现在位置:范文先生网>教案大全>数学教案>七年级数学教案>七年级数学教案

七年级数学教案

时间:2022-12-19 17:16:48 七年级数学教案 我要投稿

【荐】七年级数学教案

  作为一名教师,时常会需要准备好教案,编写教案有利于我们科学、合理地支配课堂时间。那么问题来了,教案应该怎么写?下面是小编整理的七年级数学教案,欢迎阅读,希望大家能够喜欢。

【荐】七年级数学教案

七年级数学教案1

  【教学目标】

  知识与技能:了解并掌握数据收集的基本方法。

  过程与方法:在调查的过程中,要有认真的态度,积极参与。

  情感、态度与价值观:体会统计调查在解决实际问题中的作用,逐步养成用数据说话的良好习惯。

  【教学重难点】

  重点:掌握统计调查的基本方法。

  难点:能根据实际情况合理地选择调查方法。

  【教学过程】

  讲授新课

  像前面提到的收集数据的活动中,全班同学是我们要考察的对象,我们采用问卷对全体同学作了逐一调查,像这样对全体对象进行的调查叫做全面调查。

  调查、试验如采用普查可以收集到较全面、准确的数据,但普查的工作量比较大,有时受客观条件(人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采用。在这些情况下,常常采用抽样调查,即从被考察的全体对象中抽出一部分对象进行考察的调查方式。

  在一个统计问题中,我们把所要考察对象的全体叫做总体,其中的每一个考察对象叫做个体,从总体中所抽取的一部分个体叫做总体的一个样本(sample),样本中个体的数目叫做样本容量。

  例如,在通过试验考察500只新工艺生产的'灯泡的使用寿命时,从中抽取50只进行试验。这500只灯泡的使用寿命的全体是总体,其中每只灯泡的使用寿命是个体,抽取的50只灯泡的使用寿命是一个样本,50是这个样本的样本容量。

  为了使抽取的50只灯泡能很好地反映500只灯泡的情况,抽取时要使每只灯泡逐一进行编号,再把编号写在小纸片上,将小纸片揉成团,放在一个不透明的容器内,充分搅拌后,从中一个个地抽取50个号签。

  上面抽取样本的过程中,总体中的各个个体都有相等的机会被抽到,像这样的抽样方法是一种简单随机抽样。

  师:以“你知道父母的生日吗?”为题在班级进行调查,请设计一张问卷调查表。

  学生小组合作、讨论,学生代表展示结果。

  教师指导、评论。

  师:除了问卷调查外,我们还有哪些方法收集到数据呢?

  学生小组讨论、交流,学生代表回答。

  师:收集数据的直接方法有访问、调查、观察、测量、试验等,间接方法有查阅资料、上网查询等。就以下统计的数据,你认为选择何种方法去收集比较合适?

  (1)你班中的同学是如何安排周末时间的?

  (2)我国濒临灭绝的植物数量;

  (3)某种玉米种子的发芽率;

  (4)学校门口十字路口每天7:00~7:10时的车流量。

七年级数学教案2

  教学目标

  1、熟练掌握加减消元法;

  2、能根据方程组的特点选择合适的方法解方程组,

  3、通过分析实际问题中的数量关系,建立方程解决问题,进一步认识方程模型的重要性.

  教学难点

  教材中例4的数量关系较复杂,是本课的难点。

  知识重点能根据方程组的特点选择合适的方法解方程组。

  教学过程

  (师生活动)设计理念

  创设情境

  1、复2、习提问

  解二元一次方程组有哪几种方法?它们的实质是什么?

  2、播放动画《西游记》场景,配数学诗.

  悟空顺风探妖踪,千里只行四分钟.

  归时四分行六百,风速多少才称雄?

  请一名学生解释诗歌大意:孙悟空顺风去查妖精的行踪,仅用4分钟就飞跃千里.逆风返回时4分钟走了600里,问风速是多少?

  学生思考,根据题中等量关系,列出方程.

  设悟空行走速度为x里/分,风速为y里/分,则

  你会解这个方程组吗?引例生动活波,激发学生的探究欲望,让学生在看、听、想的过程中愉悦地获得数学知识.

