共行几米?
2.根据题意写出含有字母的式子。
一辆卡车每小时行45千米,一辆轿车每小时行60千米,卡车和轿车同时行了x小时,问:卡车行了多少千米?
轿车行了多少千米?
两车共行了多少千米?
二、结合实例,探究新知
1. 出示例题1
沪宁高速公路全长约270千米,一辆轿车和一辆客车分别从上海和南京两地同时出发,相向而行。轿车平均每小时行100千米,客车平均每小时行80千米,经过几小时两车在途中相遇?
2. 学生读题,找出未知量与已知量之间的.等量关系。
(1) 你可以从题目中收集到哪些数学信息?
(2) 学生介绍,教师画线段图。
(3) 分析: 设经过x小时两车在途中相遇,那么客车行的路程可以用80x千米表示,轿车行的路程可以用100x千米表示。
(4) 寻找等量关系:客车行的路程+轿车行的路程=沪宁高速公路全长。
(5) 列方程解决问题:
解:设经过x小时两车在途中相遇。
80x+ 100x = 270
180x = 270
x = 1.5
答:经过1.5小时两车在途中相遇。 (检验)
三、巩固深化,灵活应用
1. 练一练
(1) 小亚和小巧同时从相距路程为960米的两地出发,相向而行,小亚平均每分钟走58米,小巧平均每分钟走62米,几分钟后两人在途中相遇?(学生尝试画线段图,反馈交流)
解:设x分钟后两人在途中相遇。
58x+ 62x = 960
120x = 960
x = 8
答:8分钟后两人在途中相遇。(检验)
(2) 两个城市之间的路程为405千米,一辆客车和一辆货车同时从这两个城市出发,相向而行,客车平均每小时行44千米,4.5小时后两车相遇,货车平均每小时行多少千米?
客车行的路程+货车行的路程=两个城市之间的路程
解:设货车平均每小时行x千米。
44×4.5+4.5x = 405
198+4.5x = 405
4.5x = 207
x =46
答:货车平均每小时行46千米。(检验)
2. 看图解题
分析比较,与例题比较,哪些题用方程解容易想?为什么?
3. 补充练习。(学生尝试着独立完成)
(1)一辆客车和一辆货车同时从路程为260千米的两地同时出发,相向而行,客车平均每小时行60千米,货车平均每小时行44千米,几小时后两车在途中相遇?
(2)小巧和小胖合作打一篇1850字的文章,小巧平均每分钟打36个字,小胖平均每分钟打38个字,完成这篇文章需要多少分钟?
(3)甲乙两人同时从路程为546米的两地出发,相向而行,6分钟后在途中相遇,已知甲平均每分钟走50米,乙平均每分钟走多少米?
四、全课总结
五年级下册数学教案11
教学目标:使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生
动手操作的能力和抽象,概括,归纳的能力.
教学重点:分数的数感培养,以及与除法的联系.
教学难点:抽象思维的培养.
教学过程:
一,铺垫复习,导入新知 [课件1]
1,提问:A,7/8是什么数 它表示什么
B,7÷8是什么运算 它又表示什么
C,你发现7/8和7÷8之间有联系吗
2,揭示课题.
述:它们之间究竟有怎样的关系呢 这节课我们就来研究"分数与除法的关系".
板书课题:分数与除法的关系
二,探索新知,发展智能
1,教学P90 .例2:把1米长的`钢管平均截成3段,每段长多少
提问:A,试一试,你有办法解决这个问题吗
板书:用除法计算:1÷3=0.333……(米)
用分数表示:根据分数的意义,把1米平均分成3份,每份是1米的1/3,就
是1/3米.
B,这两种解法有什么联系吗
(从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和 1/3是相等的关系.)
