现在位置:范文先生网>教案大全>数学教案>七年级数学教案>七年级数学教案

七年级数学教案

时间:2022-12-22 08:36:39 七年级数学教案 我要投稿

【热】七年级数学教案

  在教学工作者开展教学活动前,很有必要精心设计一份教案,教案有利于教学水平的提高,有助于教研活动的开展。快来参考教案是怎么写的吧!以下是小编收集整理的七年级数学教案,希望能够帮助到大家。

【热】七年级数学教案

七年级数学教案1

  教学目标

  1. 使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来;

  2. 初步培养学生观察、分析和抽象思维的能力.

  教学重点和难点

  重点:列代数式.

  难点:弄清楚语句中各数量的意义及相互关系.

  课堂教学过程设计

  一、从学生原有的认知结构提出问题

  1?用代数式表示乙数:(投影)

  (1)乙数比x大5;(x+5)

  (2)乙数比x的2倍小3;(2x-3)

  (3)乙数比x的倒数小7;( -7)

  (4)乙数比x大16%?((1+16%)x)

  (应用引导的方法启发学生解答本题)

  2?在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式?本节课我们就来一起学习这个问题?

  二、讲授新课

  例1 用代数式表示乙数:

  (1)乙数比甲数大5; (2)乙数比甲数的2倍小3;

  (3)乙数比甲数的倒数小7; (4)乙数比甲数大16%?

  分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数?

  解:设甲数为x,则乙数的代数式为

  (1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x?

  (本题应由学生口答,教师板书完成)

  最后,教师需指出:第4小题的答案也可写成x+16%x?

  例2 用代数式表示:

  (1)甲乙两数和的2倍;

  (2)甲数的 与乙数的 的差;

  (3)甲乙两数的平方和;

  (4)甲乙两数的和与甲乙两数的差的积;

  (5)乙甲两数之和与乙甲两数的差的积?

  分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式?

  解:设甲数为a,乙数为b,则

  (1)2(a+b); (2) a- b; (3)a2+b2;

  (4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)?

  (本题应由学生口答,教师板书完成)

  此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律?但a与b的差指的是(a-b),而b与a的差指的是(b-a)?两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序?

  例3 用代数式表示:

  (1)被3整除得n的数;

  (2)被5除商m余2的数?

  分析本题时,可提出以下问题:

  (1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?

  (2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?

  解:(1)3n; (2)5m+2?

  (这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)?

  例4 设字母a表示一个数,用代数式表示:

  (1)这个数与5的和的3倍;(2)这个数与1的差的 ;

  (3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的 的和?

  分析:启发学生,做分析练习?如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”?

  解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4) a2+ a?

  (通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力?)

  例5 设教室里座位的行数是m,用代数式表示:

  (1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?

  (2)教室里座位的行数是每行座位数的 ,教室里总共有多少个座位?

  分析本题时,可提出如下问题:

  (1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

  (2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

  (3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)

  解:(1)m(m+6)个; (2)( m)m个?

  三、课堂练习

  1?设甲数为x,乙数为y,用代数式表示:(投影)

  (1)甲数的2倍,与乙数的 的和; (2)甲数的 与乙数的3倍的差;

  (3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的`差除以甲乙两数的积的商?

  2?用代数式表示:

  (1)比a与b的和小3的数; (2)比a与b的差的一半大1的数;

  (3)比a除以b的商的3倍大8的数; (4)比a除b的商的3倍大8的数?

  3?用代数式表示:

  (1)与a-1的和是25的数; (2)与2b+1的积是9的数;

  (3)与2x2的差是x的数; (4)除以(y+3)的商是y的数?

  〔(1)25-(a-1); (2) ; (3)2x2+2; (4)y(y+3)?〕

  四、师生共同小结

  首先,请学生回答:

  1?怎样列代数式?2?列代数式的关键是什么?

  其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:

  (1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);

  (2)要善于把较复杂的数量关系,分解成几个基本的数量关系;

  (3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备?要求学生一定要牢固掌握?

  五、作业

  1?用代数式表示:

  (1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?

  (2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?

  2?已知一个长方形的周长是24厘米,一边是a厘米,

  求:(1)这个长方形另一边的长;(2)这个长方形的面积.

  学法探究

  已知圆环内直径为acm,外直径为bcm,将100个这样的圆环一个接着一个环套环地连成一条锁链,那么这条锁链拉直后的长度是多少厘米?

  分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看 有没有规律.

  当圆环为三个的时候,如图:

  此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:

  解:

  =99a+b(cm)

七年级数学教案2

  [教学目标]

  1. 通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力

  2. 在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题

  [教学重点与难点]

  重点:邻补角与对顶角的概念.对顶角性质与应用

  难点:理解对顶角相等的性质的探索

  [教学设计]

  一.创设情境 激发好奇 观察剪刀剪布的过程,引入两条相交直线所成的角

  在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。

  观察剪刀剪布的过程,引入两条相交直线所成的角。

  学生观察、思考、回答问题

  教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?

  教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题,

  二.认识邻补角和对顶角,探索对顶角性质

  1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配

  共能组成几对角?根据不同的位置怎么将它们分类?

  学生思考并在小组内交流,全班交流。

  当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用

  几何语言准确表达;

  有公共的顶点O,而且 的两边分别是 两边的反向延长线

  2.学生用量角器分别量一量各角的'度数,发现各类角的度数有什么关系?

  (学生得出结论:相邻关系的两个角互补,对顶的两个角相等)

  3学生根据观察和度量完成下表:

  两条直线相交 所形成的角 分类 位置关系 数量关系

  教师提问:如果改变 的大小,会改变它与其它角的位置关系和数量关系吗?

  4.概括形成邻补角、对顶角概念和对顶角的性质

  三.初步应用

  练习:

  下列说法对不对

  (1) 邻补角可以看成是平角被过它顶点的一条射线分成的两个角

  (2) 邻补角是互补的两个角,互补的两个角是邻补角

  (3) 对顶角相等,相等的两个角是对顶角

  学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象

  四.巩固运用例题:如图,直线a,b相交, ,求 的度数。

  [巩固练习](教科书5页练习)已知,如图, ,求: 的度数

  [小结]

  邻补角、对顶角.

  [作业]课本P9-1,2P10-7,8

七年级数学教案3

  教学目标:

  (1)透彻理解、掌握一元二次方程、一元二次不等式与二次函数的内在联系,会解一元二次不等式;

  (2)培养学生数学的数形结合思想和转化能力,学会主动探求问题和寻找解决问题的方法。

  教学重点:一元二次不等式的解法(图象法)

  教学难点:

  (1)一元二次方程、一元二次不等式与二次函数的关系;

  (2)数形结合思想的渗透

  教学方法与教学手段:

  尝试探索教学法、归纳概括。

  教学过程:

  一、复习引入

  1.复习一元一次方程、一元一次不等式与一次函数的关系

  [师]前面我们已经学习了绝对值不等式的解法,今天开始研究一元二次不等式的解法。(板书课题)记得在初中我们已学习了一元一次不等式的解法,还记得是用什么方法解的吗?