  探究新知学生独立完成后.在班级里交流解法.

  解法一:①+②,消去y,得8x=1600

  ∴x=200,代人①,得y=50

  原方程组的解为

  解法二:①-②,消去x。以下略.

  解法三:整体代入.由①得:4x=1000-4y,代入②,消去x.

  同理,也可消去y.

  解法四:化简原方程组为,再利用加减消元,或代入消元均可.

  反思:试着从各个角度比较“代入法”与“加减法”的共同点与不同点.(同学间相互交流)它们各适用于什么情况?

  在学生回答的基础上,教师指出:当方程组中某一个未知数的系数绝对值是1或一个方程的常数项为零时,用代入法较方便;当两个方程中,同一个未知数的系数绝对值相等或成整倍数时,用加减法较方便.

  练习1:根据方程组的特点选择更适合它的'解法.你会怎样解呢?(第1,2小题完成后再出示第3小题.)

  (1)

  (2)

  (3)

  第1小题用代入法,第2小题用加减法,都很明确,第3小题有争议.全班分成两部分.1、2大组用代入法做,3、4大组用加减法做.比较两解法的简便程度.

  反思:当方程组中任一个未知数的系数绝对值不是1,且不成倍数关系时,一般经过变形利用加减法会使解法更简单.尝试不同的解法,培养学生的发散性思维和择优意识。

  解二元一次方程组不管采用哪种方法,都可以获得它的解,但根据题目形式的特点,选择不同的方法可以减少弯路,加快速度使解题过程简洁提高正确率.

  实际应用教材第109页例4.

  2台大收割机和5台小收割机工作2小时收割小麦

  3.6公顷,3台大收割机和2台小收割机工作5小时收割小麦8公顷,问:1台大收割机和1台小收割机1小时各收割小麦多少公顷?

  分析:

  问题1.列二元一次方程组解应用题的关键是什么?

  (找出两个等量关系)

  问题2.你能找出本题的等量关系吗?

  2台大收割机2小时的工作量+5台小收割机2小时的工作量=3.6

  3台大收割机5小时的工作量+2台小收割机5小时的工作量=8

  问题3.怎么表示2台大收割机2小时的工作量呢?

  设1台大收割机1小时收割小麦x公顷,则

  2台大收割机1小时收割小麦_公顷,

  2台大收割机2小时收割小麦_公顷.

  现在你能列出方程了吗?

  解后反思:应用题中,如何化解较复杂数量关系?

  练习2:教科书第111页练习第3题应用题.体会方程是刻画现实世界的有效数学模型。

  小结与作业

  小结提高在学生畅所欲言话收获的基础上,通过老师进行补充的方式进行。

  本节课学习了哪些内容?你有哪些收获?

  布置作业

  8、做题:教科书112页习题8.2第5、7题。

  9、选做题:教科书112页习题8.2第8题。

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1、能根据教材编写思路,遵循学生的心理特点,创造性使用新教材中的问题情境(引入与111页练习3属同种数学模型),把教材中不动的问题情境转化为动的问题情境.

  2、真正把课堂还给了学生,使学生真正地变为课堂学习的主人,老师只是学生学习的引导者和组织者.由于学生的个体差异,思维方式的不同,为了给学生创造个性化的学习空间,鼓励学生们用自己的方式去学习,把学习的主动权还给他们,让他们自己去探究不同的解题方法.通过例题分析、启发提问、集体讨论等形式,使学生能准确而迅速地确定解题方法从而突出了本课的重点、难点—选择适当方法求解二元一次方程组.

