现在位置:范文先生网>教案大全>数学教案>七年级数学教案>七年级数学教案

七年级数学教案

时间:2022-11-18 17:15:29 七年级数学教案 我要投稿
  • 相关推荐

七年级数学教案(集合15篇)

  作为一名教职工,就不得不需要编写教案,教案有助于顺利而有效地开展教学活动。那么你有了解过教案吗?以下是小编帮大家整理的七年级数学教案,欢迎大家分享。

七年级数学教案(集合15篇)

七年级数学教案1

  教学目标:

  知识能力:理解有理数的概念,掌握有理数的两种分类方法,能够按要求对给定的有理数进行分类。

  过程与方法:通过本节的学习,培养学生正确的分类讨论观点和分类能力。

  情感、态度、价值观:通过本节课的学习,体验成功的喜悦,保持学好数学的信心。

  教学重点:

  掌握有理数的两种分类方法

  教学难点:

  给定的数字将被填入它所属的集合中

  教学方法:

  问题导向法

  学习方法:

  自主探究法

  教学过程:

  一、形势归纳

  小学我们学了整数和分数,上节课我们学了正数和负数。谁能快速提出以下问题?

  1、有以下数字:15,—1/9,—5,2/15,—13/8,0.1,—5.22,—80,0,123,2.33

  (1)将以上数字填入以下两组:正整数集{}和负整数集{}。你填完了吗?

  (2)将以上数字填入以下两个集合:整数集合{}和分数集合{}。你填完了吗?

  称整数和分数为有理数。(指点题,板书)

  二、自学指导

  学生自学课本,根据课本寻找自学的机会

  提纲中问题的答案;老师先做必要的`板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。

  三、展示归纳

  1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;

  2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;

  3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。

  四、变式练习

  逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。

  五、总结与反思:通过本节课的学习,你有什么收获?

  六、作业:必做题:课本14页:1、9题

七年级数学教案2

  课题:1.2.3相反数

  教学目标

  1,掌握相反数的概念,进一步理解数轴上的点与数的对应关系;

  2,通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;

  3,体验数形结合的思想。

  教学难点归纳相反数在数轴上表示的点的特征

  知识重点相反数的概念

  教学过程(师生活动)设计理念

  设置情境

  引入课题问题1:请将下列4个数分成两类,并说出为什么要这样分类

  4,-2,-5,+2

  允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。

  (引导学生观察与原点的距离)

  思考结论:教科书第13页的思考

  再换2个类似的数试一试。

  归纳结论:教科书第13页的归纳。以开放的形式创设情境,以学生进行讨论,并培养分类的能力

  培养学生的观察与归纳能力,渗透数形思想

  深化主题提炼定义给出相反数的定义

  问题2:你怎样理解相反数定义中的“只有符号不同”和“互为”一词的含义?零的相反数是什么?为什么?

  学生思考讨论交流,教师归纳总结。

  规律:一般地,数a的相反数可以表示为-a

  思考:数轴上表示相反数的两个点和原点有什么关系?

  练一练:教科书第14页第一个练习体验对称的图形的特点,为相反数在数轴上的特征做准备。

  深化相反数的概念;“零的相反数是零”是相反数定义的一部分。

  强化互为相反数的数在数轴上表示的点的几何意义

  给出规律

  解决问题问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?

  学生交流。

  分别表示+5和-5的相反数是-5和+5

  练一练:教科书第14页第二个练习利用相反数的概念得出求一个数的相反数的方法

  小结与作业

  课堂小结

  1,相反数的定义

  2,互为相反数的数在数轴上表示的点的特征

  3,怎样求一个数的相反数?怎样表示一个数的相反数?

  本课作业1,必做题教科书第18页习题1.2第3题

  2,选做题教师自行安排

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想.

  2,教学引人以开放式的`问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法.

  3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地.

七年级数学教案3

  问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?

  这个方程不像例l中的方程(1)那样容易求出它的解,小敏同学的方法启发了我们,可以用尝试,检验的方法找出方程(2)的解。也就是只要将x=1,2,3,4,……代人方程(2)的两边,看哪个数能使两边的值相等,这个数就是这个方程的解。

  把x=3代人方程(2),左边=13+3=16,右边=(45+3)=48=16,

  因为左边=右边,所以x=3就是这个方程的解。

  这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。

  问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?

  同学们动手试一试,大家发现了什么问题?

  同样,用检验的`方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?

  这正是我们本章要解决的问题。

  三、巩固练习

  1、教科书第3页练习1、2。

  2、补充练习:检验下列各括号内的数是不是它前面方程的解。

  (1)x-3(x+2)=6+x(x=3,x=-4)

  (2)2y(y-1)=3(y=-1,y=2)

  (3)5(x-1)(x-2)=0(x=0,x=1,x=2)

  四、小结。本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。

  五、作业。教科书第3页,习题6。1第1、3题。

  解一元一次方程

  1、方程的简单变形

  教学目的

  通过天平实验,让学生在观察、思考的基础上归纳出方程的两种变形,并能利用它们将简单的方程变形以求出未知数的值。

  重点、难点

  1、重点:方程的两种变形。

  2、难点:由具体实例抽象出方程的两种变形。

  教学过程

  一、引入

  上一节课我们学习了列方程解简单的应用题,列出的方程有的我们不会解,我们知道解方程就是把方程变形成x=a形式,本节课,我们将学习如何将方程变形。

  二、新授

  让我们先做个实验,拿出预先准备好的天平和若干砝码。

  测量一些物体的质量时,我们将它放在天干的左盘内,在右盘内放上砝码,当天平处于平衡状态时,显然两边的质量相等。

  如果我们在两盘内同时加入相同质量的砝码,这时天平仍然平衡,天平两边盘内同时拿去相同质量的砝码,天平仍然平衡。

  如果把天平看成一个方程,课本第4页上的图,你能从天平上砝码的变化联想到方程的变形吗?

