初二数学教案

时间:2024-05-30 16:55:51 八年级数学教案 我要投稿

初二数学教案通用(15篇)

  在教学工作者开展教学活动前,时常需要编写教案,借助教案可以提高教学质量,收到预期的教学效果。那么教案应该怎么写才合适呢?下面是小编整理的初二数学教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

初二数学教案通用(15篇)

初二数学教案1

  一、教材分析1、特点与地位:重点中的重点。本课是教材求两结点之间的最短路径问题是图最常见的应用的之一,在交通运输、通讯网络等方面具有一定的实用意义。

  2、重点与难点:结合学生现有抽象思维能力水平,已掌握基本概念等学情,以及求解最短路径问题的自身特点,确立本课的重点和难点如下:

  (1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。(2)难点:求解最短路径算法的程序实现。3、教学安排:最短路径问题包含两种情况:一种是求从某个源点到其他各结点的最短路径,另一种是求每一对结点之间的最短路径。根据教学大纲安排,重点讲解第一种情况问题的解决。安排一个课时讲授。教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决与算法分析相结合,逐步推动教学过程。

  二、教学目标分析1、知识目标:掌握最短路径概念、能够求解最短路径。2、能力目标:(1)通过将旅游景点线路选择问题抽象成求最短路径问题,培养学生的数据抽象能力。(2)通过旅游景点线路选择问题的解决,培养学生的独立思考、分析问题、解决问题的能力。3、素质目标:培养学生讲究工作方法、与他人合作,提高效率。

  三、教法分析课前充分准备,研读教材,查阅相关资料,制作多媒体课件。教学过程中除了使用传统的“讲授法”以外,主要采用“案例教学法”,同时辅以多媒体课件,以启发的方式展开教学。由于本节课的内容属于图这一章的难点,考虑学生的接受能力,注意与学生沟通,根据学生的反应控制好教学进度是本节课成功的关键。

  四、学法指导1、课前上次课结课时给学生布置任务,使其有针对性的预习。2、课中指导学生讨论任务解决方法,引导学生分析本节课知识点。3、课后给学生布置同类型任务,加强练习。

  五、教学过程分析(一)课前复习(3~5分钟)回顾“路径”的概念,为引出“最短路径”做铺垫。教学方法及注意事项:(1)采用提问方式,注意及时小结,提问的目的是帮助学生回忆概念。(2)提示学生“温故而知新”,养成良好的学习习惯。

  (二)导入新课(3~5分钟)以城市公路网为例,基于求两个点间最短距离的实际需要,引出本课教学内容“求最短路径问题”。教学方法及注意事项:(1)先讲实例,再指出概念,既可以吸引学生注意力,激发学习兴趣,又可以实现教学内容的自然过渡。(2)此处使用案例教学法,不在于问题的求解过程,只是为了说明问题的`存在,所以这里的例子只需要概述,能够说明问题即可。

  (三)讲授新课(25~30分钟)1、求某一结点到其他各结点的最短路径(重点)主要采用案例教学法,提出旅游景点选择的例子,解决如何选择代价小、景点多的路线。(1)将实际问题抽象成图中求任一结点到其他结点最短路径问题。(3~5分钟)教学方法及注意事项:①主要采用讲授法,将实际问题用图形表示出来。语言描述转换的方法(用圆圈加标号表示某一景点,用箭头表示从某景点到其他景点是否存在旅游线路,并且将旅途费用写在箭头的旁边。)一边用语言描述,一边在黑上画图。②注意示范画图只进行一部分,让学生独立思考、自主完成余下部分的转化。③及时总结,原型抽象(景点作为图的结点,景点间的线路作为图的边,旅途费用作为边的权值),将案例求解问题抽象成求图中某一结点到其他各结点的最短路径问题。④利用多媒体课件,向学生展示一张带权有向图,并略作解释,为后续教学做准备。

  教学方法及注意事项:①启发式教学,如何实现按路径长度递增产生最短路径?②结合案例分析求解最短路径过程中(重点)注意此处借助黑板,按照算法思想的步骤。同样,也是只示范一部分,余下部分由学生独立思考完成。

  (四)课堂小结(3~5分钟)1、明确本节课重点

  2、提示学生,这种方式形成的图又可以解决哪类实际问题呢?

  (五)布置作业1、书面作业:复习本次课内容,准备一道备用习题,灵活把握时间安排。六、教学特色以旅游路线选择为主线,灵活采用案例教学、示范教学、多媒体课件等多种手段辅助教学,使枯燥的理论讲解生动起来。在顺利开展教学的同时,体现所讲内容的实用性,提高学生的学习兴趣。

初二数学教案2

  一、学生情况分析及改进提高措施:

  学生们经过两年的学习,已经具备了初步的逻辑思维能力和简单的抽象概括能力,养成了一些良好的学习习惯,掌握了一些科学的学习方法,学会了独立思考和与人沟通、协商、合作、交流的能力,学会了探究问题,并能根据具体情况提出合理的问题,还能正确解决问题的能力。无论是理解问题的能力,还是分析、解决问题的能力均有所提高,基础知识和基本技能打得也比较扎实,对数学学习有着浓厚的兴趣,乐于参与到学习活动中去,特别是对一些动手操作,合作学习,实践活动等学习内容尤为感兴趣,因此,在教学中应多设计一些活动,引导学生进行独立思考与合作交流,帮助学生积累参加数学学习活动的经验。

  在数学知识上已经掌握了两步计算式题和有余数的除法,还有统计知识,并学会了辨认八个方位;掌握了万以内数的读法、写法和加、减法;还掌握了长度单位毫米、厘米、分米、米和千米的实际长度和简单的换算以及实际测量,并能用以上这些相应的知识解决实际生活中的问题。总之,这些技能和知识点都为本学期进一步学习新知识打下了坚实的基础,他们爱学数学的热情,以及对数学的感悟能力会在本学期进一步得到发扬光大,他们的情感、态度、价值观会沿着良性轨道螺旋式上升。

  具体提高措施是:

  1.从学生的年龄特点出发,多采用情境活动式教学,培养学生的参与意识。两班学生都能根据教师给出的情境获取相关的数学信息,并能根据有效信息提出数学问题,能积极投入到探索问题的`活动中去,绝大部分学生能够在课堂上主动的研究问题,获取知识。

  2.在课堂教学中,多增添一些与学生生活相关的利于孩子理解的问题,让学生在解决问题的过程中能够联系到实际,便于对问题的理解。结合学生的生活实际,将问题生活化,让学生从生活中获取到更多的解决问题的素材。