  学生可能回答是代数方法,也可能说是利用直线图象。

  [师]初中学习了一次函数的图象,使得我们对一元一次不等式的解法有了更深入的了解。首先请同学们画出 y=2x-7

  [师]请同学们画出图象,并回答问题。

  一次函数y=2x-7的图象如下:

  填表:

  当x 时,y = 0,即 2x-7 0;

  当x 时,y < 0,即 2x-7 0;

  当x 时,y > 0,即 2x-7 0;

  注:(1)引导学生由图象得出结论(数形结合)

  (2)由学生填空(一边演示y<0,y>0部分图象)

  从上例的特殊情形,你能得出什么结论?

  注:教师引导下学生发现其结论,并由学生尝试叙述:一元一次方程ax+b=0的根实质上就是直线y=ax+b与x轴交点的横坐标;一元一次不等式ax+b>0(或ax+b<0)的解集实质上就是使得函数的图象在x轴上方还是下方时x的取值范围。

  2.新课导入

  [师]我们可以利用一次函数的图象快速准确地求出一元一次不等式的解集,那能否也可以借助二次函数的图象来解一元二次不等式呢?

  二、讲解新课

  1、一元二次不等式解法的探索

  [师] 你知道二次函数的草图是怎样画出的吗?(用"特殊点法"而非课本上的"列表描点法")你能回答以下问题吗?二次函数 y=x2-4x+3的图象如下:

  填表:方程x2-4x+3=0(即y=0)的解是

  不等式x2-4x+3>0(即y>0)的`解集是

  不等式x2-4x+3<0(即y<0)的解集是

  注:学生类比前面的知识,能根据二次函数的图象确定与x轴的交点,确定对应的一元二次方程的根,从而确定一元二次不等式的解集。(边说边画y>0,y<0部分图象)

  [师]现在如果我变动这条抛物线,请大家观察抛物线与x轴的交点有何变化?

  注:引导学生发现一元二次方程的根有三种情况,其对应的二次函数图象与x轴的位置关系也有三种情况,是由 >0, =0,<0来确定的。

  2、讲解例题

  [师]接下来请同学们再来分析几个具体例子

  (板书)例:解下列各不等式

  (1)2x2-3x-2>0;

  (2) -3x2+6x>2;

  (3)4x2-4x+1>0;

  (4)-x2+2x-3>0.

  注:跟学生共同详细分析(1),强调解题规范性,其余(2)(3)(4)由学生完成,并小组讨论。

  解:(1)方程2x2-3x-2=0的两根为x1=- 或 x2=2,(画草图,结合图象)

  所以原不等式的解集是{x| x<- x="">2 }

  四、课后作业:书P21/习题1.5/1.3.5.6

  五、教学设计说明:

  1、本节课教学设计力图体现以学生发展为本,遵循学生的认知规律,体现循序渐进的教学原则,通过对原有知识的复习,引导学生类比探索新的知识,激发学生的求知欲望,调动学生的积极性。

  2、本节课采用在教师引导下启发学生探索发现,体会解题过程中形结合思想方法,使之获得内心感受。

  3、本节课的重点是利用图象解一元二次不等式,让学生明确一元二次方程、一元二次不等式与二次函数之间的联系。在思维训练方面,注重从特殊到一般,从具体到抽象思维的培养。归纳总结可以训练学生的收敛思维,有助于完善学生的思维结构。

  4、本节课的例题及课堂练习是课本上的习题,其目的在于落实基础,提高运算能力。

七年级数学教案4

  一、 教学目标

  1、 在了解相反意义量的基础上,使学生了解正负数的概念和学习正负数的意义。

  2、 使学生能正确判断一个数是正数还是负数,明确零既不是正数也不是负数。

  3、 学会用正负数表示实际问题中具有相反意义的量。

  二、 教学重点和难点

  重点:正负数的概念

  难点:负数的概念

  三、 教具

  投影片、实物投影仪

  四、 教学内容

  (一 )引入

  师:我们知道,为了表示物体的个数和事物的顺序,产生了1,2,3,4……这些数,我们把它叫做什么数?

  生:自然数

  师:为了表示“没有”,又引入了一个什么数?

  生:自然数0

  师:当测量和计算的结果不是整数时,又引进了什么数?

  生:分数(小数)

  师:可见数的概念是随着生产和生活的需要而不断发展的。请同学们想一想,在现实生活中是否还存在着别类型的数呢?如吐鲁番盆地最低处低于海平面155米,世界最高峰珠穆朗玛高出海平面8848.13米,我市某天最高气温是零上8摄氏度。

  请学生用数表示这些量,遭遇表示困难。

  师:为了能表示这些量,我们需要引入一种新数这就是本节课所要学习的内容。[板书:1、1正数与负数]

  (二)新课教学

  1、 相反意义的量

  师:在现实生活中,我们常常遇到一些具有相反意义的量,比如:(投影片显示)

  (1) 汽车向东行驶2.5千米和向西行驶1.5千米;

  (2) 气温从零上6摄氏度下降到零下6摄氏度;

  (3) 风筝上升10米或下降5米。

  引导学生明确具有相反意义的量的特征:(1)有两个量 (2)有相反的意义

  请学生举出一些相反意义的量的实例。

  教师归结:相反意义中的一些常用词有:盈利与亏损,存入与支出,增加与减少,运进与运出,上升与下降等。

  2、 正数与负数

  师:用小学里学过的数能表示这些具有相反意义的量吗?如何来表示具有相反意义的量呢?

  由师生讨论后得出:我们把一种意义的量规定为正的,用“+”(读作正)号来表示,同时把另一种与它相反意义的量规定为负的',用“-”(读作负)号来表示。

  师:例如,如果零上6℃记作+6℃(读作正6摄氏度),那么零下6℃记作-6℃(读作负6摄氏度),请同学们用同样的方法表示(1)、(2)两题。

  生:(1)如果向东行驶2.5千米记作+2.5千米(读作正2.5千米),那么向西行驶1.5千米记作-1.5千米(读作负1.5千米);(2)如果上升10米记作+10米(读作正10米),那么下降5米记作-5米(读作负5米)。

  师:像+6,+10,+2.5等前面放有“+”号的数叫做正数,像-6,-5,-1.5等前面放有“-”号的数叫做负数。正号可以省略不写,如+5可以写成5,但负数的负号能省略不写吗?