  让同学们观察图6.2.1的左边的天平;天平的左盘内有一个大砝码和2个小砝码,右盘上有5个小砝码,天平平衡,表示左右两盘的质量相等。如果我们用x表示大砝码的质量,1表示小砝码的质量,那么可用方程x+2=5表示天平两盘内物体的质量关系。

七年级数学教案4

  教学目标:

  1.了解正数与负数是实际生活的需要.

  2.会判断一个数是正数还是负数.

  3.会用正负数表示互为相反意义的量.

  教学重点:会判断正数、负数,运用正负数表示具有相反意义的量,理解表示具有相反意义的量的意义.

  教学难点:负数的引入.

  教与学互动设计:

  (一)创设情境,导入新课

  课件展示珠穆朗玛峰和吐鲁番盆地,让同学感受高于水平面和低于水平面的不同情况.

  (二)合作交流,解读探究

  举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东行50米和向西行120米等.

  想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?

  为了用数表示具有相反意义的量,我们把具有其中一种意义的量,如零上温度、前进、收入、上升、高出等规定为正的,而把具有与它意义相反的'量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).

  活动每组同学之间相互合作交流,一同学说出有关相反意义的两个量,由其他同学用正负数表示.

  讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?自己列举正数、负数.

  总结正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界点.

  (三)应用迁移,巩固提高

  【例1】举出几对具有相反意义的量,并分别用正、负数表示.

  【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.

  【例2】在某次乒乓球检测中,一只乒乓球超过标准质量0.02g,记作+0.02g,那么-0.03g表示什么?

  【例3】某项科学研究以45分钟为1个时间单位,并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为()

  A.3B.-3C.-2.5D.-7.45

  【点拨】读懂题意是解决本题的关键.7:45与10:00相差135分钟.

  (四)总结反思,拓展升华

  为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数,也不是负数.

  1.下表是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):

  星期日一二三四五六

  (元)+16+5.0-1.2-2.1-0.9+10-2.6

  (1)本周小张一共用掉了多少钱?存进了多少钱?

  (2)储蓄罐中的钱与原来相比是多了还是少了?

  (3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣.

  2.数学游戏:4个同学站或蹲成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.

  (1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;

  (2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复(1)中的游戏.

  (五)课堂跟踪反馈

  夯实基础

  1.填空题:

  (1)如果节约用水30吨记为+30吨,那么浪费20吨记为吨.

  (2)如果4年后记作+4年,那么8年前记作年.

  (3)如果运出货物7吨记作-7吨,那么+100吨表示.

  (4)一年内,小亮体重增加了3kg,记作+3kg;小阳体重减少了2kg,则小阳增加了.

  2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,水位上涨了1米,下午5时,水位又上涨了0.5米.

  (1)用正数或负数记录下午1时和下午5时的水位;

  (2)下午5时的水位比中午12时水位高多少?

  提升能力

  3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.

  (六)课时小结

  1.与以前相比,0的意义又多了哪些内容?

  2.怎样用正数和负数表示具有相反意义的量?(用正数表示其中具有一种意义的量,另一种量用负数表示)

七年级数学教案5

  教师在备课时,应充分估计学生在学习时可能提出的问题,确定好重点,难点,疑点,和关键。根据学生的实际改变原先的教学计划和方法,满腔热忱地启发学生的思维,针对疑点积极引导。

  非常高兴,能有机会和同学们共同学习

  昨天,老师在七年级三班上课时,把他们分成七个小组,每个小组回答问题的情况以抢答赛的形式记分。你们看(出示投影)这是七年级三班七个小组回答问题的表现情况。答对一题得一分,记作+1分;答错一题扣一分,记作1分。第几组最棒?老师还没来得及计算出每个小组的最后得分,咱们班哪位同学能帮老师算出最后结果?(学生在教师引导下回答)

  我们已得出了每个小组的最后分数,那么哪个小组是优胜小组?(第一小组),回去以后,老师就把小奖品发给他们,相信他们一定会很高兴。

  同学们,这节课你们愿不愿意也分成几个小组,看一看那个小组的同学表现得最出色?(原意)那么老师就按座次给同学们分组,每一竖排为一组。老师把组号写在黑板上,以便记分。

  希望各组同学积极思考、踊跃发言。同学们有没有信心得到老师的小奖品?(有)同学们加油!

  我们已得到了这7个小组的最后得分,那位同学能试着用算式表示?(学生在教师指导下列算式)

  以上这些算是都是什么运算?(加法),两个加数都是什么数?(有理数),这就是我们这节课要学习的有理数的加法(板书课题)。

  刚才老师说要给七年级三班的优胜组发奖品,老师手里有12本作业本,优胜组共6人,老师将送出的作业本数占总数的几分之几?(二分之一)分数最低的一组共7人,他们每人交给老师一个作业本,占总数的几分之几?(十二分之七)如果,老师得到的`作业本记为正数,送出的作业本记为负数,则老师手里的作业本增加或减少几分之几?同学们能列出算式吗?(学生列式)对于这个算式,同学们还能轻易的感知出结果吗?(不能)

  对于有理数的加法,有的同学们能直接感知得到结果,有的靠感知是不够的,这就需要我们共同探索规律!(出示投影),观察这7个算式,每一个算式都是怎样的两个有理数相加?(引导学生回答)你们还能举出不同以上情况的算式吗?(不能),这说明这几个算式概括了有理数加法的不同情况。

  前两个算式的加数在符号上有什么共同点?(相同),那么我们就可以说这是什么样的两数相加?(同号两数相加)同学们还能观察出那几个算式可归为一类吗?(3、4、5、异号两数相加,6、7一个数同0相加)

  同学们已把这7个算式分成了三种情况,下面我们分别探讨规律。

  (1) 同号两数相加,其和有何规律可循呢?大家观察这两个式子,回答两个问题。(师引导观察,得出答案),那位同学能填好这个空?