  3.课后练习注重增添以学习内容为主的相关实践练习,加强各学科之间的联系,少一些呆板的练习,提高练习的实践性和趣味性。在上学期的教学中,我发现学生们比较喜欢做不同科目之间有联系的综合性作业,例如我把数学与科学课相结合,让他们种豆子,了解植物的生长,并做记录,再将每天的记录制作成统计图,学生完成作业的积极性特别高。我为了让学生了解长度单位,让他们从成语词典上收集有关长度单位的成语,通过对词语的理解把握其表示的长度。

  4.加强学校教育和家庭教育的联系。关注学生的平时学习情况,与学生家长多沟通交流。

  二、本册教材分析

  本册教材充分体现了新《课程标准》的理念,以学生的数学活动实践为学习内容,教材创设了生动有趣的情境,引导学生在解决现实问题的过程中获得对数学知识的理解和体验。教学内容主要包括(1)乘法;(2)除法;(3)观察物体;(4)千克、克、吨;(5)、周长;(6)年、月、日;(7)可能性;(8)共有五个社会实践活动,还有两个整理复习,一个总复习。具体特点是:

  1.在数与代数的学习中,重视动手操作与抽象概括相结合,体验乘、除法意义,发展了学生的数感和符号感。

  2.在空间和图形学习中,从学生的生活经验出发,注重通过操作活动发展空间观念。

  3.教材为教师留下了创造空间,可结合自身教学要求,生发新的教学设想,内化自己的教学设计。

  三、总体教学目标:

  (一)、知识与技能

  1.在单元学习中,学生通过“数一数”、“分一分”等活动,经历从具体情境中抽象出乘法除法算式,体会乘法与除法的意义。

  2.学平面图形的周长,会进行周长的计算。

  (二)、实践能力培养

  1.观察物体,引导学生经历观察的过程,体验从不同的位置观察,所看到的物体可能是不一样的。

  2.结合生活情境,感受并认识质量单位。

  3.经历对生活中某些现象进行推理、判断的过程,能对生活中的某些现象按一定的方法进行逻辑推理、判断其结果。

  (三)、情感与态度

  1、让学生在观察和操作的学习活动中,能够感受到思考的条理性和合理性。

  2、教师重视对学生数学学习过程的评价,让他们在感受到乐趣之外,应具备必要的学习自信心,养成良好的学习习惯。

  教研专题:

  创设课堂学习情境,有效培养创新意识。

  个人专题:

  在情境中培养学生的自主学习意识,提高课堂的有效性。

初二数学教案3

  课型:

  复习课

  学习目标(学习重点):

  1. 针对函数及其图象一章,查漏补缺,答疑解惑;

  2. 一次函数应用的复习.

  补充例题:

  例1.如图,lA lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系

  (1)B出发时与A相距 千米;

  (2)走了一段路后,自行车发生故障,进行修理,所用的时间是 小时;

  (3)B出发后 小时与A相遇;

  (4)求出A行走的路程S与时间t的函数关系式;

  (5)若B的自行车不发生故障,保持出发时的速度前进, 小时与A相遇,相遇点离B的出发点 千米,在图中表示出这个相遇点C.

  例2.在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点.例如,图中过点P分别作x轴, y的垂线,与坐标轴围成矩形OAPB的周长与面积相等,则点P是和谐点.

  (1)判断点M(1,2),N(4,4)是否为和谐点,并说明理由;

  (2)若和谐点P(a,3)在直线y=-x+b(b为常数)上,求点a, b的值.

  例3.在平面直角坐标系中,一动点P(x,y)从M(1,0)出发,沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四点组成的正方形边线(如图①)按一定方向运动.图②是P点运动的路程s(个单位)与运动时间 (秒)之间的函数图象,图③是P点的纵坐标y与P点运动的路程s之间的`函数图象的一部分.

  (1)求s与t之间的函数关系式.

  (2)与图③相对应的P点的运动路径是: ;P点出发 秒首次到达点B;

  (3)写出当38时,y与s之间的函数关系式,并在图③中补全函数图象.

  课后续助:

  1.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费.

  (1)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式

  ①用水量小于等于3000吨 ;②用水量大于3000吨 .

  (2)某月该单位用水3200吨,水费是 元;若用水2800吨,水费 元.

  (3)若某月该单位缴纳水费1540元,则该单位用水多少吨?

  2.某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示.

  (1)有月租费的收费方式是 (填①或②),月租费是 元;

  (2)分别求出①、②两种收费方式中y与自变量x之间的函数关系式;

  (3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.

  3.某气象研究中心观测一场沙尘暴从发生到结束全过程, 开始时风暴平均每小时增加2千米/时,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米/时,一段时间,风暴保持不变,当沙尘暴遇到绿色植被区时,其风速平均每小时减小1千米/时,最终停止。 结合风速与时间的图像,回答下列问题:

  (1)在y轴( )内填入相应的数值;

  (2)沙尘暴从发生到结束,共经过多少小时?

  (3)求出当x25时,风速y(千米/时)与时间x(小时)之间的函数关系式.

  (4)若风速达到或超过20千米/时,称为强沙尘暴,则强沙尘暴持续多长时间?

初二数学教案4

重难点分析

  本节的重点是矩形的性质和判定定理。矩形是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是有一个角是直角,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。矩形的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础。

  本节的难点是矩形性质的灵活应用。由于矩形是特殊的平行四边形,所以它不但具有平行四边形的性质,同时还具有自己独特的性质。如果得到一个平行四边形是矩形,就可以得到许多关于边、角、对角线的条件,在实际解题中,应该应用哪些条件,怎样应用这些条件,常常让许多学生手足无措,教师在教学过程中应给予足够重视。

  教法建议

  根据本节内容的特点和与平行四边形的关系,建议教师在教学过程中注意以下问题:

  1.矩形的知识,学生在小学时接触过一些,可由小学学过的知识作为引入。

  2.矩形在现实中的实例较多,在讲解矩形的性质和判定时,教师可自行准备或由学生准备一些生活实例来进行判别应用了哪些性质和判定,既增加了学生的参与感又巩固了所学的知识.

  3. 如果条件允许,教师在讲授这节内容前,可指导学生按照教材145页图4-30所示,制作一个平行四边形作为教学过程中的道具,既增强了学生的动手能力和参与感,有在教学中有切实的体例,使学生对知识的掌握更轻松些.

  4. 在对性质的讲解中,教师可将学生分成若干组,每个学生分别对事先准备后的图形进行边、角、对角线的测量,然后在组内进行整理、归纳.

  5. 由于矩形的性质定理证明比较简单,教师可引导学生分析思路,由学生来进行具体的证明.