  生:(讨论后得出)不能。

  师:(以温度计为例)温度计中的0不是表示没有温度,它通常表示水结成冰时的温度,是零上温度与零下温度的分界点,因此得出:零既不是正数也不是负数。

  (三)、练习

  1、 学生完成课本第4页练习1,2,3

  2、 补充练习

  (1)在-2,+2.5,0, ,-0.35,11中,正数是 ,负数是 ;

  (2)如果向东为正,那么走-50米表示什么意思?如果向南为正,那么走-50米又表示什么意思?

  (3)欧洲人以地面一层记为0,那么1楼、2楼、3楼……就表示为0,1,2……那么地下第二层表示为 。

  (四)小结

  1、 引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示。

  2、 在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定。

  3、 要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与小学里学过的数有很大的区别。

  (五)作业

  见作业1.1节作业。

七年级数学教案5

  一、素质教育目标

  (一)知识教学点

  1.使学生理解近似数和有效数字的意义

  2.给一个近似数,能说出它精确到哪一痊,它有几个有效数字

  3.使学生了解近似数和有效数字是在实践中产生的.

  (二)能力训练点

  通过说出一个近似数的精确度和有效数字,培养学生把握关键字词,准确理解概念的能力.

  (三)德育渗透点

  通过近似数的学习,向学生渗透具体问题具体分析的辩证唯物主义思想

  (四)美育渗透点

  由于实际生活中有时要把结果搞得准确是办不到的或没有必要,所以近似数应运而生,近似数和准确数给人以美的享受.

  二、学法引导

  1.教学方法:从实际问题出发,启发引导,充分体现学生为主全,注重学生参与意识

  2.学生学法,从身边找出应用近似数,准确数的例子→近似数概念→巩固练习

  三、重点、难点、疑点及解决办法

  1.重点:理解近似数的精确度和有效数字.

  2.难点:正确把握一个近似数的精确度及它的有效数字的个数.

  3.疑点:用科学记数法表示的近似数的精确度和有效数字的个数.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪,自制胶片

  六、师生互动活动设计

  教者提出生活中应用准确数和近似数的例子,学生讨论回答,学生自己找出类似的例子,教者提出精确度和有效数字的概念,教者提出近似数的有关问题,学生讨论解决.

  七、教学步骤

  (一)提出问题,创设情境

  师:有10千克苹果,平均分给3个人,应该怎样分?

  生:平均每人千克

  师:给你一架天平,你能准确地称出每人所得苹果的千克数吗?

  生:不能

  师:哪怎么分

  生:取近似值

  师:板书课题

  【教法说明】通过提出实际问题,使学生认识到研究近似数是必须的,是自然的,从而提高学生近似数的积极性

  (二)探索新知,讲授新课

  师出示投影1

  下列实际问题中出现的数,哪些是精确数,哪些是近似数.

  (1)初一(1)有55名同学

  (2)地球的半径约为6370千米

  (3)中华人民共和国现在有31个省级行政单位

  (4)小明的身高接近1.6米

  学生活动:回答上述问题后,自己找出生活中应用准确数和近似数的例子.

  师:我们在解决实际问题时,有许多时候只能用近似数你知道为什么吗?

  启发学生得出两方面原因:1.搞得完全准确有时是办不到的,2.往往也没有必要搞得完全准确.

  以开始提出的问题为例,揭示近似数的.有关概念

  板书:

  1.精确度

  2.有效数字:一般地,一个近似数,四舍五入到哪一位,就说这个数精确到哪一位,这时,从左边第一个不是0的数字起,到精确的数位止,所有的数字,都叫做这个数的有效数字.

  例如:3.3有二个有效数字

  3.33有三个有效数字

  讨论:近似数0.038有几个有效数字,0.03080呢?

  【教法说明】通过讨论学生明确近似数的有效数字需注意的两点:一是从左边第一个不是零的数起;二是从左边第一个不是零的数起,到精确的位数止,所有的数字,教者在有效数字概念对应的文字底下画上波浪线,标上①、②

  例1.(出示投影2)

  下列由四舍五入吸到近似数,各精确到哪一位,各有哪几个有效数字?

  (1)43.8(2).03086(3)2.4万

  学生口述解题过程,教者板书.

  对于近似数2.4万学生又能认为是精确到十分位,这时可组织学生讨论近似数与5.4和近似数5.4万中的两个4的数位有什么不同,从而得出正确的答案.

  【教法说明】对于疑点问题,通过启发讨论,适时点拨,远比教者直接告诉正确答案,理解深刻得多.

  巩固练习见课本122页练习2、3页

  例2(出示投影3)

  下列由四舍五入得来的近似数,各精确到哪一位,各有几个有效数字?

七年级数学教案6

  【教学目标】

  知识与技能:了解并掌握数据收集的基本方法。

  过程与方法:在调查的过程中,要有认真的态度,积极参与。

  情感、态度与价值观:体会统计调查在解决实际问题中的作用,逐步养成用数据说话的良好习惯。

  【教学重难点】

  重点:掌握统计调查的基本方法。

  难点:能根据实际情况合理地选择调查方法。

  【教学过程】

  讲授新课

  像前面提到的收集数据的活动中,全班同学是我们要考察的对象,我们采用问卷对全体同学作了逐一调查,像这样对全体对象进行的调查叫做全面调查。

  调查、试验如采用普查可以收集到较全面、准确的数据,但普查的工作量比较大,有时受客观条件(人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采用。在这些情况下,常常采用抽样调查,即从被考察的'全体对象中抽出一部分对象进行考察的调查方式。

  在一个统计问题中,我们把所要考察对象的全体叫做总体,其中的每一个考察对象叫做个体,从总体中所抽取的一部分个体叫做总体的一个样本(sample),样本中个体的数目叫做样本容量。

  例如,在通过试验考察500只新工艺生产的灯泡的使用寿命时,从中抽取50只进行试验。这500只灯泡的使用寿命的全体是总体,其中每只灯泡的使用寿命是个体,抽取的50只灯泡的使用寿命是一个样本,50是这个样本的样本容量。

  为了使抽取的50只灯泡能很好地反映500只灯泡的情况,抽取时要使每只灯泡逐一进行编号,再把编号写在小纸片上,将小纸片揉成团,放在一个不透明的容器内,充分搅拌后,从中一个个地抽取50个号签。

  上面抽取样本的过程中,总体中的各个个体都有相等的机会被抽到,像这样的抽样方法是一种简单随机抽样。

  师:以“你知道父母的生日吗?”为题在班级进行调查,请设计一张问卷调查表。

  学生小组合作、讨论,学生代表展示结果。

  教师指导、评论。

  师:除了问卷调查外,我们还有哪些方法收集到数据呢?

  学生小组讨论、交流,学生代表回答。

  师:收集数据的直接方法有访问、调查、观察、测量、试验等,间接方法有查阅资料、上网查询等。就以下统计的数据,你认为选择何种方法去收集比较合适?

  (1)你班中的同学是如何安排周末时间的?