  (2) 异号两数相加,其和有何规律呢?大家观察这三个式子回答问题。(引导学生分成两类,容易得到绝对值相同情况的结论。再引导学生观察绝对值不相同的情况,回答问题)哪位同学能概括一下这个规律?(引导学生得出)

  (3) 一个数同0相加,其和有什么规律呢?(易得出结论)

  同学们经过积极思考,探索出了解决有理数加法的规律,顾一下(出哪位同学能带领大家共同回顾一下?(出示投影,学生大声朗读)我们把这个规律称为有理数的加法法则。

  同学们都很聪明,积极参与探索规律,每个组都有不错的成绩。个别落后的组不要气馁,继续努力,下面老师就给大家一个得分的机会,看哪一组能[出题制胜]!(出示)

  (活动过程1后评价、加分;教师以其中一题为例,讲解题格式及过程;活动过程2后:让每组第三排同学评价加分)

  同学们已经基本掌握了有理数的加法法则,并会运用它,但七年级三班有几位同学对这一内容掌握的不是太好,以致在作业中出了毛病,他们为此很苦恼。希望咱们同学能帮帮他们,看哪位同学能像妙手回春的神医华佗一样药到病 除!(师生共同治病)

  看来同学们对有理数的加法已经掌握得很好了,大家还记得前面那个难倒我们的有理数的加法题呢?那位同学能解决这个问题呢?(学生口述 师板书)。在大家的努力下,我们终于攻破了这个难关。

  通过这节课的学习,大家有什么收获?(学生回答)同学们都有很多收获,老师认为收获最多的是优胜组的同学,因为他们能得到老师的小奖品,大家赶紧看看那一组获胜?欢迎优胜组上台领奖,大家掌声鼓励!

  同学们,希望你们在未来的学习和生活中都能积极进取,获得一个又一个的胜利。

七年级数学教案6

  内容:整式的乘法—单项式乘以多项式 P58-59

  课型:新授 时间:

  学习目标:

  1、在具体情景中,了解单项式和多项式相乘的意义。

  2、在通过学生活动中,理解单项式和多项式相乘的法则,会用它们进行计算。

  3、培养学生有条理的思考和表达能力。

  学习重点:单项式乘以多项式的法则

  学习难点:对法则的理解

  学习过程

  1.学习准备

  1.叙述单项式乘以单项式的法则

  2.计算

  (1)(- a2b) ?(2ab)3=

  (2) (-2x2y)2 ?(- xy)-(-xy)3?(-x2)

  3、举例说明乘法分配律的应用。

  2.合作探究

  (一)独立思考,解决问题

  1、 问题: 一个施工队修筑一条路面宽为n m的公路,第一天修筑 a m长,第二天修筑长 b m,第三天修筑长 c m,3天工修筑路面的面积是多少?

  结合图形,完成填空。

  算法一:3天共修筑路面的'总长为(a+b+c)m,因为路面的宽为bm,所以3

  天共修筑路面 m2.

  算法二:先分别计算每天修筑路面的面积,然后相加,则3天修路面 m2.

  因此,有 = 。

  3.你能用字母表示乘法分配律吗?

  4.你能尝试单项式乘以多项式的法则吗?

  (二)师生探究,合作交流

  1、例3 计算:

  (1) (-2x) (-x2?x+1) (2)a(a2+a)- a2 (a-2)

  2、练一练

  (1)5x(3x+4) (2) (5a2? a+1)(-3a)

  (3)x(x2+3)+x2(x-3)-3x(x2?x-1)

  (4)(?a)(-2ab)+3a(ab-b-1))

  (三)学习

  对照学习目标,通过预习,你觉得自己有哪些方面的收获?有什么疑惑?

  (四)自我测试

  1、教科书P59 练习 3,结合解题,单项式乘以多项式的几何意义。

  2、判断题

  (1)-2a(3a-4b) =-6a2-8ab ( )

  (2) (3x2-xy-1) ? x =x3 -x2y-x ( )

  (3)m2- (1- m) = m2- - m ( )

  3、已知ab2=-1,-ab(a2b3-ab3-b)的值等于 ( )

  A. -1 B. 0 C. 1 D. 无法确定

  4、计算(20xx 贺州中考)

  (-2a)?( a3 -1) =

  5、(3m)2(m2+mn-n2)=

  (五)应用拓展

  1、计算

  (1)2a(9a2-2a+3)-(3a2) ?(2a-1)

  (2)x(x-3)+2x(x-3)=3(x2-1)

  2、若一个梯形的上底长(4m+3n)cm,下底长(2m+n)cm,高为3m2n cm,求此梯形的面积。

  3、一块边长为xcm的正方形地砖,因需要被裁掉一块2cm宽的长条,为剩下部分面积是多少?

七年级数学教案7

  一、目标

  1.用它们拼成各种形状不同的四边形,并计算它们的周长。

  (鼓励学生把长方形和等腰三角形拼和成各种图形,分别计算出它们的周长和面积)

  2.教师揭示以上这些工作实际上是在进行整式的加减运算

  3.回顾以上过程 思考:整式的加减运算要进行哪些工作?

  生1:“去括号”

  生2:“合并同类项”

  师生小结:整式的加减实际上是“去括号”和“合并同类项”法则的综合应用,

  二、揭示如何进行整式的加减运算

  1.进行整式的'加减运算时,如果有括号先去括号,再合并同类项。

  2.教学例二 例2 求2a2-4a+1与-3a2+2a-5的差.

  (本题首先带领学生根据题意列出式子,强调要把两个代数式看成整体,列式时应加上括号)

  解:(2a2-4a+1)-(-3a2+2a-5)

  =2a2-4a+1+3a2-2a+5

  =5a2-6a+6

  3.拓展练习

  (1)求多项式2x -3 +7与6x -5 -2的和.

  提问:你有哪些计算方法?(可引导学生进行竖式计算,并在练习中注意竖式计算过程中需要注意什么?)