板书: 1÷3= 1/3
C,从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来
表示 也就是说整数除法的商也可以用谁来表示
2,教学P90 .例3: 把3块饼平均分给4个孩子,每个孩子分得多少块 [课件3]
(1)分析:A,想想:若是把1块饼平均分给4个孩子,每个孩子分得多少 怎么列式
B,同理,把3块饼平均分给4个孩子,每个孩子分得多少 怎么列式 3÷4的商能不能用分数来表示呢
板书: 3÷4= 3/4
(2)操作检验(分组进行)
① 把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼
② 反馈分法.
提问:A,请介绍一下你们是怎么分的
(第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4 块,也就是3/4块.)
(第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的 ,拼起来相当于一块饼的3/4 ,也就是3/4 块.)
B,比较这两种分法,哪种简便些
※ 把5块饼平均分给8个孩子,每个孩子分得多少 说一说自己的分法和想法.
3,小结提问:A,观察上面的学习,你获得了哪些知识
板书: 被除数 ÷ 除数 = 除数 / 被除数
B,你能举几个用分数表示整数除法的商的例子吗
C,能不能用一个含有字母算式来表示所有的例子
板书: a÷b=b/a (b≠0)
D,b为什么不能等于0
4, 看书P91 深化.
反馈:说一说分数和除法之间和什么联系 又有什么区别
板书:分数是一个数,除法是一种运算.
三,巩固练习 [课件5]
1,用分数表示下面各式的商.
5÷8 24÷25 16÷49 7÷13 9÷9 c÷d
2,口算.
7÷13=( )÷9= 1/2=( )÷( ) 8/13=( )÷( )
3, 7/10表示把单位"1"平均分成( )份,表示这样的( )份的数.1÷21表示两个数( ),还可以表示把( )平均分成( )份,表示这样的一份的数.
四,全课小结
当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母.故此,分数与除法既有联系,又有区别.
在整数除法中零不能作除数,那么,分数的分母也不能是零.
五,家作
P93 .1,2,3
板书设计: 分数与除法的关系
例2:1÷3=0.333……(米)=1/3(米) 例3:3÷4= 3/4
被除数 ÷ 除数 = 除数 / 被除数
a÷b=b/a (b≠0)
分数是一个数,除法是一种运算
五年级下册数学教案12
整理与复习
教学内容
复习本单元的知识。
教学目标
1、 通过复习,能完整有序地构建本单元的知识体系。
2、 通过复习,能运用本单元的知识解决一些生活中的实际问题。
3、 经历复习的过程,进一步提高归纳整理的能力和自学能力。
教具准备
投影仪、视频展示台。
教学过程
一、学生独立整理本单元各部分内容
师:这个单元学习完了,学习了哪些知识呢?请同学们独立整理复习这一单元的知识,整理时主要从以下几个方面考虑:
1、 学习了哪些知识?
2、 这些知识的主要内容是什么?并举例说明。
3、 学习这些知识时主要使用了什么学习方法?