  (2)我国濒临灭绝的植物数量;

  (3)某种玉米种子的发芽率;

  (4)学校门口十字路口每天7:00~7:10时的车流量。

七年级数学教案7

  学生很容易解决,相互交流,自我评价,增强学生的主人翁意识。

  3、电脑演示:

  如下图,第一行的图形绕虚线旋转一周,便能形成第二行的某个几何体,用线连一连。

  由平面图形动成立体图形,由静态到动态,让学生感受到几何图形的奇妙无穷,更加激发他们的好奇心和探索欲望。

  四、做一做(实践)

  1、用牙签和橡皮泥制作球体和一些柱体和锥体,看哪些同学做得比较标准。

  2、使出事先准备好的`等边三角形纸片,试将它折成一个正四面体。

  五、试一试(探索)

  课前,发给学生阅读材料《晶体--自然界的多面体》,让学生通过阅读了解什么是正多面体,正多面体是柏拉图约在公元400年独立发现的,在这之前,埃及人已经用于建筑(埃及金字塔),以此激励学生探索的欲望。

  教师出示实物模型:正四面体、正方体、正八面体、正十二面体、正二十面体

  1、以正四面体为例,说出它的顶点数、棱数和面数。

  2、再让学生观察、讨论其它正多面体的顶点数、棱数和面数。将结果记入书上的P128的表格。引导学生发现结论。

  3、(延伸):若随意做一个多面体,看看是否还是那个结果。

  学生在探索过程中,可能会遇到困难,师生可以共同参与,适当点拨,归纳出欧拉公式,并介绍欧拉这个人,进行科学探索精神教育,充分挖掘学生的潜能,让学生积极参与集体探讨,建立良好的相互了解的师生关系。

  六、小结,布置课后作业:

  1、用六根火柴:①最多可以拼出几个边长相等的三角形?②最多可以拼出如图所示的三角形几个?

  2、针对我校电脑室对全体学生开放的优势,教师告诉学生网址,让学生从网上学习正多面体的制作。

  让学生去动手操作,根据自身的能力,充分发挥创造性思维,培养学生的创新精神,使每个学生都能得到充分发展。

七年级数学教案8

  【教材简析】

  本节内容是在学生掌握了分数乘法和分数除以整数的计算方法基础上继续探索一个数除以分数的计算方法。例2结合整数除法的问题,“每人吃2个,可以分给几人?”激活学生对除法数量关系的回忆,并用这个数量系列出求吃 1/2个、1/3个、1/4 个,可以分给几人的算式,然后通过观察、操作探索出一个数的几分之一就等于这个数乘以几分之一的倒数。例3是对一个数除以几分之一方法的拓展。通过在条形图上分一分,让学生直接得到4÷2/3 的结果,再利用例2得到的方法算一算,发现结果是相同的。最后,通过对两个例题的比较,归纳出整数除以分数的方法。练一练和练习十一的5——8主要是让学生巩固新学的计算方法,并与分数乘法和前一节课分数除以整数的方法作对比,沟通新旧知识的联系,形成较完整的知识体系。

  【教学目标】

  1、使学生经历探索整数除以分数计算方法的过程,理解并掌握整数除以分数的计算方法,能正确计算整数除以分数的式题。

  2、使学生在探索整数除以分数计算方法的过程中,进一步体会猜想——验证的数学思想方法。

  3、使学生在学习活动中,进一步感受数学学习的挑战性,体验成功的乐趣,增强学好数学的自信心。

  【教具准备】

  课件

  【教学过程】

  一、谈话导入

  同学们,吃是为了汲取生理上的营养,学是为了汲取精神上的养份。今天,我们采用“边品边学”的方式,学习“整数除以分数”。

  揭题:整数除以分数

  二、提出猜想

  1、谈话:老师带来了同样大小的4个橙子(媒体呈现)

  如果每人吃2个,可以分给几人怎么列式?

  学生口头列式。

  提问:为什么用4÷2计算呢?

  学生回答后,师小结:也就是说把4个橙子,按2个一份平均分,可以用除法计算。

  问:如果每人吃一个呢?

  学生口头列式。

  2、出示:如果“每人吃1/2 个,可以分给几人”又怎么列式?

  学生口头列式,教师板书:4÷1/2

  追问:为什么用除法计算?

  学生回答后,师小结:就是把4个橙子,按 个一份平均分,因此也是用除法计算(课件出示)

  3、谈话:请看屏幕,从图中你数出4÷1/2 得多少?(教师随学生回答板书4÷1/2 =8)

  提问:从这幅图中,你还能想到什么?

  (一个橙子分给2个人,4个橙子就能分给8个人。)

  学生回答,教师恰当评价。

  教师针对学生的回答,继续提问:如果这样想又怎样列式?(教师板书4×2=8)

  4、思考:仔细对比这两个式子,你有什么发现?

  学生先独立思考,再在小组里交流自己的想法。

  反馈时恰当评价。(教师板书4÷1/2 = 4×2)

  三、进行验证

  (一)验证一

  过渡:是不是所有的整数除以分数都能用以上几个同学说的方法做呢?这只是我们的猜想,还需进一步验证。(板书猜想、验证)

  1、出示:如果每人吃1/4 1/4个,可以分给几人?

  学生口头列式

  提问:按刚才的方法,可以怎么计算?结果是多少?

  (学生回答,教师板书4÷1/4 =4×4=16)

  谈话:结果是否正确,我们来验证一下

  请每个同学拿出4个同样大小的圆片代表橙子,用笔分一分。

  学生操作,教师巡视指导。

  反馈:你是怎么分的,分得结果是多少?(随学生利用实物投影仪演示)

  小结:操作的结果和刚才计算的结果是一样的。

  2、出示:如果每人吃1/3 1/3个呢?

  请学生先列式计算,用圆纸片分一分的方法求证结果是否正确。

  反馈交流(辅以电脑演示)

  小结:通过验证,再次证明了刚才的猜想是正确的。

  (二)验证二

  过渡:刚才研究的都是整数除以几分之一的'题目,整数除以几分之几的题目,有没有类似的规律,我们继续探索。

  1、出示例3(电脑出现图示)

  提问:怎么理解2/3 米?

  2、让学生独立列式算一算。

  3、学生做好后追问:这个结果是否正确,请同学们打开书57也在例3的图中动笔分一分进行验证。

  4、学生独立思考后在小组里交流,全班反馈时指名学生在投影仪下演示。

  四、获得结论

  1、观察比较

  学生观察黑板上的一些算式:

  4÷ 1/2= 4×2=8

  4÷1/3 =4×3=12

  4÷1/4 =4×4=16

  4÷2/3 =4×3/2 =6

  说说这些乘式中的第二个因数与除式中的除数有什么关系?