  (2)(-3x2 –x +2)+(4x2 +3x -5) (3)(4a2 -3a )+(2a2 +a -1)

  (4)(x2 +5x –2 )-(x2 +3x -22) (5)2(1-a +a2)-3(2-a –a2)

  4.教学例3

  先化简下式,再求值:

  (做此类题目应先与学生一起探讨一般步骤:

  (1)去括号。

  (2)合并同类项。

  (3)代值)

  解:5(3a2b –ab2)-4(-ab2 +3a2b),其中=-2 ,=3

  =15a2b –5ab2+4ab2 -12a2b)

  =3a2b –ab2

  三、小结

  1.进行整式的加减运算时,如果有括号先去括号,再合并同类项。

  2.进行化简求值计算时

  (1)去括号。

  (2)合并同类项。

  (3)代值

  3.通过本节课的学习你还有哪些疑问?

  四、布置作业

  习题4.5 2. (3) ;4. (2);5.。

  五、课后反思

  省略

七年级数学教案8

  教学目标:

  1、知道有理数加法的意义和法则

  2、会用有理数加法法则正确地进行有理数的加法运算

  3、经历有理数加法法则的探究过程,体会分类和归纳的数学思想方法

  教学重点:

  有理数加法则的探索及运用

  教学难点:

  异号两数相加的法则的理解及运用

  教学过程:

  一、创设情境

  展示足球赛图片,你知道足球赛中“净胜球”是怎么回事吗?

  (学生口答,教师介绍净胜球的算法:只要把各场比赛的结果相加就可以得到,由此揭示课题。)

  二、探求新知

  1、甲、乙两队进行足球比赛,

  (1)、如果上半场赢了3球,下半场又赢了2球,那么全场累计净胜几球?

  (2)、如果上半场赢了3球,下半场输了2球,那么全场累计净胜几球?

  足球比赛中赢球个数与输球个数是一对相反意义的量.若规定赢球为正,输球为负,例如赢3球记为“+3”,输2球记为“-2”,你能把上述结果用加法算式表示出来吗?

  (学生根据生活经验得到两种情况下的净胜球数,从而列出算式:(+3)+(+2)= +5;(+3)+(-2)= +1,教师板书。)

  (3)、除了上面所说的“赢了再赢”,“先赢后输”,你还能说出其它可能的几种情况并用加算式表示吗?

  (引导学生联系生活实际思考输赢球其它可能的情况,尽可能完整地说出所有的可能,由此感受两个有理数相加的各种情况,让学生自由发言,相互补充,教师板书算式:(-3)+(+2)= -1,(-3)+(-2)= -5,(-3)+0= -3,0+(+2)=+2,教师还可根据学生回答情况补充:上半场赢了3球,下半场输了3球;上半场打平,下半场也打平,最后的净胜球情况,由学生说出结果并列出算式:(+3)+(-3)= 0,0+0=0 )

  2、你能举出一些运用有理数加法的实际例子吗?

  (学生列举实例并根据具体意义写出算式)

  3、学生活动:

  (1)、把笔尖放在数轴原点处,先向正方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?你能用数轴和加法算式表示以上过程及结果吗?

  (2)、把笔尖放在数轴原点个单位长度,再向负方向移动2个单位长度,这时笔尖的位置表示什么数?你能用数轴和加法算式表示以上过程及结果吗?

  (3)、你还能再做一些类似的活动,并写出相应的算式吗?

  (教师示范活动(1)的操作过程,学生列出算式并完成(2)(3),得到一组算式,教师板书。这一活动目的是让学生从“形”的角度,直观感受有理数的加法法则。)

  4、归纳法则:

  观察上述算式,和小学学过的加法运算有什么区别?你能归纳出有理数的加法法则吗?

  (由前面所学的内容学生已经知道:有理数由符号和绝对值两部分组成,所以两个有理数的相加时,确定和时也需要分别确定和的符号和绝对值,教师可引导学生对照情境中输赢球的情况分别探索和的符号和绝对值如何确定,学生相互交流,自由发言,不断完善。通过探索有理数加法法则的过程,学生体会分类和归纳的数学思想方法。)

  5、例题精讲:

  例1 、计算

  (1)、 (-5)+(-3) (2)、(-8)+(+2);; (3)、(+6)+(-4)

  (4)、 5+(-5); (5)、 0+(-2); (学生口答计算结果,并对照法则说说是如何确定和的符号和绝对值的,教师板书解题过程,让学生体会“运算有据”。)

  解:(1)、(-5)+(-3)

  = -(5+3) (同号两数相加,取相同的符号,并把绝对值相减)

  = -8

  (2)、(-8)+(+2)

  = -(8-2) (异号两数相加,取绝对值较大的加数的`符号,并用较大的绝对值减去较小的绝对值。)

  = -6

  (4)、5+(-5);

  =0 (互为相反的两数之和为0)

  6、训练巩固:

  1、 p33练一练2

  (学生利用扑克完成本题,通过游戏进一步巩固有理数加法法则,体现“做中学”的新课程理念。)

  7、延伸拓展:

  (1)、一个数是2的相反数,另一个数的绝对值是5,求这两个数的和

  (2)、在小学里,计算两个数相加时,它们的和总是小于任何一个加数,学了有理数的加法法则后,你认为这个结论还成立吗?请你举例说明

  (这两题都具有一定的挑战性,第(1)题可让学生进一步体会分类的数学思想方法。第(2)题具有开放性,可让学生在探索的过程中进一步理解法则。)

  三、课堂小结:

  学生回顾本节课所学内容,谈谈自己对有理数加法法则的理解及如何进行有理数加法运算。

  四、布置作业:

  1、课本p41第1题

  2、列举一些生活中运用有理数加法的实际例子,并相互交流。

七年级数学教案9

  学习目标

  1. 理解有序数对的应用意义,了解平面上确定点的常用方法

  2. 培养用数学的意识,激发学习兴趣.

  学习重点: 理解有序数对的意义和作用

  学习难点: 用有序数对表示点的位置

  学习过程

  一.问题导入

  1.一位居民打电话给供电部门:"卫星路第8根电线杆的路灯坏了,"维修人员很快修好了路灯同学们欣赏下面图案.