学生独立完成。
教师巡视辅导。
二、正确构建本单元知识结构
学生汇报,展示整理的内容。
估计学生会有以下方法:
第1种:列表法
知识点内容--举例学习方法
同分母分数加减法,分母不变,分子相加减。8/17+5/17=13/17……
异分母分数加减法先通分,再计算。5/14-4/21=15/42-8/42=7/42=1/6……
分数加减混合运算与整数加减混合运算相同。11/25+1/3-3/25=11/25-3/25+1/3=8/25+1/3=24/75+25/75=49/75……
带分数读法。1 读作:一又七分之二……
假分数化带分数。25/7=25÷7=3 ……
转换、推理、听讲、计算、讨论、分析、综合、归纳等。
或:
名称类型计算方法--举例学习方法--分数加减法
同分母--分母不变,分子相加减。12/19+5/19=17/19……
异分母--先通分转化成同分母,再按同分母分数加减法计算。1/2-1/3=3/6-2/6=1/6……
混合运算与整数加减混合运算相同。
1/2+2/3-3/4=6/12+8/12-9/12=14/12-9/12=5/12……
简便运算与整数加减法相同。
2/7+1/3+1/7=2/7+1/7+1/3=3/7+1/3=9/21+7/21=16/21……
带分数读法。1 读作:一又五分之二……
假分数化带分数。73=7÷3=2 ……
听讲、计算、讨论、分析、综合、归纳、转换、推理等。
第2种:程序法
1、 同分母分数加减法。
计算方法:分母不变,只把分子相加减。
举例:2/9+5/9=7/9;5/7-1/7=4/7。
2、 异分母分数加减法。
计算方法:先通分,再计算。
举例:1/3+1/4=4/12+3/12=7/12;1/3-1/4=4/12-3/12=1/12。
3、 分数加减混合运算。
计算方法与整数加减混合运算相同。
举例:11/12-3/4+1/3=11/12-9/12+4/12=2/12+4/12=6/12=1/2。
4、 带分数。
(1)读法。举例:1 读作一又七分之二。
(2)假分数化带分数。
举例:5/2=5÷2=2 。
学习方法:转换、推理、听讲、计算、讨论、分析、综合、归纳等。
第3种:归纳法
分数加减法
(1)同分母分数加减法:如7/12+5/12=12/12=1……
(2)异分母分数加减法:如7/12+1/3=7/12+4/12=11/12……
(3)分数加减混合运算:如7/12-1/3+1/2=7/12-4/12+6/12=3/12+6/12=9/12=3/4……
(4)分数加减的简便运算:如2/7+1/3+1/7=2/7+1/7+1/3=3/7+1/3=9/21+7/21=16/21……
计算结果要约成最简分数,假分数可以化成整数或带分数。
(5)带分数读法。如1 读作:一又二分之一……
假分数化带分数。如5/3=5÷3=1 ……
学习方法:转换、听讲、计算、讨论、分析、综合、归纳、推理等。
注意引导学生对每种方法进行观察、补充、完善,并进行评价。
师:比较这几种整理方法,你喜欢哪一种?为什么?
引导学生比较评价。
师:学习本单元的时候,学习方法使用得最突出的是哪一种?
学生交流后汇报。(转换)
师:应用转换的方法,可以把一些没有学习过的知识转换为已学的.知识,这是一种在我们的学习生涯中经常会使用的方法。在生活中也可以应用转换的方法,把一些陌生的问题转换成熟悉的问题来解决,给我们的学习和生活带来方便。希望大家学以致用。
三、课堂练习
1、 一堆苹果96筐,第一次运走总数的1/8,第二次运走总数的3/8,一共运走这堆苹果的几分之几?
2、 压岁钱。小红过春节时收到了一些压岁钱。捐给希望工程的占3/7,买学习用品的占2/7,剩下的存入银行。存入银行的钱占全部压岁钱的几分之几?
3、 一节课40分钟,老师讲解用了这节课的7/20,学生讨论用去这节课的3/10,还有练习用了14分钟。
根据上面的信息,请你提出数学问题,并解答。
学生独立完成,集体订正。
五年级下册数学教案13
教学内容
教科书第110——111页例1及“做一做”,练习二十二第1——4题。
学习目标:
1、知识目标:使学生理解异分母分数加减法的算理。
2、能力目标:初步掌握异分母分数加减法的法则。
3、思想教育目标:培养学生独立思考的良好学习习惯。
教学重、难点:
1、异分母分数加减法的计算法则。
2、运用通分的方法解决异分母分数不能直接相加减的问题。
教学过程
一、铺垫孕伏
1、教师提问:前几节我们学习了什么?(通分、同分母分数加减法)
通分方法是什么?(先求出原来几个分母的最小公倍数,然后把各分数分别化成用这个最小公倍数作分母的分数。)
同分母分数加减法的法则是什么?(同分母分数相加减,分母不变,只把分子相加减。)
2、出示一组数: (1)自己任选两个数组成加法算式和减法算式。
(2)学生可能出现的算式:
(3)引导学生把上面算式分成两类:
一类为同分母分数加减法,一类为分母不同的分数加减法.