七年级数学教案3

  【教材简析】

  本节内容是在学生掌握了分数乘法和分数除以整数的计算方法基础上继续探索一个数除以分数的计算方法。例2结合整数除法的问题,“每人吃2个,可以分给几人?”激活学生对除法数量关系的回忆,并用这个数量系列出求吃 1/2个、1/3个、1/4 个,可以分给几人的算式,然后通过观察、操作探索出一个数的几分之一就等于这个数乘以几分之一的倒数。例3是对一个数除以几分之一方法的拓展。通过在条形图上分一分,让学生直接得到4÷2/3 的结果,再利用例2得到的方法算一算,发现结果是相同的。最后,通过对两个例题的比较,归纳出整数除以分数的方法。练一练和练习十一的5——8主要是让学生巩固新学的计算方法,并与分数乘法和前一节课分数除以整数的方法作对比,沟通新旧知识的联系,形成较完整的知识体系。

  【教学目标】

  1、使学生经历探索整数除以分数计算方法的过程,理解并掌握整数除以分数的计算方法,能正确计算整数除以分数的式题。

  2、使学生在探索整数除以分数计算方法的过程中,进一步体会猜想——验证的数学思想方法。

  3、使学生在学习活动中,进一步感受数学学习的挑战性,体验成功的乐趣,增强学好数学的`自信心。

  【教具准备】

  课件

  【教学过程】

  一、谈话导入

  同学们,吃是为了汲取生理上的营养,学是为了汲取精神上的养份。今天,我们采用“边品边学”的方式,学习“整数除以分数”。

  揭题:整数除以分数

  二、提出猜想

  1、谈话:老师带来了同样大小的4个橙子(媒体呈现)

  如果每人吃2个,可以分给几人怎么列式?

  学生口头列式。

  提问:为什么用4÷2计算呢?

  学生回答后,师小结:也就是说把4个橙子,按2个一份平均分,可以用除法计算。

  问:如果每人吃一个呢?

  学生口头列式。

  2、出示:如果“每人吃1/2 个,可以分给几人”又怎么列式?

  学生口头列式,教师板书:4÷1/2

  追问:为什么用除法计算?

  学生回答后,师小结:就是把4个橙子,按 个一份平均分,因此也是用除法计算(课件出示)

  3、谈话:请看屏幕,从图中你数出4÷1/2 得多少?(教师随学生回答板书4÷1/2 =8)

  提问:从这幅图中,你还能想到什么?

  (一个橙子分给2个人,4个橙子就能分给8个人。)

  学生回答,教师恰当评价。

  教师针对学生的回答,继续提问:如果这样想又怎样列式?(教师板书4×2=8)

  4、思考:仔细对比这两个式子,你有什么发现?

  学生先独立思考,再在小组里交流自己的想法。

  反馈时恰当评价。(教师板书4÷1/2 = 4×2)

  三、进行验证

  (一)验证一

  过渡:是不是所有的整数除以分数都能用以上几个同学说的方法做呢?这只是我们的猜想,还需进一步验证。(板书猜想、验证)

  1、出示:如果每人吃1/4 1/4个,可以分给几人?

  学生口头列式

  提问:按刚才的方法,可以怎么计算?结果是多少?

  (学生回答,教师板书4÷1/4 =4×4=16)

  谈话:结果是否正确,我们来验证一下

  请每个同学拿出4个同样大小的圆片代表橙子,用笔分一分。

  学生操作,教师巡视指导。

  反馈:你是怎么分的,分得结果是多少?(随学生利用实物投影仪演示)

  小结:操作的结果和刚才计算的结果是一样的。

  2、出示:如果每人吃1/3 1/3个呢?

  请学生先列式计算,用圆纸片分一分的方法求证结果是否正确。

  反馈交流(辅以电脑演示)

  小结:通过验证,再次证明了刚才的猜想是正确的。

  (二)验证二

  过渡:刚才研究的都是整数除以几分之一的题目,整数除以几分之几的题目,有没有类似的规律,我们继续探索。

  1、出示例3(电脑出现图示)

  提问:怎么理解2/3 米?

  2、让学生独立列式算一算。

  3、学生做好后追问:这个结果是否正确,请同学们打开书57也在例3的图中动笔分一分进行验证。

  4、学生独立思考后在小组里交流,全班反馈时指名学生在投影仪下演示。

  四、获得结论

  1、观察比较

  学生观察黑板上的一些算式:

  4÷ 1/2= 4×2=8

  4÷1/3 =4×3=12

  4÷1/4 =4×4=16

  4÷2/3 =4×3/2 =6

  说说这些乘式中的第二个因数与除式中的除数有什么关系?