  2.地质部门在某地埋下一个标志桩,上面写着"北纬44.2°,东经125.7°"。

  3.某人买了一张8排6号的电影票,很快找到了自己的座位。

  分析以上情景,他们分别利用那些数据找到位置的。

  你能举出生活中利用数据表示位置的例子吗?

  二.概念确定

  有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)

  利用有序数对,可以很准确地表示出一个位置。

  1.在教室里,根据座位图,确定数学课代表的位置

  2.教材40页练习

  三.方法归类

  常见的确定平面上的.点位置常用的方法

  (1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。

  (2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。

  1.如图,A点为原点(0,0),则B点记为(3,1)

  2.如图,以灯塔A为观测点,小岛B在灯塔A北偏东45,距灯塔3km 处。

  例2 如图是某次海战中敌我双方舰艇对峙示意图,对我方舰艇来说:

  (1)北偏东方向上有哪些目标?要想确定敌舰B的位置,还需要什么数据?

  (2)距我方潜艇图上距离为1cm处的敌舰有哪几艘?

  (3)要确定每艘敌舰的位置,各需要几个数据?

  [巩固练习]

  1. 如图是某城市市区的一部分示意图,对市政府来说:

  北偏东60的方向有哪些单位?要想确定单位的位置。还需要哪些数据?火车站与学校分别位于市政府的什么方向,怎样确定他们的位置?

  结合实际问题归纳方法

  学生尝试描述位置

  2. 如图,马所处的位置为(2,3).

  (1) 你能表示出象的位置吗?

  (2) 写出马的下一步可以到达的位置。

  [小结]

  1. 为什么要用有序数对表示点的位置,没有顺序可以吗?

  2. 几种常用的表示点位置的方法.

  [作业]

  必做题:教科书44页:1题

七年级数学教案10

  教学目标

  1.使学生理解的意义;

  2.使学生掌握求一个已知数的;

  3.培养学生的观察、归纳与概括的能力.

  教学重点和难点

  重点:理解的意义,理解的代数定义与几何定义的一致性.

  难点:多重符号的化简.

  课堂教学过程 设计

  一、从学生原有的认知结构提出问题

  二、师生共同研究的定义

  特点?

  引导学生回答:符号不同,一正一负;数字相同.

  像这样,只有符号不同的两个数,我们说它们互为,如+5与

  应点有什么特点?

  引导学生回答:分别在原点的两侧;到原点的距离相等.

  这样我们也可以说,在数轴上的原点两旁,离开原点距离相等的两个点所表示的数互为.这个概念很重要,它帮助我们直观地看出的意义,所以有的书上又称它为的几何意义.

  3.0的是0.

  这是因为0既不是正数,也不是负数,它到原点的距离就是0.这是等于它本身的的数.

  三、运用举例 变式练习

  例1 (1)分别写出9与-7的;

  例1由学生完成.

  在学习有理数时我们就指出字母可以表示一切有理数,那么数a的如何表示?

  引导学生观察例1,自己得出结论:

  数a的是-a,即在一个数前面加上一个负号即是它的

  1.当a=7时,-a=-7,7的是-7;

  2.当-5时,-a=-(-5),读作“-5的”,-5的'是5,因此,-(-5)=5.

  3.当a=0时,-a=-0,0的是0,因此,-0=0.

  么意思?引导学生回答:-(-8)表示-8的;-(+4)表示+4的;

  例2 简化-(+3),-(-4),+(-6),+(+5)的符号.

  能自己总结出简化符号的规律吗?

  括号外的符号与括号内的符号同号,则简化符号后的数是正数;括号内、外的符号是异号,则简化符号后的数是负数.

  课堂练习

  1.填空:

  (1)+1.3的是______; (2)-3的是______;

  (5)-(+4)是______的; (6)-(-7)是______的

  2.简化下列各数的符号:

  -(+8),+(-9),-(-6),-(+7),+(+5).

  3.下列两对数中,哪些是相等的数?哪对互为?

  -(-8)与+(-8);-(+8)与+(-8).

  四、小结

  指导学生阅读教材,并总结本节课学习的主要内容:一是理解的定义——代数定义与几何定义;二是求a的;三是简化多重符号的问题.

  五、作业

  1.分别写出下列各数的:

  2.在数轴上标出2,-4.5,0各数与它们的

  3.填空:

  (1)-1.6是______的,______的是-0.2.

  4.化简下列各数:

  5.填空:

  (1)如果a=-13,那么-a=______;(2)如果a=-5.4,那么-a=______;

  (3)如果-x=-6,那么x=______; (4)如果-x=9,那么x=______.

  课堂教学设计说明

  教学过程 是以《教学大纲》中“重视基础知识的教学、基本技能的训练和能力的培养”,“数学教学中,发展思维能力是培养能力的核心”,“坚持启发式,反对注入式”等规定的精神,结合教材特点,以及学生的学习基础和学习特征而设计的由于内容较为简单,经过教师适当引导,便可使学生充分参与认知过程.由于“新”知识与有关的“旧”知识的联系较为直接,在教学中则着力引导观察、归纳和概括的过程.

  探究活动

  有理数a、b在数轴上的位置如图:

  将a,-a,b,-b,1,-1用“<”号排列出来.

  分析:由图看出,a>1,-1

  解:在数轴上画出表示-a、-b的点:

  由图看出:-a<-1

  点评:通过数轴,运用数形结合的方法排列三个以上数的大小顺序,经常是解这一类问题的最快捷,准确的方法.

七年级数学教案11

  一、素质教育目标

  (一)知识教学点

  能按照有理数的运算顺序,正确熟练地进行有理数的加、减、乘、除、乘方的混合运算.

  (二)能力训练点

  培养学生的观察能力和运算能力.

  (三)德育渗透点

  培养学生在计算前认真审题,确定运算顺序,计算中按步骤审慎进行,最后要验算的好的习惯.

  (四)美育渗透点

  通过本节课的学习,学生会认识到小学算术里的四则混合运算顺序同样适用于有理数系,学生会感受到知识的普适性美.

  二、学法引导

  1.教学方法:尝试指导法,以学生为主体,以训练为主线.