教师引入:
分母相同的分数加减法我们已会做,那分母不同的分数加减法又怎样计算呢?这节课同学们自己解决这个问题,好不好?(板书:异分母分数加减法)
二、探究新知
(一)异分母分数加法(学生任选一个分母不同的加法算式)
1、教师提示:你学过了同分母分数加减法,又学过了通分,请你用学过的知识把分母不同的分数加法计算出来,能行吗?
2、学生分组讨论。
3、汇报结果:你怎么做的?把思路说出来。
引导学生明确:与分母不同,不能直接相加,用通分的方法使他们分母相同,找分母2和3的最小公倍数,用最小公倍数6做公分母,然后按同分母分数加法的法则计算。
板书:
4、你认为最关键的`地方是干什么?
运用通分方法把不同分母分数转化为同分母分数。
5、反馈练习:“做一做”第1小题
(二)异分母分数减法(学生任选一个分母不同的减法算式)
1、教师提示:请你依照异分母分数加法的计算方法解决异分母分数减法的计算问题。
2、汇报结果。
3、填空,并说明理由。
4、反馈练习:“做一做”第2小题
(三)整理法则
1、启发学生讨论:根据上面做题的过程,怎样把异分母加法法则和异分母减法法则合并成一个法则。
2、学生汇报讨论结果,教师板书。
异分母分数相加、减先通分,然后按照同分母分数加、减法的法则进行计算。
3、反馈练习: 练习二十二的第1题。
①学生独立完成。
②说说应用什么法则及计算过程。
③验算。
三、全课小结
通过今天的学习你有什么收获?异分母分数加减法与同分母分数加减法有什么联系?
四、随堂练习
1、填空(1)异分母分数相加减,先( ),然后按照( )法则进行计算。
(2)分数的分母不同,就是( )不相同,不能直接相加减,要先( ),化成( )分数再加减。
(3)分数加减法的验算方法与整数加减法的验算方法( )。
(4) 2、列式计算
(1) 与 的和是多少?
(2) 减去 的差是多少?
3、填空.
(1) (2) 4、南京长江大桥建成以前,火车乘轮渡过长江,需用 小时,现在从大桥通过只用 小时。现在火车过江比乘轮渡节省多少小时?
五、布置作业
练习二十二的第2——4题。
随堂检测:
板书设计
导分母分数加、减法
计算 (也可以是别的)
教学后记:本节课的教学,我体会非常深刻,浅淡如下:
联系生活实际,在情境中发现问题。良好的开端是成功的一半,好的课题引入能激发学生的学习兴趣,好奇心和求知欲,使学生切实体会到学习数学知识的必要性,从而积极主动地学习。新课伊始,我首先从学生身边的事情谈起,自然引出教材中例1的教学内容,学生比较有兴趣进行分析。使学生积极主动提出问题,而且非常自然地复习旧知,为学习新知识奠定基础,同时培养了学生解决问题的能力。
五年级下册数学教案14
教学目标:
1、知道分数的产生过程,理解分数的意义及分数单位,能对具体情境中分数的意义做出解释,能有条理地运用分数的知识对生活中的问题进行分析和思考。
2、感受数学知识是在人类的生产和生活实践中产生的,培养学生学习数学的兴趣,树立学习数学的能力。
教学重点:理解分数的意义。
教学难点:对把多个物体组成的一个整体看作单位“1”的理解。
教学过程:
一、情境导入:
同学们,在正式进入课程内容学习之前,老师先请同学们看一组图片,这是(一个橙子),我们可以用自然数“1”来表示;这是(六个橙子),那怎么用自然数“1”来表示呢?(可以说是一盘橙子);那有很多橙子,数也数不清,怎么用自然数“1”来表示呢?(可以说是一堆橙子)。
小小的“1”可真是了不起,今天我们学习的知识就与“1”有着密切的联系。那现在我想把一个橙子平均分给4个同学,每人分得多少呢?(1/4)你是怎么得出来的呢?(学生回答)那现在每人分得的数量还能用整数来表示吗?(不能)在实际生活中,人们计算的时候结果往往得不到整数,这个时候就产生了分数。今天,老师就和大家一起来进一步学习分数。
二、出示学习目标:
1、了解分数的产生。
2、掌握单位“1”的含义,明确分数的意义。
3、认识分数单位,初步了解分数单位的特点。
三、引导自学,探究成果:
1、师:同学们。书中自有颜如玉,书中自有黄金屋,接下来,老师就把课堂还给大家,希望通过你们自己的努力,来发现宝贵的知识财富。请大家根据自学提纲,完成以下三个题目。
(小荷才露尖尖角,早有蜻蜓立上头!)