  3、思考概括

  通过以上操作活动你认为整数除以分数可以怎样计算? 小组里交流回报。

  五、巩固练习

  过渡:今天的知识大餐你品出了哪些滋味,不妨来回味一番。

  1、填一填 12÷2/3 =12×( 3/2 )=18 9÷6/7 =9×( 7/6 )=21/2

  2、找朋友

  3、练习十一第5题

  先出示前一部分要求,学生想一想后再让学生算一算,体会计算方法的正确性。

  4、算一算 10÷2/5 8÷2/3 3÷6/7 12÷8/7

  说明:转化成乘法后,能约分的要先约分。

  5、算一算、比一比

  (1)逐一出示第一组题,师:老师这儿有一组题,比一比谁算得又快又对。准备笔和草稿纸,算出答案马上举手。

  提问:做这组题要注意什么?

  6、实际问题

  谈话:现在,人们出行都有便利的交通工具,下面是自行车、小轿车、摩托车行使30千米所用时间表,你能求出它们各自的速度吗?

  提示:单位用千米/时

  六、课堂小结

  今天学习了整数除以分数的内容,你有什么收获?

  明天将要学习分数除以分数,你有什么想法呢?

  七、布置作业

  书60页第6题。

七年级数学教案4

  教学目标:

  1.了解正数与负数是实际生活的需要.

  2.会判断一个数是正数还是负数.

  3.会用正负数表示互为相反意义的量.

  教学重点:会判断正数、负数,运用正负数表示具有相反意义的量,理解表示具有相反意义的量的意义.

  教学难点:负数的引入.

  教与学互动设计:

  (一)创设情境,导入新课

  课件展示珠穆朗玛峰和吐鲁番盆地,让同学感受高于水平面和低于水平面的不同情况.

  (二)合作交流,解读探究

  举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东行50米和向西行120米等.

  想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?

  为了用数表示具有相反意义的量,我们把具有其中一种意义的量,如零上温度、前进、收入、上升、高出等规定为正的,而把具有与它意义相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的'数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).

  活动每组同学之间相互合作交流,一同学说出有关相反意义的两个量,由其他同学用正负数表示.

  讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?自己列举正数、负数.

  总结正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界点.

  (三)应用迁移,巩固提高

  【例1】举出几对具有相反意义的量,并分别用正、负数表示.

  【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.

  【例2】在某次乒乓球检测中,一只乒乓球超过标准质量0.02g,记作+0.02g,那么-0.03g表示什么?

  【例3】某项科学研究以45分钟为1个时间单位,并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为()

  A.3B.-3C.-2.5D.-7.45

  【点拨】读懂题意是解决本题的关键.7:45与10:00相差135分钟.

  (四)总结反思,拓展升华

  为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数,也不是负数.

  1.下表是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):

  星期日一二三四五六

  (元)+16+5.0-1.2-2.1-0.9+10-2.6

  (1)本周小张一共用掉了多少钱?存进了多少钱?

  (2)储蓄罐中的钱与原来相比是多了还是少了?

  (3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣.

  2.数学游戏:4个同学站或蹲成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.

  (1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;

  (2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复(1)中的游戏.

  (五)课堂跟踪反馈

  夯实基础

  1.填空题:

  (1)如果节约用水30吨记为+30吨,那么浪费20吨记为吨.

  (2)如果4年后记作+4年,那么8年前记作年.

  (3)如果运出货物7吨记作-7吨,那么+100吨表示.

  (4)一年内,小亮体重增加了3kg,记作+3kg;小阳体重减少了2kg,则小阳增加了.

  2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,水位上涨了1米,下午5时,水位又上涨了0.5米.

  (1)用正数或负数记录下午1时和下午5时的水位;

  (2)下午5时的水位比中午12时水位高多少?

  提升能力

  3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.

  (六)课时小结

  1.与以前相比,0的意义又多了哪些内容?