  2.学生学法:

  三、重点、难点、疑点及解决办法

  重点和难点是如何按有理数的运算顺序,正确而合理地进行有理数混合计算.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪、自制胶片.

  六、师生互动活动设计

  教师用投影出示练习题,学生用多种形式完成.

  七、教学步骤

  (一)复习提问

  (出示投影1)

  1.有理数的运算顺序是什么?

  2.计算:(口答)

  ① , ② , ③ , ④ ,

  ⑤ , ⑥ .

  【教法说明】2题都是学生运算中容易出错的题目,学生口答后,如果答对,追问为什么?如果不对,先让他自己找错误原因,若找不出来,让其他同学纠正,使学生真正明白发生错误的原因,从而达到培养运算能力的目的.

  (二)讲授新课

  1.例2 计算

  师生共同分析:观察题目中有乘法、除法、减法运算,还有小括号.

  思考:首先计算小括号里的减法,然后再按照从左到右的顺序进行乘除运算,这样运算的步骤基本清楚了.带分数进行乘除运算时,必须化成假分数.

  动笔:按思考的步骤进行计算,在计算时不要“跳步”太多,最后再检查这个计算结果是否正确.

  一个学生板演,其他学生做在练习本上,教师巡回指导,然后师生共同订正.

  【教法说明】通过此题的分析,引导学生在进行有理数混合运算时,遵循“观察—思考—动笔—检查”的程序进行计算,有助于培养学生严谨的学风和良好的学习习惯.

  2.尝试反馈,巩固练习(出示投影2)

  计算:

  ① ;

  ② .

  【教法说明】让学生仿照例题的形式,自己动脑进行分析,然后做在练习本上,两个学生板演.由于此两题涉及负数较多,应提醒学生注意符号问题.教师根据学生练习情况,作适当评价,并对学生普遍出现的错误,及时进行变式训练.

  3.例3 计算: .

  教师引导学生分析:观察题目中有乘方、乘法、除法、加法、减法运算.

  思考:容易看到 , 是彼此独立的.,可以首先分别计算,然后再进行加减运算.

  动笔:按思考的步骤进行计算,在计算时强调不要“跳步”太多.

  检查计算结果是否正确.

  一个学生口述解题过程,教师予以指正并板书做示范,强调解题的规范性.

  4.尝试反馈,巩固练习(出示投影3)

  计算:① ;

  ② ;

  ③ ;

  ④ .

  首先要求学生观察思考上述题目考查的知识点有哪些?然后再动笔完成解题过程.四个学生板演,其他同学做在练习本上.

  说明:1小题主要考查乘方、除法、减法运算法则及运算顺序等知识,学生容易出现 的错误.通过此题让学生注意运算顺序.3题主要考查:相反数、负数的奇次幂、偶次幂运算法则及运算顺序等知识点.让学生搞清 与 的区别; , .计算此题要特别注意符号问题;4题主要考查相反数运算法则及运算顺序等知识.本题要特别注意运算顺序.

  【教法说明】习题的设计分层次,由易到难,循序渐进,符合学生的认知规律.注重培养学生的观察分析能力和运算能力.通过变式训练,也培养学生的思维能力.学生做练习时,教师巡回指导,及时获得反馈信息,对学生出现错误较多的问题,教师要进行回授讲解,然后再出一些变式训练进行巩固.

  (三)归纳小结

  师:今天我们学习了,要求大家做题时必须遵循“观察—分析—动笔—检查”的程序进行计算.

  【教法说明】小结起到“画龙点睛”的作用,教给学生运算的方法、步骤,培养学生良好的学习习惯,提高运算的准确率.

  (四)反馈检测(出示投影4)

  (1)计算① ; ②

  ③ ; ④ ;

  ⑤ .

  (2)已知 , 时,求下列列代数式的值

  ① ; ② .

  以小组为单位计分,积分最高的组为优胜组.

七年级数学教案12

  设计说明

  1.游戏导入,激发兴趣。

  “世界通过游戏展现在孩子面前,人的创造才能也常常在游戏中表现出来,没有游戏也就没有充分的智力发展。”用游戏导入新课,可使数学知识在游戏中愉快地、自然地被学生所接受和理解。上课伊始,设计了老师说时间,学生用动作表示时间的游戏,这样不仅唤起了学生对时间的回忆,同时也激发了学生学习新课的兴趣。

  2.直观演示与动手操作相结合。

  重视直观演示和动手操作,是发展学生思维,培养学生数学能力的有效途径之一。本设计通过课件的直观演示,以及学生动手操作,使学生理解时间与时刻的意义及12时计时法与24时计时法的联系。通过例题进行比较,使学生明确用24时计时法表示时间比较简明、方便,经历由直观到抽象的过程,渗透比较的数学思想。

  3.注重从日常生活的各个场景入手,加深对24时计时法的理解和掌握。

  24时计时法在生活中有着广泛的应用,与人们的日常生活紧密联系。学生学习这部分知识有着重要的现实意义。整节课以“一天”为主线,贯穿始终。出示主题图展示生活中的一天;通过春节晚会倒计时,了解一天的开始;探究一天有多少个小时。从生活中梳理出数学知识,既能加深学生对知识的理解,又能帮助他们提高学以致用的能力。

  课前准备

  教师准备ppt课件时钟模型

  学生准备时钟模型

  教学过程

  ⊙创设情境,导入新课

  1.做游戏,认时间。

  师:老师和大家做个游戏,老师说一个时间,大家不用口述,用动作告诉老师这时你在做什么,看谁表演的好。

  (1)老师先说一个时刻:中午12时,用动作示范一下。

  (2)老师报出下列时刻:凌晨3时、早上6时、上午11时30分、下午4时、晚上9时。(教师边板书边提问)

  2.导入。

  师:刚才我们说的是生活中常用的表示时刻的方法,叫做12时计时法。如果同学们用12时计时法表示时刻,那么应加“上午、中午、下午、晚上或凌晨”等限制词。有没有一种不用加文字说明的计时方法呢?今天我们就学习一种新的计时法——24时计时法。(板书课题)