  3、思考概括

  通过以上操作活动你认为整数除以分数可以怎样计算? 小组里交流回报。

  五、巩固练习

  过渡:今天的知识大餐你品出了哪些滋味,不妨来回味一番。

  1、填一填 12÷2/3 =12×( 3/2 )=18 9÷6/7 =9×( 7/6 )=21/2

  2、找朋友

  3、练习十一第5题

  先出示前一部分要求,学生想一想后再让学生算一算,体会计算方法的正确性。

  4、算一算 10÷2/5 8÷2/3 3÷6/7 12÷8/7

  说明:转化成乘法后,能约分的要先约分。

  5、算一算、比一比

  (1)逐一出示第一组题,师:老师这儿有一组题,比一比谁算得又快又对。准备笔和草稿纸,算出答案马上举手。

  提问:做这组题要注意什么?

  6、实际问题

  谈话:现在,人们出行都有便利的交通工具,下面是自行车、小轿车、摩托车行使30千米所用时间表,你能求出它们各自的速度吗?

  提示:单位用千米/时

  六、课堂小结

  今天学习了整数除以分数的内容,你有什么收获?

  明天将要学习分数除以分数,你有什么想法呢?

  七、布置作业

  书60页第6题。

七年级数学教案9

  一、教学目标

  1.了解推理、证明的格式,理解判定定理的证法.

  2.掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证.

  3.通过第二个判定定理的推导,培养学生分析问题、进行推理的能力.

  4.使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育.

  二、学法引导

  1.教师教法:启发式引导发现法.

  2.学生学法:积极参与、主动发现、发展思维.

  三、重点·难点及解决办法

  (一)重点

  判定定理的推导和例题的解答.

  (二)难点

  使用符号语言进行推理.

  (三)解决办法

  1.通过教师正确引导,学生积极思维,发现定理,解决重点.

  2.通过教师指导,学生自行完成推理过程,解决难点及疑点.

  四、课时安排

  1课时

  五、教具学具准备

  三角板、投影仪、自制胶片.

  六、师生互动活动设计

  1.通过设计练习,复习基础,创造情境,引入新课.

  2.通过教师指导,学生探索新知,练习巩固,完成新授.

  3.通过学生自己总结完成小结.

  七、教学步骤

  (一)明确目标

  掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力.

  (二)整体感知

  以情境创设,设计悬念,引出课题,以引导学生的`思维,发现新知,以变式训练巩固新知.

  (三)教学过程

  创设情境,复习引入

  师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影).

  学生活动:学生口答第1、2题.

  师:你能说出有什么条件,就可以判定两条直线平行呢?

  学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行.

  教师将第3题图形画在黑板上.

  学生活动:学生口答理由,同角的补角相等.

  师:要求学生写出符号推理过程,并板书.

  【教法说明】

  本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行.第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点.

  师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?

  学生活动:同分内角.

  师:它们有什么关系.

  学生活动:互补.

  师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题.

七年级数学教案10

  第一章教学评价指导

  一、总体设计思路:

  1、通过观察现实生活中的物体,认识基本几何体及点、线、面。

  2、通过展开与折叠活动,认识棱柱的基本性质。

  3、通过展开与折叠、切与截、从不同方向看等数学实践活动,积累数学活动经验。

  4、通过平面图形与空间几何体相互转换的活动过程中,建立空间观念,发展几何直觉。

  5、由空间到平面,认识常见的平面图形.

  ——观察、操作、描述、想象、推理、交流.

  二、总体教学建议:

  1、充分挖掘图形的现实模型,鼓励学生从现实世界中“发现”图形.

  2、充分让学生动手操作、自主探索、合作交流,以积累有关图形的经验和数学活动经验,发展空间观念。

  其中动手操作是学习过程中的重要一环---在学生学习开绐阶段,它可能帮助学生认识图形,发展空间观念,以后,它可以用来验证学生对图形的空间想象。因此,学习之初,教师要鼓励学生先动手、后思考,以后,则鼓励学生先想象,再动手。

  3、教学中应有意识地满足多样化的学习需要,发展学生的个性。

  如开展正方体表面展开、棱柱模型制作等教学。

  几点说明:

  1、为什么安排展开与折叠、切与截、从不同方向看等那么多实践活动,目的是什么?

  2、教学中要处理好动手操作和思考想象的关系?

  3、生活中的立体图形性质的认识过程

  用自己语言充分地描述----点、线、面之间的关系-----通过操作归纳出比较准确的数学语言-------更好地想象图形。

  4、展开与折叠的目的与处理(想和做的关系:先做后想----先想后做)

  三、总体评价建议

  1、关注学生在展开与折叠、切截、从不同方向看等数学活动中空间观念的发展。

  2、关注学生是否能正确认识现实生活中大量存在的柱、锥、球的实物模型。

  3、关注学生在观察、操作、想象等数学活动中的主动参与的程度以及是否愿意与同伴交流各自的想法。

  4、要帮助学生建立自己的数学学习成长记录袋,让他们反思自己的数学学习情况和成长的历程。

  四、每一节的教学目标、重难点、教学建议与评价方法

  第一节:生活中的立体图形

  第一课时:

  教学目标:

  1.经历从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩。

  2.在具体情境中认识圆柱、圆锥、正方体、长方体、棱柱、球,并能用自己的语言描述它们的某些特征。

  3.了解圆柱与圆锥、棱柱与圆柱的相同点和不同点。

  重点:图形的识别。

  难点:图形的分类。

  教学建议:

  1.多给学生创设一些情境,使学生于这些情景中认识棱柱、棱锥、圆锥、球等几何体,学会从复杂的组合图形中把这些图形分离出来,或者让学生辨认复杂图形是由哪些基本图形组合而成的;

  2.这里对图形的认识是初步的,不必给予精确定义。

  评价建议:

  1. 过程性:关注学生从现实世界中抽象出图形的过程,关注学生能否从现实世界中发现图形;

  2.知识性:正确辨认圆柱、圆锥、正方体、长方体、棱柱和球这些几何体,并能用自己的语言描述它们的特征。

  第二课时:

  教学目标:

  1.通过大量的实例, 丰富对点、线、面的认识;

  2.体会点、线、面之间的关系。

  3.会识别平面和曲面、直线和曲线;

  4.了解“点动成线”、“线动成面”、“面动成体”的现象。

  重点:点、线、面的认识。

  难点:用运动的观点描述它们的形成过程。

  教学建议:

  1.几何中的点只有位置,没有大小。当我们把日常生活总的某个物体看作点时,我们只是强调其位置,而忽略了它们的大小。对于线、面亦是如此。在教学时可以通过P5页下面一幅图说说这方面的思想,让学生领会即可;

  2.点、线、面间的关系,书上从静止和运动两个方面来说明的,可让学生多举一些生活中的实例加以说明。

  评价建议:

  1.过程性:关注并鼓励学生参与到课堂活动中来,通过自己的主动思考,体会点、线、面是构成图形的基本元素。

  2.知识性:从静态和动态两个角度了解点、线、面的关系,会识别平面和曲面,直线和曲线。

  第二节:展开与折叠

  第一课时:

  教学目标:

  1.经历折叠、模型制作等活动, 发展空间观念, 积累数学活动经验;

  2.在操作活动中认识棱柱的某些特性;

  3.了解(直)棱柱的侧面展开图, 能根据展开图判断和制作简单的立体模型。

  重点:通过活动认识归纳出棱柱的基本性质, 并能感受到研究空间问题的

  思维方法

  难点:正确判断哪些平面图形可折叠为棱柱

  教学建议:

  1.做一做是了解棱柱特性的一个重要手段,教学时应让学生动手折叠;

  2.建议先让学生观察折叠好的棱柱,说一说棱柱有哪些特点,再根据书上的问题串归纳;

  3.想一想应让学生先猜想说明理由后再操作确认;

  4.棱柱、直棱柱、正棱柱这三个概念不必向学生说明,教师叙述时注意不能混为一谈。

  评价建议:

  1.过程性:关注学生在做一做中动手能力的培养,以及在观察、想象、归 纳等活动中合作交流意识的形成。

  2.知识性:了解棱柱的有关概念以及基本特性,能应用棱柱的基本特性解决图形折叠的某些问题。

  第二课时:

  教学目标:

  1.了解立体图形与平面图形的关系,会把正方体的表面展开为平面图形,进而会把棱柱表面展开成平面图形;

  2.了解圆柱、圆锥的侧面展开图,能根据展开图判断立体模型;

  3.通过展开与折叠实践操作,积累数学活动经验;在平面图形与空间几何体表面转换的过程中,初步建立空间观念,发展几何直觉。

  重点:会把正方体表面展开成平面图形。

  难点:按照预定的形状把正方体展开成平面图形。

  教学建议:

  1.对棱柱的各种展开方式不必求全;

  2.注重对图形的辨别,不必侧重于十一种平面展开图的分类。

  评价建议:

  1.过程性:关注学生在正方体表面展开活动中空间观念的发展,鼓励学生制作长方体、正方体、圆柱和圆锥等几何体的模型。

  2.知识性:能把正方体表面展开成平面图形,了解圆柱、圆锥的侧面展开图。

  第三节:截一个几何体

  教学目标:

  1.通过经历对几何体切截的实践过程,让学生体验面与体之间的转换,探索截面形状与切截方向之间的联系;

  2.于面与体的转换中丰富几何直觉和数学活动经验,发展学生的空间观念和创造性思维能力;

  3.培养学生主动探索、动手实践、勇于发现、合作交流的意识。

  重点:理解截面的含义。

  难点:根据所给的条件做出它的截面。

  教学建议:

  1.由于学生的空间想象能力和识图能力不强,讲截面问题时,必须充分运用实物和动手实验;

  2.由于截面形状与截面的位置密切相关,教学时必须把截面的位置交代清楚。

  评价建议:

  1.过程性:注重学生在对几何体的切截过程中空间观念和创造性思维能力的培养。

  2.知识性:了解截面的意义以及截面的形状是由几何体的`形状与截面的位置决定的。

  第四节:从不同的方向看

  第一课时:

  教学目标:

  1.学生经历从不同方向观察几何物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果,发展空间观念,能与他人的交流过程中,合理清晰地表达自己的思维过程;

  2.能识别简单物体的三视图,体会物体三视图的合理性;

  3.会由实物画立方体及其简单组合的三视图;

  4.渗透图形的二维空间与三维空间的转换。

  重点:体会从不同方向看同一物体可能看到不同的结果。

  难点: 能画立方体及其简单组合的三视图。

  教学建议:

  1.创设丰富的情境,让学生于观察、交流中体会不同方向看某个(或某组)物体时看到的图像可能是不同的;

  2.由于学生想象能力薄弱,建议多利用实物模型帮助学生认识三视图。

  评价建议:

  1.过程性:注重学生通过观察等活动自己认识到同一物体从不同方向看可能看到不同的图形。关注学生用语言清晰表达自己思维过程的能力的培养。

  2. 知识性:认识到从不同的方向观察同一物体时,能看到的图形往往是不同的。正确认识三视图的意义。

  第二课时:

  教学目标:

  1.会画由正方体组成的较复杂图形的各视图;

  2.能根据正方体所搭的几何体的俯视图, 画出相应几何体的主视图和左视图;

  3.会根据(由正方体组成的)物体的三视图去辨认该物体的形状。

  重点:根据主视图、左视图、俯视图相象出实物图形。

  难点:确定组合体中小立方块的个数。

  教学建议:

  1.做一做部分建议按先摆、再看、后画的方式进行处理;

  2.例1建议先让学生猜想,再通过摆一摆验证,最后归纳一般方法。

  评价建议:

  1.过程性:关注学生在画三视图过程中空间想象能力的培养,以及在观察、想象、交流等活动中的主动参与程度。

  2.知识性:会画由立方块组成的简单几何体的三视图,能根据俯视图正确画出主视图和左视图。

  第五节:生活中的平面图形

  教学目标:

  1.经历从现实世界中抽象出平面图形的过程,感受图形世界的丰富多彩;

  2.在具体情境中认识多边形、扇形,了解圆与扇形的关系;

  3.通过对多边形的分割,感受把复杂图形转化为简单图形的方法;

  4.在丰富的活动中发现有条理的思考。

  重点:多边形、弧、扇形的概念。

  难点:把复杂图形转化为简单图形的方法。

七年级数学教案11

  教学目标

  1,通过对数“零”的意义的探讨,进一步理解正数和负数的概念;

  2,利用正负数正确表示相反意义的量(规定了指定方向变化的量)

  3,进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。

  教学难点

  深化对正负数概念的理解

  知识重点

  正确理解和表示向指定方向变化的量

  教学过程(师生活动)

  设计理念

  知识回顾与深化

  回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.这就是说:数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负数的数呢?

  问题1:有没有一种既不是正数又不是负数的数呢?学生思考并讨论.(数0既不是正数又不是负数,是正数和负数的分界,是基准.这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)

  例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数.那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数?

  问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类? “数0耽不是正数,也不是负数”也应看作是负数定义的一部分.在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界.了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理毅概念的建立都有帮助。所举的例子,要考虑学生的可接受性.“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明.这个问题只要初步认识即可,不必深究.

  问题3:教科书第6页例题

  说明:这是一个用正负数描述向指定方向变化情况的例子,通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。

  归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页).

  类似的例子很多,如:水位上升-3m,实际表示什么意思呢?收人增加-10%,实际表示什么意思呢?等等。可视教学中的实际情况进行补充.