  2.怎样用正数和负数表示具有相反意义的量?(用正数表示其中具有一种意义的量,另一种量用负数表示)

七年级数学教案5

  教学内容:

  第87页例1、例2,88页课堂活动第1、2题,练习二十二第1~4题。

  教学目标:

  1.在现实情境中初步认识负数和理解负数的意义,了解负数的产生与作用,感受负数使用带来的方便。

  2.会正确地读、写正、负数,知道0既不是正数,也不是负数。

  3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的意识。

  教学重点:

  负数的意义和负数的读法与写法。

  教学难点:

  理解0既不是正数,也不是负数。

  教具准备:

  多媒体课件

  教学方法:

  教师讲授、合作交流

  教学过程:

  一、复习导入

  提出问题:举例说明我们学过了哪些数?

  教师小结:为了实际生活的需要,在数物体个数时,1、2、3……出现了自然数,物体一个也没有时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示。

  提出问题:我们学过的数中最小的数是谁?有没有比零还小的数呢?

  二、创设情境、学习新知

  1.教学例1。

  (1)出示:中央电视台天气预报的一个场面,主持人说:“哈尔滨零下6至3摄氏度,重庆6至8摄氏度……”

  同学们,你们对情境中的内容一定相当熟悉吧?你能给大家讲讲“哈尔滨零下6至3度”这句话是什么意思吗?

  为什么阿姨说的零下6摄氏度,屏幕上打出的字幕就变成了-6℃呢?

  这里有零下6℃、零上6℃,都记作6℃行吗?

  你有什么简洁的方法来表示他们的不同呢?

  教师小结:同学们的想法都很好。现在,国际数学界都是采用符号来区分,我们把比0摄氏度低的温度用带有“-”号的数来表示,例如把零下6℃记作-6℃,读作负6摄氏度;零上6℃记作+6℃,读作正6摄氏度或6摄氏度。

  (2)巩固练习。

  同学们,你能用刚才我们学过的知识,用恰当的数来表示温度吗?试试看。

  学生独立完成第87页下图的练习。

  教师巡视,个别辅导,集体订正写得是否正确,并让学生齐读。

  2.自主学习例2。(进一步认识正数和负数)

  教师:同学们,你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。

  今天,老师还带来一张珠穆朗玛峰的海拔图,请看。(珠穆朗玛峰的海拔图,教科书第87页的.左部分,数字前没有符号)从图上你看懂了些什么?

  引导学生交流:珠穆朗玛峰比海平面高8844.43米。

  我们再来看吐鲁番盆地的海拔图。(吐鲁番盆地的海拔情况,教科书第87页的右部分,数字前没有符号)你又能从图上看懂些什么呢?

  引导学生交流:吐鲁番盆地比海平面低155米。

  教师小结:珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔高度吗?

  学生交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐鲁番盆地的海拔可以记作:-155米。(板书)

  教师追问:你是怎么想到用这种方法来记录的呢?

  最后教师将数字改动成:海拔+8844.43米或8844.43米;海拔-155米。

  教师小结:以海平面为界线,+8844.43米或8844.43米这样的数表示比海平面高8844.43米;-155米这样的数表示比海平低155米。

  (2)巩固练习:教科书第88页试一试。

  3.小组讨论,归纳正数和负数。

  教师:通过刚才的学习,我们收集到了一些数据,(显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么,你们观察一下这些数,它们一样吗?它们可以怎样分类呢?

  提出疑问:0到底归于哪一类?(如有学生提出更好)引导学生争论,各自发表意见。

  小结:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就像一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把像+6、3、+8844.43等这样的数叫做正数;像-6、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)

  通常正号可以省略不写。负号可以省略不写吗?为什么?

  最后,让学生看书勾划,并思考两个“……”还代表那些数?(让学生对正负数的理解更全面和深刻)

  三、运用新知,课堂作业

  1.课堂活动第1题。让学生先自己读读,并举例说说是什么意思?全班订正后,同桌间自选5个互相说说。

  2.课堂活动第2题。同桌先讨论,然后反馈。

  四、小结

  同学们,今天我们认识了负数。你有什么收获?