  6.在矩形性质应用讲解中,为便于理解掌握,教师要注意题目的层次安排。

  矩形教学设计

  教学目标

  1.知道矩形的定义和矩形与平行四边形之间的联系;能说出矩形的四个角都是直角和矩形的的对角线相等的性质;能推出直角三角形斜边上的中线等于斜边的一半的性质。

  2.能运用以上性质进行简单的证明和计算。

  此外,从矩形与平行四边形的区别与联系中,体会特殊与一般的关系,渗透集合的思想,培养学生辨证唯物主义观点。

  引导性材料

  想一想:一般四边形与平行四边形之间的相互关系?在图4.5-l的圆圈中填上四边形和平行四边形的字样来说明这种关系:即平行四边形是特殊的四边形,又具有一般四边形的一切性质;具有一些特殊的性质。

  小学里已学过长方形,即矩形。显然,矩形是平行四边形,而且矩形还具有四个角都是直角(小学里已学过)等特殊性质,那么,如果在图4.5-1中再画一个圈表示矩形,这个圈应画在哪里?

  (让学生初步感知矩形与平行四边形的从属关系。)

  演示:用四根木条制作一个平行四边形教具。利用平行四边形的不稳定性,演示如图4.5-2,当平行四边形的一个内角由锐角变为钝角的过程中,会发生怎样的特殊情况,这时的`图形是什么图形(矩形)。

  问题1:从上面的演示过程,可以发现:平行四边形具备什么条件时,就成了矩形?

  说明与建议:教师的演示应充分展现变化过程,从而让学生深切地感受到短形是无数个平行四边形中的一个特例,同时,又使学生能正确地给出矩形的定义。

  问题2:矩形是特殊的平行四边形,它除了有一个角是直角以外,还可能具有哪些平行四边形所没有的特殊性质呢?

  说明与建议:让学生分组探索,有必要时,教师可引导学生,根据研究平行四边形获得的经验,分别从边、角、对角线三个方面探索矩形的特性,还可提醒学生,这种探索的基础是矩形有一个角是直角矩形的四个角都相等(矩形性质定理1),要学生给以证明(即课本例1后练习第1题)。

  学生能探索得出矩形的邻边互相垂直的特性,教师可作说明:这与矩形的四个角是直角本质上是一致的,所以不必另列为一个性质。

  学生探索矩形的四条对角线的大小关系时,如有困难,可引导学生测量并比较矩形两条对角线的长度,然后加以证明,得出性质定理2。

  问题3:矩形的一条对角线把矩形分成两个直角三角形,矩形的对角线既互相平分又相等,由此,我们可以得到直角三角形的什么重要性质?

  说明与建议:(1)让学生先观察图4.5-3,并议论猜想,如学生有困难,教师可引导学生观察图中的一个直角三角形(如Rt△ABC),让学生自己发现斜边上的中线BO与斜线AC的大小关系,然后让学生自己给出如下证明:

  证明:在矩形ABCD中,对角线AC、BD相交于点O,AC=BD(矩形的对角线相等)。

  ,AO=CO

  在Rt△ABC中,BO是斜边AC上的中线,且 。

  直角三角形斜边上的中线等于斜边的一半。

  例题解析

  例1:(即课本例1)

  说明:本题难度不大,又有助于学生加深对性质定理的理解,教学中应引导学生探索解法:

  如图4.5-4,欲求对角线BD的长,由于BAD=90,AB=4cm,则只要再找出Rt△ABD中一条直角边的长,或一个锐角的度数,再从已知条件AOD=120出发,应用矩形的性质可知,ADB=30,另外,还可以引导学生探究△AOB是什么特殊的三角形(等边三角形),课本用了第一种解法,并给出了解几何计算题书写格式的示范;第二种解法如下:

  ∵四边形ABCD是矩形,

  AC=BD(矩形的对角线相等)。

  又 。

  OA=BO,△AOB是等腰三角形,

  ∵AOD=120,AOB=180- 120= 60

  AOB是等边三角形。

  BO=AB=4cm,

  BD=2BO=244cm=8cm。

  例2:(补充例题)

  已知:如图4.5-5四边形ABCD中,ABC=ADC=90, E是AC的中点,EF平分BED交BD于点F。

  (l)猜想:EF与BD具有怎样的关系?

  (2)试证明你的猜想。

  解:(l)EF垂直平分BD。

  (2)证明:∵ABC=90,点E是AC的中点。

  (直角三角形的斜边上的中线等于斜边的一半)。

  同理: 。

  BE=DE。

  又∵EF平分BED。

  EFBD,BF=DF。

  说明:本例是一道不给出结论,需要学生自己观察---猜想---讨论的几何命题,有助于发展学生的推理(包括合情推理和逻辑推理)能力。如果学生不适应,或有困难,教师可根据实际情况加以引导,这种训练,重要的不是猜对了没有?证明了没有?而是让学生经历这样一种自己研究图形性质的过程,顺便指出:求解本题的重要基础是识图技能----能从复杂图形中分解出如图4.5-6所示的三个基本图形。

  课堂练习

  1.课本例1后练习题第2题。

  2.课本例1后练习题第4题。

  小结

  1.矩形的定义:

  2.归纳总结矩形的性质:

  对边平行且相等

  四个角都是直角

  对角线平行且相等

  3.直角三角形斜边上的中线等于斜边的一半。

  4.矩形的一条对角线把矩形分成两个全等的直角三角形;矩形的两条对角线把矩形分成四个全等的等腰三角形。因此,有关矩形的问题往往可化为直角三角形或等腰三角形的问题来解决。

  作业

  l.课本习题4.3A组第2题。

  2.课本复习题四A组第6、7题。

初二数学教案5

  教学目标

  知识与技能目标

  1.经历平行四边形判别条件的探索过程,发现平行四边形的常用判别条件。

  2.掌握平行四边形的判别条件;对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形。

  3.逐步掌握说理的基本方法。

  过程与方法目标

  1.在探索平行四边形的判别条件的过程中,发展学生的合情推理意识,主动探索的习惯。

  2.鼓励学生用多种方法进行说理。

  情感与态度目标

  1.培养学生探索创新的能力,开拓学生思路,发展学生的思维能力。

  2.培养学生合作学习,增强学生的'自我评价意识。

  教材分析

  教材通过创设“钉制平行四边形框架”这一情境,便于学生发现和探索平行四边形的常用判别方法。如有条件可要求学生自己准备,由学生自我操作。也可由教师演示。

  教学重点:平行四边形的判别方法。

  教学难点:利用平行四边形的判别方法进行正确的说理。

  学情分析

  初二学生对平面图形的认识能力正在形成,抽象思维还不够,学习几何知识处于现象描述和说理的过渡时期。因此,对这部分内容的学习,要引导学生学会正确的说理,理清楚四边形在什么条件下用判定定理,在什么条件下用性质定理。

  教学流程

  一、创设情境,引入新课

  师:请同学们拿出课前准备的小木条,帮助小明的爸爸钉制平行四边形的框架。

  学生活动:学生按小组进行探索。

初二数学教案6

  新课指南

  1.知识与技能:(1)在具体情境中了解代数式及代数式的值的含义;(2)掌握整式、同类项及合并同类项法则和去括号法则;(3)培养学生用字母表示数和探索数学规律的能力.