  这种用正负数描述向指定方向变化情况的'例子,在实际生活中有广泛的应用,按题意找准哪种意义的量应该用正数表示是解题的关健.这种描述具有相反数的影子,例如第(1)题中小明的体重可说成是减少-2kg,但现在不必向学生提出.

  巩固练习教科书第6页练习

  阅读思考

  教科书第8页阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流

  小结与作业

  课堂小结以问题的形式,要求学生思考交流:

  1,引人负数后,你是怎样认识数0的,数0的意义有哪些变化?

  2,怎样用正负数表示具有相反意义的量?(用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.)

  本课作业1,必做题:教科书第7页习题1.1第3,6,7,8题

  3,选做题:教师自行安排

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1,本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指

  定方向变化的量。

  2,“数0既不是正数,也不是负数,’(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分.在引人负数后,除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助.由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课.

  3,教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解.

  4,本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识.通过实际例子的学习激发学生学习数学的兴趣.

七年级数学教案12

  一、目标

  1.用它们拼成各种形状不同的四边形,并计算它们的周长。

  (鼓励学生把长方形和等腰三角形拼和成各种图形,分别计算出它们的周长和面积)

  2.教师揭示以上这些工作实际上是在进行整式的加减运算

  3.回顾以上过程 思考:整式的加减运算要进行哪些工作?

  生1:“去括号”

  生2:“合并同类项”

  师生小结:整式的加减实际上是“去括号”和“合并同类项”法则的'综合应用,

  二、揭示如何进行整式的加减运算

  1.进行整式的加减运算时,如果有括号先去括号,再合并同类项。

  2.教学例二 例2 求2a2-4a+1与-3a2+2a-5的差.

  (本题首先带领学生根据题意列出式子,强调要把两个代数式看成整体,列式时应加上括号)

  解:(2a2-4a+1)-(-3a2+2a-5)

  =2a2-4a+1+3a2-2a+5

  =5a2-6a+6

  3.拓展练习

  (1)求多项式2x -3 +7与6x -5 -2的和.

  提问:你有哪些计算方法?(可引导学生进行竖式计算,并在练习中注意竖式计算过程中需要注意什么?)

  (2)(-3x2 –x +2)+(4x2 +3x -5) (3)(4a2 -3a )+(2a2 +a -1)

  (4)(x2 +5x –2 )-(x2 +3x -22) (5)2(1-a +a2)-3(2-a –a2)

  4.教学例3

  先化简下式,再求值:

  (做此类题目应先与学生一起探讨一般步骤:

  (1)去括号。

  (2)合并同类项。

  (3)代值)

  解:5(3a2b –ab2)-4(-ab2 +3a2b),其中=-2 ,=3

  =15a2b –5ab2+4ab2 -12a2b)

  =3a2b –ab2

  三、小结

  1.进行整式的加减运算时,如果有括号先去括号,再合并同类项。

  2.进行化简求值计算时

  (1)去括号。

  (2)合并同类项。

  (3)代值

  3.通过本节课的学习你还有哪些疑问?

  四、布置作业

  习题4.5 2. (3) ;4. (2);5.。

  五、课后反思

  省略

七年级数学教案13

  内容:整式的乘法—单项式乘以多项式 P58-59

  课型:新授 时间:

  学习目标:

  1、在具体情景中,了解单项式和多项式相乘的意义。

  2、在通过学生活动中,理解单项式和多项式相乘的法则,会用它们进行计算。

  3、培养学生有条理的思考和表达能力。

  学习重点:单项式乘以多项式的法则

  学习难点:对法则的理解

  学习过程

  1.学习准备

  1.叙述单项式乘以单项式的法则

  2.计算

  (1)(- a2b) ?(2ab)3=

  (2) (-2x2y)2 ?(- xy)-(-xy)3?(-x2)

  3、举例说明乘法分配律的应用。

  2.合作探究

  (一)独立思考,解决问题

  1、 问题: 一个施工队修筑一条路面宽为n m的公路,第一天修筑 a m长,第二天修筑长 b m,第三天修筑长 c m,3天工修筑路面的面积是多少?

  结合图形,完成填空。

  算法一:3天共修筑路面的总长为(a+b+c)m,因为路面的宽为bm,所以3

  天共修筑路面 m2.

  算法二:先分别计算每天修筑路面的面积,然后相加,则3天修路面 m2.

  因此,有 = 。

  3.你能用字母表示乘法分配律吗?

  4.你能尝试单项式乘以多项式的`法则吗?

  (二)师生探究,合作交流

  1、例3 计算:

  (1) (-2x) (-x2?x+1) (2)a(a2+a)- a2 (a-2)

  2、练一练

  (1)5x(3x+4) (2) (5a2? a+1)(-3a)

  (3)x(x2+3)+x2(x-3)-3x(x2?x-1)

  (4)(?a)(-2ab)+3a(ab-b-1))

  (三)学习

  对照学习目标,通过预习,你觉得自己有哪些方面的收获?有什么疑惑?

  (四)自我测试

  1、教科书P59 练习 3,结合解题,单项式乘以多项式的几何意义。

  2、判断题

  (1)-2a(3a-4b) =-6a2-8ab ( )

  (2) (3x2-xy-1) ? x =x3 -x2y-x ( )

  (3)m2- (1- m) = m2- - m ( )

  3、已知ab2=-1,-ab(a2b3-ab3-b)的值等于 ( )

  A. -1 B. 0 C. 1 D. 无法确定

  4、计算(20xx 贺州中考)

  (-2a)?( a3 -1) =

  5、(3m)2(m2+mn-n2)=

  (五)应用拓展

  1、计算

  (1)2a(9a2-2a+3)-(3a2) ?(2a-1)

  (2)x(x-3)+2x(x-3)=3(x2-1)

  2、若一个梯形的上底长(4m+3n)cm,下底长(2m+n)cm,高为3m2n cm,求此梯形的面积。

  3、一块边长为xcm的正方形地砖,因需要被裁掉一块2cm宽的长条,为剩下部分面积是多少?

七年级数学教案14

  教学目标

  1.能够在实际情境中,抽象概括出所要研究的数学问题,增强学生的数感符号感。

  2.在已有的对幂的知识的了解基础之上,通过与同伴合作,经历探索同底数幂乘法运算性质

  过程,进一步体会幂的意义,发展合作交流能力、推理能力和有条理的表达能力。

  3.了解同底数幂乘法的运算性质,并能解决一些实际问题,感受数学与现实生活的密切联系,

  增强学生的数学应用意识,训练他们养成学会分析问题、解决问题的良好习惯。

  教学重点

  同底数幂乘法的运算性质,并能解决一些实际问题。

  教学过程

  一、复习回顾

  活动内容:复习七年级上册数学课本中介绍的有关乘方运算知识:

  二、情境引入

  活动内容:以课本上有趣的天文知识为引例,让学生从中抽象出简单的数学模型,实际在列式计算时遇到了同底数幂相乘的形式,给出问题,启发学生进行独立思考,也可采用小组合作交流的形式,结合学生现有的有关幂的意义的知识,进行推导尝试,力争独立得出结论。

  三、讲授新课

  1.利用乘方的意义,提问学生,引出法则:计算103×102.