  设计意图:通过游戏,激活学生的生活经验,分析、归纳出12时计时法的特点,并理解12时计时法在现实生活中的作用。了解12时计时法在实际运用时要有限制词,从而激发学生的认知冲突,寻找表示时间的更为简便的计时方法——24时计时法,引入新知,激发学生学习新知的兴趣。

  ⊙经历过程,体验感知

  1.体验生活中的“一天”。

  师:请同学们看大屏幕(课件出示教材82页主题图),引导学生说出在主题图中获得的信息。

  (学生汇报小女孩在一天中的作息时间)

  2.认识一天的'开始——0时。

  师:大家知道一天是从什么时刻开始的吗?(学生发表意见,教师不作答复)

  师:一天的开始到底是什么时刻呢?还是让我们一起来看一段录像吧!这是春节联欢晚会上大家在一起迎接新年第一天开始的情境。(课件播放倒计时的录像)

  师:新年的第一天开始了,钟面上是几时?(12时)是什么时候的12时?(夜里12时)

  师:到了夜里12时,就表示这一天结束了,同时又表示新的一天开始了。作为新的一天的开始,我们一般又把夜里12时说成0时。

  师:0时我们通常在做什么呢?(睡觉)现在知道一天的开始是什么时刻了吗?一起说说看。(0时)

  3.运用课件创设情境,感受一天的经过。

  师:一天的时间有多长呢?让我们来感受一下吧!大家可以一边看,一边随着画面和音乐表演。(课件演示)现在是0时,在睡梦中我们开始了新的一天。

  师:(钟面显示早晨6时45分)天亮了,太阳升起来了,现在是什么时候?小女孩在做什么?

  师:(钟面显示上午10时15分)现在是什么时候?小女孩在做什么?

  师:(钟面显示中午12时)时间真快,现在是什么时候?到吃午饭的时间了。

  师:(钟面显示下午3时30分)小女孩和同学们在跳绳。

  师:(钟面显示下午6时)现在是什么时候?到吃晚饭的时间了。

  师:(钟面显示晚上7时25分)现在是什么时候?小女孩在做什么?

  师:大家在睡梦中,时间又不知不觉到了什么时候?(夜里12时)到了夜里12时,这一天就结束了,新的一天又开始了!

七年级数学教案13

  1.教学重点、难点

  重点:列代数式。

  难点:弄清楚语句中各数量的意义及相互关系。

  2.本节知识结构:

  本小节是在前面代数式概念引出之后,具体讲述如何把实际问题中的数量关系用代数式表示出来。课文先进一步说明代数式的概念,然后通过由易到难的三组例子介绍列代数式的方法。

  3.重点、难点分析:

  列代数式实质是实现从基本数量关系的语言表述到代数式的一种转化。列代数式首先要弄清语句中各种数量的意义及其相互关系,然后把各种数量用适当的字母来表示,最后再把数及字母用适当的运算符号连接起来,从而列出代数式。

  如:用代数式表示:比 的2倍大2的数。

  分析 本题属于“…比…多(大)…或…比…少(小)”的类型,首先要抓住这几个关键词。然后从中找出谁是大数,谁是小数,谁是差。比的2倍大2的数换个方式叙述为所求的数比的2倍大2。大和比前边的量,即所求的数为大数,那么比和大之间量,即 的2倍则为小数,大后边的'量2即为差。所以本小题是已知小数和差求大数。因为大数=小数+差,所以所求的数为:2 +2.

  4.列代数式应注意的问题:

  (1)要分清语言叙述中关键词语的意义,理清它们之间的数量关系。如要注意题中的“大”,“小”,“增加”,“减少”,“倍”,“倒数”,“几分之几”等词语与代数式中的加,减,乘,除的运算间的关系。

  (2)弄清运算顺序和括号的使用。一般按“先读先写”的原则列代数式。

  (3)数字与字母相乘时数字写在前面,乘号省略不写,字母与字母相乘时乘号省略不写。

  (4)在代数式中出现除法时,用分数线表示。

  5.教法建议:

  列代数式是本章教学的一个难点,学生不容易掌握,这样老师在上课时,首先要让学生理解代数式的本质,弄清语句中各种数量的意义及其相互关系,然后设计一定数量的练习题,由易到难,螺旋式上升,使学生能够正确列出代数式。

七年级数学教案14

  一、素质教育目标

  (一)知识教学点

  1.理解有理数乘方的意义.

  2.掌握有理数乘方的运算.

  (二)能力训练点

  1.培养学生观察、分析、比较、归纳、概括的能力.

  2.渗透转化思想.

  (三)德育渗透点:培养学生勤思、认真和勇于探索的精神.

  (四)美育渗透点

  把记成,显示了乘方符号的简洁美.

  二、学法引导

  1.教学方法:引导探索法,尝试指导,充分体现学生主体地位.

  2.学生学法:探索的性质→练习巩固

  三、重点、难点、疑点及解决办法

  1.重点:运算.

  2.难点:运算的符号法则.

  3.疑点:①乘方和幂的区别.

  ②与的区别.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪、自制胶片.

  六、师生互动活动设计

  教师引导类比,学生讨论归纳乘方的概念,教师出示探索性练习,学生讨论归纳乘方的性质,教师出示巩固性练习,学生多种形式完成.

  七、教学步骤

  (一)创设情境,导入 新课

  师:在小学我们已经学过:记作,读作的平方(或的二次方);记作,读作的立方(或的三次方);那么可以记作什么?读作什么?

  生:可以记作,读作的四次方.

  师:呢?

  生:可以记作,读作的五次方.

  师:(为正整数)呢?

  生:可以记作,读作的次方.

  师:很好!把个相乘,记作,既简单又明确.

  【教法说明】教师给学生创设问题情境,鼓励学生积极参与,大大调动了学生学习的积极性.同时,使学生认识到数学的发展是不断进行推广的,是由计算正方形的面积得到的,是由计算正方体和体积得到的,而,……是学生通过类推得到的`.