  2.过程与方法:经历探索规律并用代数式表示规律的过程,学会列简单的代数式.在具体情境中体会同类项的意义及合并同类项、去括号法则的必要性,总结合并同类项及去括号的法则,并利用它们进行整式的加减运算和解决简单的实际问题.

  3.情感态度与价值观:通过对整式加减的学习,深入体会代数式在实际生活中的应用,它为后面学习方程(组)、不等式及函数等知识打下良好的基础,同时,也使我们体会到数学知识的产生来源于实际生产和生活的需求,反之,它又服务于实际生活的方方面面.

  4.重点与难点:重点是用含有字母的式子表式规律,理解整式的意义,合并同类项的法则和去括号的法则.难点是探索规律的过程及用代数式表示规律的方法,以及准确识别整式的项、系数等知识.

  教材解读精华要义

  数学与生活

  如图15-1所示,用同样规格的黑、白两色的正方形瓷砖铺长方形地面,在第n个图形中,每一行有块瓷砖,每一列有块瓷砖,共有块瓷砖,其中黑色瓷砖共块,白色瓷砖共块.

  思考讨论由图15-1可以看到,当n=1时,一横行有4块瓷砖,一竖列有3块瓷砖;当n=2时,一横行有5块瓷砖,一竖列有4块瓷砖;当n=3时,一横行有6块瓷砖,一竖列有5块瓷砖.综上可以发现:4-1=5-2=6-3=3,3-1=4-2=5-3=2.即:一横行的瓷砖数等于n加上3,一竖列的瓷砖数等于n加上2.所以,在第n个图形中,每一横行共有(n+3)块瓷砖,每一竖列共有(n+2)块瓷砖,共有(n+3)(n+2)块瓷砖,其中白色瓷砖共(n+3-2)(n+2-2)=n(n+1)块,黑色瓷砖共有[(n+3)(n+2)-n(n+1)]块.这就是用字母来表示数,即代数式,你还能举出这样用字母表示数的`例子吗?

  知识详解

  知识点1代数式

  用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数.的字母连接起来的式子叫做代数式.单独的一个数或一个字母也是代数式.

  例如:5,a,(a+b),ab,a2-2ab+b2等等.

  知识点2列代数式时应该注意的问题

  (1)数与字母、字母与字母相乘时常省略“×”号或用“·”.

  如:-2×a=-2a,3×a×b=3·ab,-2×x2=-2x2.

  (2)数字通常写在字母前面.

  如:mn×(-5)=-5mn,3×(a+b)=3(a+b).

  (3)带分数与字母相乘时要化成假分数.

  如:2×ab=ab,切勿错误写成“2ab”.

  (4)除法常写成分数的形式.

  如:S÷x=.

初二数学教案7

  1。教材分析

  (1)知识结构:

  (2)重点和难点分析:

  重点:四边形的有关概念及内角和定理。因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用。

  难点:四边形的概念及四边形不稳定性的理解和应用。在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上在同一平面内这个条件,这几个字的意思学生不好理解,所以是难点。

  2。教法建议

  (1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。

  (2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。

  (3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决。结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。

  (4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题。

  一、素质教育目标

  (一)知识教学点

  1。使学生掌握四边形的有关概念及四边形的内角和外角和定理。

  2。了解四边形的不稳定性及它在实际生产,生活中的应用。

  (二)能力训练点

  1。通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力。

  2。通过推导四边形内角和定理,对学生渗透化归思想。

  3。会根据比较简单的条件画出指定的四边形。

  4。讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想。

  (三)德育渗透点

  使学生认识到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣。

  (四)美育渗透点

  通过四边形内角和定理数学,渗透统一美,应用美。

  二、学法引导

  类比、观察、引导、讲解

  三、重点难点疑点及解决办法

  1。教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题。

  2。教学难点:理解四边形的有关概念中的`一些细节问题;四边形不稳定性的理解和应用。

  3。疑点及解决办法:四边形的定义中为什么要有在平面内,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角。

  四、课时安排

  2课时

  五、教具学具准备

  投影仪、胶片、四边形模型、常用画图工具

  六、师生互动活动设计

  教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料。

  第一课时

  七、教学步骤

  【复习引入】

  在小学里已经对四边形、长方形、平形四边形的有关知识有所了解,但还很肤浅,这一

  章我们将比较系统地学习各种四边形的性质和判定分析它们之间的关系,并运用有关四边形的知识解决一些新问题。

  【引入新课】

  用投影仪打出课前画好的教材中P119的图。

  师问:在上图中你能把知道的长方形、正方形、平行四边形、梯形找出来吗?(启发学生找上述图形,最后教师用彩色笔勾出几个图形)。

  【讲解新课】

  1。四边形的有关概念

  结合图形讲解四边形,四边形的边、顶点、角,凸四边形,四边形的对角线(同时学生在书上画出上述概念),讲解这些概念时:

  (1)要结合图形。

  (2)要与三角形类比。

  (3)讲清定义中的关键词语。如四边形定义中要说明为什么加上同一平面内而三角形的定义中为什么不加同一平面内(三角形的三个顶点一定在同一平面内,而四个点有可能不在同一平面内,如图42中的点 。我们现在只研究平面图形,故在定义中加上在同一平面内的限制)。

  (4)强调四边形对角线的作用,作为四边形的一种常用的辅助线,通过它可以把四边形问题转化为三角形来解(渗透化归思想),并观察图4—3用对角线分成的这些三角形与原四边形的关系。

  (5)强调四边形的表示方法,一定要按顶点顺序书写四边形如图41。

  (6)在判断一个四边形是不是凸四边形时,一定要按照定义的要求把每一边都延长后再下结论如图4—4,图4—5。

  2。四边形内角和定理

  教师问:

  (1)在图4—3中对角线AC把四边形ABCD分成几个三角形?

  (2)在图4—6中两条对角线AC和BD把四边形分成几个三角形?