  解:103×102=(10×10×10)×(10×10)(幂的意义)

  =10×10×10×10×10(乘法的结合律)=105.

  2.引导学生建立幂的`运算法则:

  将上题中的底数改为a,则有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.

  用字母m,n表示正整数,则有即am·an=am+n.

  3.引导学生剖析法则

  (1)等号左边是什么运算?(2)等号两边的底数有什么关系?

  (3)等号两边的指数有什么关系?(4)公式中的底数a可以表示什么

  (5)当三个以上同底数幂相乘时,上述法则是否成立?

  要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.

  四、应用提高

  活动内容:

  1.完成课本“想一想”:a?a?a等于什么?

  2.通过一组判断,区分“同底数幂的乘法”与“合并同类项”的不同之处。

  3.独立处理例2,从实际情境中学会处理问题的方法。

  4.处理随堂练习(可采用小组评分竞争的方式,如时间紧,放于课下完成)。mnp

  五、拓展延伸

  活动内容:计算:(1)-a2·a6(2)(-x)·(-x)3(3)ym·ym+1(4)??7?8?73

  (5)??6??63(6)??5??53???5?。(7)?a?b???a?b?7542

  2(8)?b?a???a?b?(9)x5·x6·x3(10)-b3·b3

  (11)-a·(-a)3(12)(-a)2·(-a)3·(-a)

  六、课堂小结

  活动内容:师生互相交流总结本节课上应该掌握的同底数幂的乘法的特征,教师对课堂上学生掌握不够牢固的知识进行强调与补充,学生也可谈一谈个人的学习感受。

  七、布置作业

  1.请你根据本节课学习,把感受最深、收获最大的方面写成体会,用于小组交流。

  2.完成课本习题1.4中所有习题。

七年级数学教案15

  一、素质教育目标

  (一)知识教学点

  能按照有理数的运算顺序,正确熟练地进行有理数的加、减、乘、除、乘方的混合运算.

  (二)能力训练点

  培养学生的观察能力和运算能力.

  (三)德育渗透点

  培养学生在计算前认真审题,确定运算顺序,计算中按步骤审慎进行,最后要验算的好的习惯.

  (四)美育渗透点

  通过本节课的学习,学生会认识到小学算术里的四则混合运算顺序同样适用于有理数系,学生会感受到知识的普适性美.

  二、学法引导

  1.教学方法:尝试指导法,以学生为主体,以训练为主线.

  2.学生学法:

  三、重点、难点、疑点及解决办法

  重点和难点是如何按有理数的运算顺序,正确而合理地进行有理数混合计算.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪、自制胶片.

  六、师生互动活动设计

  教师用投影出示练习题,学生用多种形式完成.

  七、教学步骤

  (一)复习提问

  (出示投影1)

  1.有理数的运算顺序是什么?

  2.计算:(口答)

  ① , ② , ③ , ④ ,

  ⑤ , ⑥ .

  【教法说明】2题都是学生运算中容易出错的题目,学生口答后,如果答对,追问为什么?如果不对,先让他自己找错误原因,若找不出来,让其他同学纠正,使学生真正明白发生错误的原因,从而达到培养运算能力的目的.

  (二)讲授新课

  1.例2 计算

  师生共同分析:观察题目中有乘法、除法、减法运算,还有小括号.

  思考:首先计算小括号里的减法,然后再按照从左到右的顺序进行乘除运算,这样运算的步骤基本清楚了.带分数进行乘除运算时,必须化成假分数.

  动笔:按思考的步骤进行计算,在计算时不要“跳步”太多,最后再检查这个计算结果是否正确.

  一个学生板演,其他学生做在练习本上,教师巡回指导,然后师生共同订正.

  【教法说明】通过此题的分析,引导学生在进行有理数混合运算时,遵循“观察—思考—动笔—检查”的程序进行计算,有助于培养学生严谨的学风和良好的学习习惯.

  2.尝试反馈,巩固练习(出示投影2)

  计算:

  ① ;

  ② .

  【教法说明】让学生仿照例题的形式,自己动脑进行分析,然后做在练习本上,两个学生板演.由于此两题涉及负数较多,应提醒学生注意符号问题.教师根据学生练习情况,作适当评价,并对学生普遍出现的错误,及时进行变式训练.

  3.例3 计算: .

  教师引导学生分析:观察题目中有乘方、乘法、除法、加法、减法运算.

  思考:容易看到 , 是彼此独立的,可以首先分别计算,然后再进行加减运算.

  动笔:按思考的步骤进行计算,在计算时强调不要“跳步”太多.

  检查计算结果是否正确.

  一个学生口述解题过程,教师予以指正并板书做示范,强调解题的规范性.

  4.尝试反馈,巩固练习(出示投影3)

  计算:① ;

  ② ;

  ③ ;

  ④ .

  首先要求学生观察思考上述题目考查的知识点有哪些?然后再动笔完成解题过程.四个学生板演,其他同学做在练习本上.

  说明:1小题主要考查乘方、除法、减法运算法则及运算顺序等知识,学生容易出现 的'错误.通过此题让学生注意运算顺序.3题主要考查:相反数、负数的奇次幂、偶次幂运算法则及运算顺序等知识点.让学生搞清 与 的区别; , .计算此题要特别注意符号问题;4题主要考查相反数运算法则及运算顺序等知识.本题要特别注意运算顺序.

  【教法说明】习题的设计分层次,由易到难,循序渐进,符合学生的认知规律.注重培养学生的观察分析能力和运算能力.通过变式训练,也培养学生的思维能力.学生做练习时,教师巡回指导,及时获得反馈信息,对学生出现错误较多的问题,教师要进行回授讲解,然后再出一些变式训练进行巩固.

  (三)归纳小结

  师:今天我们学习了,要求大家做题时必须遵循“观察—分析—动笔—检查”的程序进行计算.

  【教法说明】小结起到“画龙点睛”的作用,教给学生运算的方法、步骤,培养学生良好的学习习惯,提高运算的准确率.

  (四)反馈检测(出示投影4)

  (1)计算① ; ②

  ③ ; ④ ;

  ⑤ .

  (2)已知 , 时,求下列列代数式的值

  ① ; ② .

  以小组为单位计分,积分最高的组为优胜组.

【七年级数学教案】相关文章:

七年级数学教案08-19

七年级上数学教案02-07

七年级人教版数学教案11-03

最新七年级数学教案09-28

初中七年级数学教案06-24

【荐】七年级数学教案12-19

七年级下册数学教案12-05

七年级下册数学教案08-26

七年级数学教案【荐】12-20