2、师:同学们都已经完成了自学提纲的习题,现在请同学们进行小组讨论,之后再将你们小组讨论的结果向大家汇报。
(小组合作,现在开始!)
3、师:从同学们激烈的讨论情况来看,大家一定讨论出了结果,现在就请小组同学来进行汇报。
组1成员:我们小组是这样讨论的:
1、分数的产生(教材第45页):
想一想:观察这两幅图,可以发现:在实际生活中,进行测量、分物或计算时,往往不能正好得到整数的结果,这时,常用(分数)来表述的。
试一试:把一块月饼平均分给2个人,每人分得(1/2)块;把一个西红柿平均分给2个人,每人分得(1/2)个。
同学们,他填的对吗?(预设:对)你了解了分数是如何产生的了吗?你会用分数来表示一个不是整数的数的结果了吗?(预设:会)那老师要考考大家,把一个西瓜平均分给5个人,每人分得(1/5块),把一个蛋糕平均分给8个人,每人分得(1/8块)。看来同学们自学能力很强,希望同学们再接再厉。
组2成员:我们小组是这样讨论的:
2、单位“1”和分数的意义(教材第46页):想一想:先感知一个物体和一些物体的1/4是多少,如下图:
试一试:一个物体、一个计量单位或是一些物体等都可以看作一个(整体),这个(整体)可以用自然数(1)来表示,通常把它叫做(单位“1”)。把这个(整体)平均分成若干份,这样的一份或几份都可以用(分数)来表示。
同学们,我们一起来回顾一下,我们刚把什么看成一个整体了?(一个圆、一个正方形和一条线段);我们刚把哪些物体看成是一个整体了?(六个橙子和八个面包)。一个物体、一些物体都可以看作是一个整体,这样的一个整体我们可以用自然数“1”来表示,我们通常把它叫做单位“1”。我们一起来读一遍单位“1”的概念:
一个整体可以用自然数1来表示,我们通常把它叫做单位“1”。
在生活中,你还能把哪些看成是单位“1”?(学生回答)
任何一个单位“1”的量,只要平均分了,就可以得到分数,那谁能总结一下,什么叫分数?
(把单位“1”平均分成若干份,表示1份或几份的数就叫做分数。)
同学们,刚才我们已经掌握了单位“1”和分数的概念,那你知道分数有什么意义吗?它代表什么?例如,把一条线段平均分成4份,其中的一份就是1/4。老师这里有几个分数,你能说出它的意义吗?
组3成员:我们小组是这样讨论的:
3、分数单位的意义(教材第46页):
想一想:把单位“1”平均分成若干份,表示其中一份的数就叫做(分数单位)。
试一试:把10厘米平均分成10份,1厘米处就是(1/10),2厘米处就是(2/10),8厘米处就是(8/10)。它们的`分数单位是(1/10)。
同学们,我们前面学过,计算长度时,我们用(长度单位),计算面积时,可以用(面积单位),那么其实分数也有单位。例如一把10厘米的尺子,每一个数字对应的就是一个分数,那根据“分数单位”的定义你能找出它们的分数单位是几吗?(学生回答)
老师这里还有几个分数,你能说出这些分数的分数单位吗?