  (3)若在四边形ABCD如图4—7内任取一点O,从O向四个顶点作连线,把四边形分成几个三角形。

  我们知道,三角形内角和等于180,那么四边形的内角和就等于:

  ①2180=360如图4

  ②4180—360=360如图4—7。

  例1 已知:如图48,直线 于B、 于C。

  求证:(1) (2) 。

  本例题是四边形内角和定理的应用,实际上它证明了两边相互垂直的两个角相等或互补的关系,何时用相等,何时用互补,如果需要应用,作两三步推理就可以证出。

  【总结、扩展】

  1。四边形的有关概念。

  2。四边形对角线的作用。

  3。四边形内角和定理。

  八、布置作业

  教材P128中1(1)、2、 3。

  九、板书设计

  四边形(一)

  四边形有关概念

  四边形内角和

  例1

  十、随堂练习

  教材P122中1、2、3。

初二数学教案8

  一、相交线:

  性质:两条直线相交,有且只有一个交点。

  二、对顶角、邻补角:

  1.对顶角:如图,直线AB和CD相交于点O,∠1与∠2有公共顶点O,它们的两边互为反向延长线,这样的两个角叫做对顶角。

  说明:两个角是对顶角必需满足两个条件:(1)有公共顶点;(2)两边互为反向延长线。

  2.邻补角:如图,∠1和∠2有一条公共边OC,它们的另一条边OA、OB互为反向延长线,显然它们互补。具有这种关系的两个角叫做互为邻补角。

  3.性质:(1)对顶角相等;(2)互为邻补角的两个角的和等于。

  三、有关垂线的概念和性质:1.概念:如果两条直线相交所成的四个角中,有一角是直角,就说这两条直线互相垂直,其中的一条叫做另一条直线的垂线,它们的交点叫做垂足。

  说明:垂直是相交的一种特殊情况。

  2.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

  说明:垂线是直线,而垂线段是一条线段,点到直线的距离不是指垂线段,而是指垂线段的长度。

  3.平行线间的距离:同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线间的距离。平行线间的距离处处相等。

  4.性质:(1)互相垂直的两条直线相交所成的`四个角都是直角;(2)过直线上一点或直线外一点画已知直线的垂线,并且只能画出一条垂线;(3)连结直线外一点与直线上各点的所有线段中,垂线段最短。简单地说:垂线段最短;(4)平行线间的距离处处相等。

  四、同位角、内错角、同旁内角:

  如图,直线AB、CD被第三条直线EF所截,构成八个角,简称“三线八角”。

  1.同位角:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8,它们分别在AB、CD同侧,且在EF同侧。同位角呈“F”形;

  2.内错角:∠3与∠5,∠4与∠6,它们分夹在AB、CD之间,同时又各在EF两侧。内错角呈“Z”形;

  3.同旁内角:∠4与∠5,∠3与∠6,它们分别夹在AB、CD之间,同时又在EF同侧。同旁内角呈“U”形。

  说明:(1)同位角、内错角、同旁内角是指具有特殊位置关系的两个角;

  (2)这三类角都是由两条直线被第三条直线所截形成的;

  (3)同位角特征:截线同旁,被截两线的同方向;内错角特征:截线两旁,被截两线段之间;同旁内角特征:截线同旁,被截两线段之间;

  (4)两条直线被第三条直线所截成的八个角中,同位角4对,内错角2对,同旁内角2对。

  常见考法

  (1)对顶角、邻补角、同位角、内错角和同旁内角,在中考中必有所涉及,一般是综合其它知识一起考查;(2)垂线段最短的性质在生活中有广泛应用,在中考中一般以填空、作图出现,主是根据要求作出垂线段或用性质解释理由。

  误区提醒

  (1)对顶角、邻补角以及垂线的概念理解有误;(2)在复杂图形中辨认同位角、内错角、同旁内角时产生遗漏或错认。

  【典型例题】如图,∠BAC=90°,AD⊥BC,则下面的结论中,正确的个数是()个。

  ①点B到AC的垂线段是线段AB;

  ②线段AC是点C到AB的垂线段;

  ③线段AD是点D到BC的垂线段;

  ④线段BD是点B到AD的垂线段;

  A.1B.2C.3D.4

  【解析】③是错误的,其余的均是正确的,故本题选C

  一、目标与要求

  1.理解对顶角和邻补角的概念,能在图形中辨认;

  2.掌握对顶角相等的性质和它的推证过程;

  3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力。

  二、重点

  在较复杂的图形中准确辨认对顶角和邻补角;

  两条直线互相垂直的概念、性质和画法;

  同位角、内错角、同旁内角的概念与识别。

  三、难点

  在较复杂的图形中准确辨认对顶角和邻补角;

  对点到直线的距离的概念的理解;

  对平行线本质属性的理解,用几何语言描述图形的性质;

  能区分平行线的性质和判定,平行线的性质与判定的混合应用。

  四、知识框架

  五、知识点、概念总结

  1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

  2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

  3.对顶角和邻补角的关系

  4.垂直:两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。

  5.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

  6.垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。

  7.垂线性质

  (1)在同一平面内,过一点有且只有一条直线与已知直线垂直。

  (2)连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。

  (3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

  8.同位角、内错角、同旁内角:

  同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。

  内错角:∠2与∠6像这样的一对角叫做内错角。

  同旁内角:∠2与∠5像这样的一对角叫做同旁内角。

  9.平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。

  10.平行线:在同一平面内,不相交的两条直线叫做平行线。

  11.命题:判断一件事情的语句叫命题。

  12.真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。

  13.假命题:条件和结果相矛盾的命题是假命题。

  14.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

  15.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

  16.定理与性质

  对顶角的性质:对顶角相等。

  17.垂线的性质:

  性质1:过一点有且只有一条直线与已知直线垂直。

  性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

  18.平行公理:经过直线外一点有且只有一条直线与已知直线平行。

  平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

  19.平行线的性质:

  性质1:两直线平行,同位角相等。

  性质2:两直线平行,内错角相等。

  性质3:两直线平行,同旁内角互补。

  20.平行线的判定:

  判定1:同位角相等,两直线平行。

  判定2:内错角相等,两直线平行。

  判定3:同旁内角相等,两直线平行。充要条件。

初二数学教案9

  教学目标:

  1、了解什么是比例,能够正确地表示比例关系。

  2、掌握比例的性质,能够灵活地运用比例的性质进行解题。

  3、通过练习,提高解决实际问题的能力。

  教学重点:

  1、比例的概念及表示方法。

  2、比例的性质。

  3、比例的应用。

  教学难点:

  1、比例的应用。

  2、解决实际问题的能力。

  教学过程:

  一、引入(5分钟)

  1、教师出示一张比例图,让学生猜测比例的含义。

  2、学生回答后,教师讲解比例的概念及表示方法。

  二、讲解(15分钟)

  1、教师讲解比例的性质。

  2、教师通过例题让学生掌握比例的应用。

  三、练习(30分钟)

  1、教师出示一些比例题目,让学生在课堂上完成。

  2、学生完成后,教师讲解答案及解题方法。

  四、巩固(10分钟)

  1、教师出示一些实际问题,让学生运用比例的知识进行解决。

  2、学生完成后,教师讲解答案及解题方法。

  五、作业(5分钟)

  1、教师布置相关作业。

  2、学生完成后,交给教师批改。

  教学反思:

  通过本节课的`教学,学生们对比例的概念及表示方法有了更深入的了解,掌握了比例的性质,并通过练习提高了解决实际问题的能力。但是,教学过程中还存在一些问题,比如有些学生对比例的应用还不够熟练,需要加强练习。因此,下一节课需要针对这些问题进行更加深入的讲解和练习。

初二数学教案10

  一、教学目标

  1. 掌握等腰梯形的判定方法.

  2. 能够运用等腰梯形的性质和判定进行有关问题的论证和计算,进一步培养学生的分析能力和计算能力.

  3. 通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想

  二、教法设计

  小组讨论,引导发现、练习巩固

  三、重点、难点

  1.教学重点:等腰梯形判定.

  2.教学难点:解决梯形问题的基本方法(将梯形转化为平行四边形和三角形及正确运用辅助线).

  四、课时安排

  1课时

  五、教具学具准备

  多媒体,小黑板,常用画图工具

  六、师生互动活动设计

  教师复习引入,学生阅读课本;学生在教师引导下探索等腰梯形的判定,归纳小结梯形转化的常见的辅助线

  七、教学步骤

  【复习提问】

  1.什么样的四边形叫梯形,什么样的梯形是直角梯形、等腰梯形?

  2.等腰梯形有哪些性质?它的性质定理是怎样证明的?

  3.在研究解决梯形问题时的基本思想和方法是什么?常用的辅助线有哪几种?

  我们已经掌握了等腰梯形的性质,那么又如何来判定一个梯形是否是等腰梯形呢?今天我们就共同来研究这个问题.

  【引人新课】

  等腰梯形判定定理:在同一底上的两个角相等的'梯形是等腰梯形.

  前面我们用等腰三角形的定理证明了等腰梯形的性质定理,现在我们也可以用等腰三角形的判定定理来证明等腰梯形的判定定理.

  例1已知:如图,在梯形 中, , ,求证: .

  分析:我们学过“如果一个三角形中有两个角相等,那么它们所对的边相等.”因此,我们只要能将等腰梯形同一底上的两个角转化为等腰三角形的两个底角,定理就容易证明了.

  (引导学生口述证明方法,然后利用投影仪出示三种证明方法)

  (1)如图,过点 作 、 ,交 于 ,得 ,所以得 .

  又由 得 ,因此可得 .

  (2)作高 、 ,通过证 推出 .

  (3)分别延长 、 交于点 ,则 与 都是等腰三角形,所以可得 .

  (证明过程略).

  例3 求证:对角线相等的梯形是等腰梯形.

  已知:如图,在梯形 中, , .

  求证: .

  分析:证明本题的关键是如何利用对角线相等的条件来构造等腰三角形.

  在 和 中,已有两边对应相等,别人要能证 ,就可通过证 得到 .

  (引导学生说出证明思路,教师板书证明过程)

  证明:过点 作 ,交 延长线于 ,得 ,

  ∴ .

  ∵ , ∴

  ∴

  ∵ , ∴

  又∵ 、 ,∴

  ∴ .

  说明:如果 、 交于点 ,那么由 可得 , ,即等腰梯形对角线相交,可以得到以交点为顶点的两个等腰三角形,这个结论虽不能直接引用,但可以为以后解题提供思路.

  例4 画一等腰梯形,使它上、下底长分别5cm,高为4cm,并计算这个等腰梯形的周长和面积.

  分析:如图,先算出 长,可画等腰三角形 ,然后完成 的画图.

  画法:①画 ,使 .

  .

  ②延长 到 使 .

  ③分别过 、 作 , , 、 交于点 .

  四边形 就是所求的等腰梯形.

  解:梯形 周长 .

  答:梯形周长为26cm,面积为 .

  【总结、扩展】

  小结:(由学生总结)

  (l)等腰梯形的判定方法:①先判定它是梯形②再用“两腰相等”“或同一底上的两个角相等”来判定它是等腰梯形.

  (2)梯形的画图:一般先画出有关的三角形,在此基础上再画出有关的平行四边形,最后得到所求图形.(三角形奠基法)

  八、布置作业

  l.已知:如图,梯形 中, , 、 分别为 、 中点,且 ,求证:梯形 为等腰梯形.

  九、板书设计

  十、随堂练习

  教材P177中l;P179中B组2

初二数学教案11

  知识与技能

  1.了解分式的基本性质,掌握分式的约分和通分法则。掌握分式的四则运算。

  2.会用待定系数法求反比例函数的解析式,能利用函数性质分析和解决一些简单的实际问题。

  3.体验勾股定理的探索过程,会运用勾股定理解决简单问题。会运用勾股定理的逆定理判定直角三角形。

  4.探索并掌握平行四边形、矩形、菱形、正方形、等腰梯形的有关性质和常用判定方法,并运用这些知识进行有关的证明和计算。

  5.进一步理解平均数、中位数和众数等统计量的统计意义,会计算极差和方差,理解它们的.统计意义,会用它们表示数据的波动情况。

  过程与方法

  进一步培养学生的合情推理能力和发展学生逻辑思维能力和推理论证的表达能力;解决一些实际问题,体会化归思想和函数的变化与对应的思想;养成用数据说话的习惯和实事求是的科学态度;培养学生的探究能力、数学归纳能力,在活动中培养学生的合作交流能力;逐步形成独立思考,主动探索的习惯。

  情感、态度与价值观

  丰富学生从事数学活动的经验和体验,通过对问题的共同探讨,培养学生的协作精神,通过对知识方法的总结,培养反思的习惯,和理性思维。培养学生面对教学活动中的困难,能通过合作交流解决遇到的困难。

初二数学教案12

  一、教材分析:

  勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。

  教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。

  据此,制定教学目标如下:

  1、理解并掌握勾股定理及其证明。

  2、能够灵活地运用勾股定理及其计算。

  3、培养学生观察、比较、分析、推理的能力。

  4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。

  二、教学重点:

  勾股定理的证明和应用。

  三、教学难点:

  勾股定理的证明。

  四、教法和学法:

  教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。

  切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。

  通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。

  五、教学程序:

  本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:

  (一)创设情境以古引新

  1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。这样引起学生学习兴趣,激发学生求知欲。

  2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。

  3、板书课题,出示学习目标。(二)初步感知理解教材

  教师指导学生自学教材,通过自学感悟理解新知,体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。

  (三)质疑解难讨论归纳:1、教师设疑或学生提疑。如:怎样证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。2、教师引导学生按照要求进行拼图,观察并分析;(1)这两个图形有什么特点?(2)你能写出这两个图形的面积吗?