  师:在小学对底数,我们只能取正数.进入中学以后我们学习了有理数,那么还可取哪些数呢?请举例说明.

  生:还可取负数和零.例如:0×0×0记,(-2)×(-2)×(-2)×(-2)记作.

  非常好!对于中的,不仅可以取正数,还可以取0和负数,也就是说可以取任意有理数,这就是我们今天研究的课题:(板书).

  【教法说明】对于的范围,是在教师的引导下,学生积极动脑参与,并且根据初一学生的认知水平,分层逐步说明可以取正数,可以取零,可以取负数,最后总结出可以取任意有理数.

  (二)探索新知,讲授新课

  1.求个相同因数的积的运算,叫做乘方.

  乘方的结果叫做幂,相同的因数叫做底数,相同的因数的个数叫做指数.一般地,在中,取任意有理数,取正整数.

  注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.

  巩固练习(出示投影1)

  (1)在中,底数是__________,指数是___________,读作__________或读作___________;

  (2)在中,-2是__________,4是__________,读作__________或读作__________;

  (3)在中,底数是_________,指数是__________,读作__________;

  (4)5,底数是___________,指数是_____________.

  【教法说明】此组练习是巩固乘方的有关概念,及时反馈学生掌握情况.(2)、(3)小题的区别表示底数是-2,指数是4的幂;而表示底数是2,指数是4的幂的相反数.为后面的计算做铺垫.通过第(4)小题指出一个数可以看作这个数本身的一次方,如5就是,指数1通常省略不写.

  师:到目前为止,对有理数业说,我们已经学过几种运算?分别是什么?其运算结果叫什么?

  学生活动:同学们思考,前后桌同学互相讨论交流,然后举手回答.

  生:到目前为止,已经学习过五种运算,它们是:

  运算:加、减、乘、除、乘方;

  运算结果:和、差、积、商、幂;

  教师对学生的回答给予评价并鼓励.

  【教法说明】注重学生在认知过程中的思维.主动参与,通过学生讨论、归纳得出的知识,比教师的单独讲解要记得牢,同时也培养学生归纳、总结的能力.

  师:我们知道,乘方和加、减、乘、除一样,也是一种运算,如何进行乘方运算?请举例说明.

  学生活动:学生积极思考,同桌相互讨论,并在练习本上举例.

  【教法说明】通过学生积极动脑,主动参与,得出可以利用有理数的乘法运算来进行有理数乘方的运算.向学生渗透转化的思想.

  2.练习:(出示投影2)

  计算:1.(1)2, (2), (3), (4).

  2.(1),,,.

  (2)-2,,.

  3.(1)0, (2), (3), (4).

  学生活动:学生独立完成解题过程,请三个学生板演,教师巡回指导,待学生完成后,师生共同评价对错,并予以鼓励.

  师:请同学们观察、分析、比较这三组题中,每组题中底数、指数和幂之间有什么联系?

  先让学生独立思考,教师边巡视边做适当提示.然后让学生讨论,老师加入某一小组.

  生:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数,零的任何次幂都是零.

  师:请同学们继续观察与,与中,底数、指数和幂之间有何联系?你能得出什么结论呢?

  学生活动:学生积极思考,同桌之间、前后桌之间互相讨论.

  生:互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.

  师:请同学思考一个问题,任何一个数的偶次幂是什么数?

  生:任何一个数的偶次幂是非负数.

  师:你能把上述结论用数学符号表示吗?

  生:(1)当时,(为正整数);

  (2)当

  (3)当时,(为正整数);

  (4)(为正整数);

  (为正整数);

  (为正整数,为有理数).

  【教法说明】教师把重点放在教学情境的设计上,通过学生自己探索,获取知识.教师要始终给学生创造发挥的机会,注重学生参与.学生通过特殊问题归纳出一般性的结论,既训练学生归纳总结的能力和口头表达的能力,又能使学生对法则记得牢,领会的深刻.

七年级数学教案15

  教学目标

  1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;

  2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;

  3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。

  教学难点 数轴的概念和用数轴上的点表示有理数

  知识重点

  教学过程(师生活动) 设计理念

  设置情境

  引入课题 教师通过实例、课件演示得到温度计读数.

  问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?

  (多媒体出示3幅图,三个温度分别为零上、零度和零下)

  问题2:在一条东西向的马路上,有一个汽车站,汽车站东3 m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.

  (小组讨论,交流合作,动手操作) 创设问题情境,激发学生的学习热情,发现生活中的数学

  点表示数的感性认识。

  点表示数的理性认识。

  合作交流

  探究新知 教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?

  让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?

  从而得出数轴的三要素:原点、正方向、单位长度 体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。

  从游戏中学数学 做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第3个同学为原点,游戏还能进行吗? 学生游戏体验,对数轴概念的理解

  寻找规律

  归纳结论 问题3:

  1, 你能举出一些在现实生活中用直线表示数的实际例子吗?

  2, 如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?

  3, 哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?

  4, 每个数到原点的距离是多少?由此你会发现了什么规律?

  (小组讨论,交流归纳)

  归纳出一般结论,教科书第12的归纳。 这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。

  巩固练习

  教科书第12页练习

  小结与作业

  课堂小结 请学生总结:

  1, 数轴的三个要素;

  2, 数轴的作以及数与点的.转化方法。

  本课作业 1, 必做题:教科书第18页习题1.2第2题

  2,选做题:教师自行安排

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1, 数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

  2, 教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

  3, 注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

【七年级数学教案】相关文章:

数学教案圆的周长10-22

线段,直线,射线数学教案10-29

比的基本性质数学教案11-06

角的比较数学教案(精选10篇)11-18

函数解析式的求法数学教案11-02

数学教案11~20各数的认识(二)(通用10篇)11-16

小班数学教案《1和许多》(通用15篇)05-28

一年级下册数学教案 《跳绳》09-14

七年级班主任评语11-01

《马》七年级语文教案10-29