四、课堂小结:
通过前面学习的知识,你学会了什么?
五、巩固练习:
第一关:填一填
1、在进行测量、分物或计算时,往往不能正好得到整数的结果,这时常用()来表示。
2、一个物体、一些物体等都可以看作一个(),把这个整体()分成若干份,这样的一份或几份都可以用分数来表示。
3、3/4表示单位“1”()分成()份,表示其中()份的数。
4、一堆糖,平均分成2份,每份是这堆糖的();平均分成4份,3份是这堆糖的();平均分成7份,5份是这堆糖的()。
5、5/7表示把()平均分成()份,取其中的()份。
第二关:说一说
读出下面分数,并说说它们的具体含义。
第三关:做一做
用分数表示下面各图中的彩色部分。
第四关:想一想
他们吃的水果一样多吗?
五年级下册数学教案15
教材分析:
《分数的基本性质》是义务教育课程标准实验教材人教版五年级下册第四单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系、整数除法中商不变的规律这些知识为基础的。分数的基本性质是建立在分数大小相等这一概念基础之上的。而两个分数的大小相等,并不意味着两个分数的分子、分母分别相同。分数的基本性质又是约分和通分的基础,而约分和通分则是分数四则混合运算的'重要基础,因此,理解分数的基本性质显得尤为重要。
教学目标:
1.知识与能力:经历分数基本性质的建构过程,归纳概括并掌握分数的基本性质,能运用分数的基本性质解决有关的数学问题。
2.过程与方法:培养学生观察、分析、比较、归纳、概括及动手实践的能力,进一步发展学生的思维。
3.情感、态度与价值观:让学生体会数学来自生活实际的需要,感受数学与生活的联系,激发学生对数学的兴趣。
教学重点:
探索、发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。
教学难点:
自主探究、归纳概括分数的基本性质。
教具准备:
课件
教学过程:
一、复习导入
1.说出下列各分数的意义,分数单位和它包含有几个这样的分数单位。
2.商不变规律。
(1)计算:120÷30 12÷3 40÷5 400÷50
(2)说一说,你有什么发现?
(被除数和除数都缩小或扩大相同的倍数,商不变。)
二、新课讲授
1.教学例1。
(1)动手操作:拿3张同样的正方形纸片,分别对折一次,两次,三次,平均分成2份,4份,8份,涂上颜色,分别用分数表示涂色部分。
提示:你发现了什么?板书:(为什么相等?)
(2)小组交流:观察它们的分子,分母各是按照什么规律变化的?
(3)汇报:随着学生汇报,老师板书。
(4)观察以上例子,你能得出什么结论?
分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。
提问:为什么0要除外?
小结:分子和分母如果都乘上0,则分数成为,而分数的分母不能为0;又因为0不能作除数,所以分数的分子和分母也不能同时除以0。
(5)提问:你能不能根据分数与除法的关系和商不变性质来说明分数的基本性质?
2.教学例2。出示题目
独立完成,集体订正,订正时说一说根据什么。
三、巩固练习
1.练习十四习题
第1题:按要求涂色,并比较它们的大小。
第2题:比较每组中的分数大小是否相等。
第3题:同位合作完成。
2.作业:练习十四4、5题,选作13题。
四、全课总结
这节课我们学了哪些知识?分数的基本性质是怎样的?
板书设计:
分数的基本性质
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
【五年级下册数学教案】相关文章:
五年级下册人教版数学教案01-12
五年级下册数学教案01-04
五年级下册数学教案01-30
人教版五年级下册数学教案01-09
【推荐】五年级下册数学教案01-20
五年级下册数学教案【荐】01-20
五年级下册数学教案【热门】01-19
小学五年级下册数学教案03-11
五年级下册数学教案【热】01-19
五年级下册数学教案【推荐】01-19