  (3)如何运用勾股定理?是否还有其他形式?

  这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨,最后,师生共同归纳,形成一致意见,最终解决疑难。

  (四)巩固练习强化提高

  1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲劳。

  2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。

  (五)归纳总结练习反馈

  引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。

  本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助多媒体提高课堂教学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。

  六、教学目标:

  1.经历运用拼图的方法说明勾股定理是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯。

  2.掌握勾股定理和他的简单应用

  重点难点:

  重点:能熟练运用拼图的方法证明勾股定理

  难点:用面积证勾股定理

  教学过程

  七、创设问题的情境,激发学生的.学习热情,导入课题

  我们已经通过数格子的方法发现了直角三角形三边的关系,究竟是几个实例,是否具有普遍的意义,还需加以论证,下面就是今天所要研究的内容,下边请大家画四个全等的直角三角形,并把它剪下来,用这四个直角三角形,拼一拼、摆一摆,看看能否得到一个含有以斜边c为边长的正方形,并与同学交流。在同学操作的过程中,教师展示投影1(书中p7图1—7)接着提问:大正方形的面积可表示为什么?

  (同学们回答有这几种可能:(1) (2) )

  在同学交流形成共识之后,教师把这两种表示大正方形面积的式子用等号连接起来。

  =请同学们对上面的式子进行化简,得到:即=

  这就可以从理论上说明勾股定理存在。请同学们去用别的拼图方法说明勾股定理。

  八、讲例

  1.飞机在空中水平飞行,某一时刻刚好飞机飞到一个男孩头顶正上方4000多米处,过20秒,飞机距离这个男孩头顶5000米,飞机每时飞行多少千米?

  分析:根据题意:可以先画出符合题意的图形。如右图,图中△ABC的米,AB=5000米,欲求飞机每小时飞行多少千米,就要知道飞机在20秒的时间里的飞行路程,即图中的CB的长,由于直角△ABC的斜边AB=5000米,AC=4000米,这样的CB就可以通过勾股定理得出。这里一定要注意单位的换算。

  解:由勾股定理得

  即BC=3千米飞机20秒飞行3千米,那么它1小时飞行的距离为:

  答:飞机每个小时飞行540千米。

  九、议一议

  展示投影2(书中的图1—9)

  观察上图,应用数格子的方法判断图中的三角形的三边长是否满足

  同学在议论交流形成共识之后,老师总结。

  勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。

  十、作业

  1、 1、课文P11§1.2 1 、2

  2、选用作业。

初二数学教案13

  新课指南

  1、知识与技能:

  (1)在具体情境中了解代数式及代数式的值的含义;

  (2)掌握整式、同类项及合并同类项法则和去括号法则;

  (3)培养学生用字母表示数和探索数学规律的能力。

  2、过程与方法:经历探索规律并用代数式表示规律的过程,学会列简单的代数式。在具体情境中体会同类项的意义及合并同类项、去括号法则的必要性,总结合并同类项及去括号的法则,并利用它们进行整式的加减运算和解决简单的实际问题。

  3、情感态度与价值观:通过对整式加减的学习,深入体会代数式在实际生活中的应用,它为后面学习方程(组)、不等式及函数等知识打下良好的基础,同时,也使我们体会到数学知识的产生来源于实际生产和生活的需求,反之,它又服务于实际生活的方方面面。

  4、重点与难点:重点是用含有字母的式子表式规律,理解整式的意义,合并同类项的法则和去括号的法则。难点是探索规律的过程及用代数式表示规律的'方法,以及准确识别整式的项、系数等知识。

  教材解读精华要义

  数学与生活

  如图15-1所示,用同样规格的黑、白两色的正方形瓷砖铺长方形地面,在第n个图形中,每一行有块瓷砖,每一列有块瓷砖,共有块瓷砖,其中黑色瓷砖共块,白色瓷砖共块。

  思考讨论由图15-1可以看到,当n=1时,一横行有4块瓷砖,一竖列有3块瓷砖;当n=2时,一横行有5块瓷砖,一竖列有4块瓷砖;当n=3时,一横行有6块瓷砖,一竖列有5块瓷砖。综上可以发现:4-1=5-2=6-3=3,3-1=4-2=5-3=2.即:一横行的瓷砖数等于n加上3,一竖列的瓷砖数等于n加上2.所以,在第n个图形中,每一横行共有(n+3)块瓷砖,每一竖列共有(n+2)块瓷砖,共有(n+3)(n+2)块瓷砖,其中白色瓷砖共(n+3-2)(n+2-2)=n(n+1)块,黑色瓷砖共有[(n+3)(n+2)-n(n+1)]块。这就是用字母来表示数,即代数式,你还能举出这样用字母表示数的例子吗?

  知识详解

  知识点1代数式

  用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数。的字母连接起来的式子叫做代数式。单独的一个数或一个字母也是代数式。

  例如:5,a,(a+b),ab,a2-2ab+b2等等。

  知识点2列代数式时应该注意的问题

  (1)数与字母、字母与字母相乘时常省略“×”号或用“·”。

  如:-2×a=-2a,3×a×b=3·ab,-2×x2=-2x2.

  (2)数字通常写在字母前面。

  如:mn×(-5)=-5mn,3×(a+b)=3(a+b)。

  (3)带分数与字母相乘时要化成假分数。

  如:2×ab=ab,切勿错误写成“2ab”。

  (4)除法常写成分数的形式。

  如:S÷x=。

初二数学教案14

  一、教学目标

  1.了解分式、有理式的概念。

  2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件。

  二、重点、难点

  1.重点:理解分式有意义的条件,分式的值为零的条件。

  2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件。

  3。认知难点与突破方法

  难点是能熟练地求出分式有意义的条件,分式的值为零的条件。突破难点的方法是利用分式与分数有许多类似之处,从分数入手,研究出分式的有关概念,同时还要讲清分式与分数的联系与区别。

  三、例、习题的意图分析

  本章从实际问题引出分式方程=,给出分式的描述性的定义:像这样分母中含有字母的式子属于分式。不要在列方程时耽误时间,列方程在这节课里不是重点,也不要求解这个方程。

  1.本节进一步提出P4[思考]让学生自己依次填出:。为下面的[观察]提供具体的式子,就以上的式子,有什么共同点?它们与分数有什么相同点和不同点?

  可以发现,这些式子都像分数一样都是(即A÷B)的形式。分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母。

  P5[归纳]顺理成章地给出了分式的定义。分式与分数有许多类似之处,研究分式往往要类比分数的有关概念,所以要引导学生了解分式与分数的`联系与区别。

  希望老师注意:分式比分数更具有一般性,例如分式可以表示为两个整式相除的商(除式不能为零),其中包括所有的分数。

  2.P5[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零。注意只有满足了分式的分母不能为零这个条件,分式才有意义。即当B≠0时,分式才有意义。

  3.P5例1填空是应用分式有意义的条件—分母不为零,解出字母x的值。还可以利用这道题,不改变分式,只把题目改成“分式无意义”,使学生比较全面地理解分式及有关的概念,也为今后求函数的自变量的取值范围,打下良好的基础。

  4.P12[拓广探索]中第13题提到了“在什么条件下,分式的值为0?”,下面补充的例2为了学生更全面地体验分式的值为0时,必须同时满足两个条件:1分母不能为零;2分子为零。这两个条件得到的解集的公共部分才是这一类题目的解。

  四、课堂引入

  1.让学生填写P4[思考],学生自己依次填出:

  2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?

  请同学们跟着教师一起设未知数,列方程。

  设江水的流速为x千米/时。

初二数学教案15

  教学目标

  1.知道梯形、等腰梯形、直角梯形的有关概念;能说出并证明等腰梯形的两个性质;等腰梯形同一底上的两个角相等;两条对角线相等。

  2.会运用梯形的有关概念和性质进行有关问题的论证和计算。

  3.通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想。

  教学模式问题解决教学

  教学过程

  想一想:

  什么样的四边形是平行四边形?平行四边形有哪些性质?学生回答后,教师板书以下关系图中的有关部分:

  画一画:

  画一个梯形,并指出梯形的上、下底,画出梯形的高。

  问题教学

  问题1:根据刚才的画图,请给梯形下一个定义,并说说梯形与平行四边形的区别和联系。(说明与建议:(l)让学生自己给梯形下定义,有助于训练学生观察、概括和语言表述的能力。如果学生定义时,遗漏了"另一组对边不平行"教师可举及例(2)对梯形的定义,还可以让学生讨论以下问题:一组对边平行且这组对边不相等的四边形是梯形吗?为什么?教师可用反证法的思想说理。然后,板书完成"想一想"中的.关系图,并结合图表指出:梯形和平行四边形的区别和联系。(3)梯形的高是指夹在两底间的公垂线段,在计算面积时高即为上下两底(平行线)间的距离,也就是夹在两底间的公垂线段的长度。画高时可以从上底任一点向下底作垂线段,一般常从上底的两端向下底作垂线段可方便地构造直角三角形,便于计算。)

  问题2:如图4.9-1,在(1)中:四边形ABCD的AD∥BC,ABCD,且CD⊥BC;在(2)中,四边形ABCD的AD∥BC,ABCD,且AB=CD。请你给这两种四边形命名。(说明与建议:学生说出图(l)的四边形是直角梯形,图(2)是等腰梯形,通常不会有困难;教师应进一步引导学生讨论,在图(1)中CD⊥BC,那么CD⊥AD吗?(CD⊥AD,且指出:CD就是直角梯形的高)当CD⊥BC时,另一腰AB可以垂直BC吗?为什么?(若AB⊥BC,那么四边形ABCD就成为矩形了,不再是梯形。)在图(2)中,上底AD与下底BC能相等吗?(不能,否则四边形ABCD成为平行四边形,不再是梯形。)

  练一练:课本例1后练习第l、2题。

  问题3:观察图4.9-2中的等腰梯形ABCD,猜想它还可能具有哪些特殊性质。并能证明你的猜想吗?

  说明与建议:(l)教师要用微笑、点头、赞叹、激励的表情和话语来鼓励学生大胆猜想。(2)学生可能提出以下猜想:∠B=∠C,∠A=∠D,∠A+∠B=,∠C+∠D=,是轴对称图形等等。教师要引导学生关注等腰梯形特有的性质---等腰梯形的底角相等。(3)如何证明这个猜想,可让学生自己思考、探索、交流,教师给以引导,鼓励证明多样化,如课本第174页的证法。教师可提醒学生证明过程中用到了"夹在平行线间的平行线段相等"这一性质。并指出:这种证法的实质是把一腰平移,从而构造出等腰三角形;对于如图4.9-2(作AE⊥BC,DF⊥BC)所示的证法,教师可指出:通过作梯形的两条高,可以构造出两个全等的直三角形等。

  问题4:如何证明等腰梯形是轴对称图形呢?(说明与建议:可让学生用折纸的方法,确认等腰梯形是轴对称图形;教学中,还可引导学生借助等腰三角形的轴对称性加以证明,如图4.9-3,延长等腰梯形两腰BA、CD相交于点E,易证△AED和△EBC都是等腰三角形。EF⊥BC,则EF⊥AD,EF所在的直线是两个等腰三角形EAD、EBC的对称轴。由轴对称图形可知,也是等腰梯形ABCD的对称轴。因此,等腰梯形是轴对称图形,有一条对称轴,是过两底中点的直线。)

  例题解析(课本例1)说明:本例的结论,为学生在讨论"问题3"时已提及,则可由学生自已完成证明,并概括成为一个文字命题。如学生讨论问题3时未提及,则可由教师引导学生猜想,然后再完成证明。

  课堂练习1.课本例1后练习第3题。2.如图4.9-4,已知等腰梯形ABCD的腰长为5cm,上、下底长分别是6cm和12cm,求梯形的面积。(方法一,过点C作CE∥AD,再作等腰三角形BCE的高CF,可知CF=4cm。然后用梯形面积公式求解;方法二,过点C和D分别作高CF、DG,可知,从而在Rt△AGD中求出高DG=4cm。)

【初二数学教案】相关文章:

初二数学教案11-02

初二数学教案12-12

初二数学教案《菱形》08-22

《矩形》初二的数学教案12-02

学校初二数学教案02-08

【热】初二数学教案12-23

初二数学教案【精】12-20

初二数学教案【热门】12-22

初二数学教案【推荐】12-18

【推荐】初二数学教案12-23