  五、课堂作业

  练习二十二第1、4题。

  家庭作业:练习二十二第2、3题。

  板书设计:

  负数的初步认识

  正数:20、22、14、 +8844.43…

  0:既不是正数也不是负数

  负数:-2、-30、-10、-15、-155…

七年级数学教案6

  教学目标:

  1、使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。

  2、使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。

  3、使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。

  教学重点:

  初步认识正数和负数以及读法和写法。

  教学难点:

  理解0既不是正数,也不是负数。

  教学具准备:

  多媒体课件、温度计、练习纸、卡片等。

  教学过程:

  一、游戏导入(感受生活中的相反现象)

  1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反我反我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。

  ①向上看(向下看)

  ②向前走200米(向后走200米)

  ③电梯上升15层(下降15层)。

  2、下面我们来难度大些的,看谁反应最快。

  ①我在银行存入了500元(取出了500元)。

  ②知识竞赛中,五(1)班得了20分(扣了20分)。

  ③10月份,学校小卖部赚了500元。(亏了500元)。

  ④零上10摄氏度(零下10摄氏度)。

  说明什么是相反意义的量(意义正好相反)

  3、谈话:周老师的一位朋友喜欢旅游,11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)

  二、教学例1

  1、认识温度计,理解用正负数来表示零上和零下的温度。

  课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。

  这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?

  B、现在你能看出南京是多少摄氏度吗?(是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。

  (2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)

  指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。

  (3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?

  (4)比较:“4℃”和“—4℃”的意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。

  ①上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)

  负号能不能省略不写?为什么?

  ②北京的气温比0℃低,是零下4摄氏度。我们可以用—4℃来表示零下4摄氏度(板书—4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。

  (5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用—4这样的数可以表示零下温度。

  2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)

  3、听一段中央台的天气预报,将你听到城市的最低和温度记录下来。

  4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。

  三、学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题)

  1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。

  2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?

  3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。

  你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844。43米;吐鲁番盆地比海平面低155米)。

  4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?

  (1)交流:珠穆朗玛峰的海拔可以记作:+8844。43米或8844。43米。

  吐鲁番盆地的.海拔可以记作:—155米。(板书)

  (2)小结:以海平面为界线,+8844。43米或8844。43米这样的数可以表示海平面以上的高度,—155米这样的数可以表示海平面以下的高度。

  四、小组讨论,归纳正数和负数。

  1、通过刚才的学习,我们收集到了一些数据(课件显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?

  2、学生交流、讨论。

  3、指出:因为+8844。43也可以写成8844。43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)

  ①如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?

  ②如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。

  4、小结:什么是正数、负数?

  师:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0是正负数的分界点,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把以前学过的,象+4、16、3/8、0。5、+8844。43等这样的数叫做正数;象—4、—155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)这节课我们就和大家一起来认识正数和负数。(板书:认识正数和负数)

  五、联系生活,巩固练习

  1、练习一第2、3题

  2、你知道吗:水沸腾时的温度是xxxx。水结冰时的温度是xxxx。地球表面的最低温度是。

  3、讨论生活中的正数和负数

  (1)存折:这里的—800表示什么意思?(以原来的钱为标准,取出了800元记作—800;存入了1200元记作1200元,还可以记作+1200元)

  (2)电梯:这里的1和—1表示什么意思?(以地平面为界线,地平面以上一层我们用1或+1来表示,—1就表示地下一层)。老师现在要到33层应该按几啊?要到地下3层呢?

  六、课堂小结

  这节课我们一起认识了正数和负数。在我们的生活中,零摄氏度以上和零摄氏度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示。

七年级数学教案7

  教学内容:

  课本第59——60页的内容“统计图的选择“。

  教学目标:

  1、能读懂条形统计图、折线统计图和扇形统计图,从中获取有效信息,体会统计图在现实生活中的作用。

  2、了解三种统计图的不同特点,能根据需要选择适当的统计图,直观有效地表示数据。

  教学重点:

  了解三种统计图的不同特点

  教学难点:

  能针对具体情况正确选择合适的`统计图。

  教具准备:

  课件

  教学过程:

  一、复习、谈话导入

  说出条形统计图、折线统计图和扇形统计图的各自特点。

  二、看图分析,回答问题

  1、电脑课件呈现下面三幅统计图。

  获得信息 ,学生回答

  条形:表示数量的多少

  折线:表示数量的增减变化

  扇形:部分与整体的关系

  学生看书

  试说,讨论

  汇报:从条形统计图中很直接看出29届获得的奖牌最多;从折线统计图中看出金牌数的变化;扇形统计图能看出29届我国奖牌的分布情况。

  学生互相说说特点

  第(1)小题,表示各种数量占总量的百分之几,应该选择扇形统计图;

  第(2)小题,表示各种数量的多少,应该选择条形统计图;

  第(3)小题,表示身高的变化情况,应该选择折线统汁图。

  奥运会

  折线统计图:数量的多少

  条形统计图:数量的变化

  扇形统计图:部分与整体的关系

  第(1)小题,表示各种数量占总量的百分之几,应该选择扇形统计图;

  第(2)小题,表示各种数量的多少,应该选择条形统计图;

  第(3)小题,表示身高的变化情况,应该选择折线统汁图。

  三、巩固升华

  完成课后的“练一练”。

  四、全课小结

  说一说三种统计图的特点和作用

  板书设计:

  奥运会

  折线统计图:数量的多少

  条形统计图:数量的变化

  扇形统计图:部分与整体的关系

  课后反思:

七年级数学教案8

  教学目标

  知识与能力

  从简单的转盘游戏开始,使学生在生活经验和试验的基础上,进一步体验不确定事件的特点及事件发生的可能性大小。

  教学思考

  能用实验对数学猜想做出检验,从而增加猜想的可信度。 解决问题

  在转盘游戏过程中,经历猜测结果,实验验证,分析试验结果等数学活动,增加数学活动经验。

  情感态度与价值观

  在合作与交流过程中,体验小组合作更有利于探究数学知识,敢于发表自己观点,提高个人认识。

  教学重点难点:

  在实验中,体会不确定事件的特点及事件发生可能性大小;使每个学生都能积极认真参与课堂设计中的实验,真正在实验中获得知识上的认识。

  教学过程

  创设情境,切入标题

  同学们,商场经常利用转盘游戏进行抽奖,你认为顾客们的中奖可能性有多大呢?这节课我们就来探究一下有关转盘游戏的问题。 新课探究

  请同学们猜测,当我自由转动转盘时,指针会落在什么颜域呢?

  请各小组分别派一名代表,看哪组能转出红色。

  结果,8小组有6组转出了红色。

  为什么会出现这样的结果呢?

  因为,在这个转盘中,红域的面积大,白域的面积小,因此,当转盘停上转动时,指针落到红域的可能性大。

  大家同意这种看法吗?下面我们亲自动手感受一下。

  学生按照题目要求进行实验。

  请各组组长把你组的实验数据汇报一下(教师把数据填写在表格里) 实验结果:六个小组每组实验16次,全班共实验96次,指针落在红域的次数分别如下9,6,10,5,8,12。共计50次。

  请同学们对我们的实验结果进行分析交流,谈谈你在试验中有哪些心得。

  根据观察,转盘上红域的'面积为总面积的一半,指针落在红域的可能性也应该是一半。通过对我们全班的实验结果分析,指针落在红域的比例是50∶96,结果接近百分之五十。

  在小组内实验结果不明显,实验次数越多越能说明问题。

  通过实验,我们确定感受到,转盘游戏中各区域的面积的可能性大小与指针落在什么区域的可能性大小有直接关系。以后在生活中再遇到转盘游戏问题可要想想今天的实验结论。

  游戏与交流

  下面我们利用转盘做一下数学游戏(出示幻灯片),学生按教学设计中要求进行游戏,教师巡回指导。

  每组每人游戏一次,全班共游戏48次。其游戏结果是,平均数增大1的,共35次,平均数减小1的,共13次。

  请同学们对下列问题进行交流(幻灯片出示教材206页4个问题)。 这个转盘转到“平均数增大1”区域的可能性大,从面积大小就可以看出。

  如果平均数增大1,我是在卡片上增加一个数,这个数等于卡片上数字的个数加1,如果是平均数减小1,我就在每个数上都减去1。

  同学们说出很多种方法,不一一列举。

  “平均数增大1”的次数占总次数的百分之七十三,“平均数减小1”占百分之二十七。

  如果将这个实验继续做下去,卡片上所有数的平均数会增大。

  同学们说的都很好,课后能不能自己也利用转盘设计一个新的游戏,感兴趣的同学可以在课下与我交流。

  以下过程同教学设计,略去。

  随堂练习

  指导学生完成教材第206页习题。

  课时小结

  学生可从各个方面加以小结。 布置作业

  仿照课堂游戏,自编一个新的游戏。 能否利用扑克牌设计本节转盘游戏。

七年级数学教案9

  教学内容:

  教材第8页例5,做一做,练习二1~4。

  教学目标:

  1、在解决问题的过程中学习并掌握小数乘分数的计算方法。

  2、经历小数乘分数的计算方法的探究过程。

  3、体会算法多样化的数学思想,提高计算能力。

  教学重点:

  掌握小数乘分数的计算方法。

  教学难点:

  灵活选择不同的计算方法,熟练地进行小数乘分数的计算。

  教学过程:

  一、复习导入。

  1、计算

  交流时让学生说一说计算方法和计算过程中的约分方法。

  2、把下面的小数化成分数,分数化成小数。

  1.2( ) 0.4( ) 3.5( ) 1.25( )

  让学生说一说怎样将一个小数化成分数?

  二、探索新知

  1、例题5:松鼠的尾巴长度约占身体长度的` 。松鼠欢欢的身体长2.1分米,松鼠乐乐的身体长2.4分米。

  (1)提取题中的已知条件和所求问题

  已知条件:①松鼠的尾巴长度约占身体长度的34,②松鼠欢欢的身体长2.1dm。

  所求问题:松鼠欢欢的尾巴有多长?

  (2)确定单位“1”,根据“松鼠的尾巴长度约占身体长度的34”可知,应把“松鼠欢欢的身体长”看作单位“1”,单位“1”已知,所求松鼠欢欢的尾巴有多长,就是求2.1dm的34是多少,用乘法计算,列式为2.1×34

  启发观察,这个算式和我们前面学习的分数乘法有什么不同?

  (3)探讨小数乘分数的计算方法。

  提问:小数乘分数,可以怎样进行计算呢?想一想,试一试。

  学生独立思考,尝试计算。组织交流,得出可以把2.1化成分数,也可以把 化成小数。汇报交流计算方法,教师结合交流情况进行板书。

  小数化成分数: = = (分米)

  分数化成小数: =2.1×0.75=1.575(分米)

  3、解决问题二。

  (1)出示问题:松鼠乐乐的尾巴有多长?

  (2)学生独立解答。

  组织交流汇报。交流时,先让学生说说列式的依据,再交流计算方法。

  学生可能会采用问题一中学习的方法进行计算,这时教师可以追问:同学们,想想分数乘整数时,我们是怎样进行约分的,小数乘分数也能这样约分吗?

  当学生有所发现后,让学生进行尝试计算,最后汇报交流。教师结合学生的交流情况进行板书

  小数和分母约分: (分米)

  4、观察比较,回顾思考。

  提问:观察上面三种计算方法,你想发表自己的什么见解?让学生独立思考后进行小组交流讨论,是后进行全班交流 。(三种方法中,小数化成分数的方法具有普遍性,适用于所有的小数乘分数的计算;当分数不能化成有限小数时,一般不采用分数化成小数的方法进行计算;当小数和分母不能进行约分时,一般不采用小数和分母约分的方法进行计算。三种方法中,小数和分母约分的方法计算起来最简便,因此在计算小数乘分数时,先观察这个小数能不能和分母进行约分,如果可以进行约分,一般采用先约分再乘的方法。)

  三、巩固练习。

  1、教材第8页“做一做”。先让学生独立计算,再组织汇报交流。交流时让学生说说为什么选择这样的方法进行计算。

  2、教材第10页“练习二”第2题。

  3、教材第10页“练习二”第3题。

七年级数学教案10

  教学目标:

  知识能力:理解有理数的概念,掌握有理数的两种分类方法,能够按要求对给定的有理数进行分类。

  过程与方法:通过本节的学习,培养学生正确的分类讨论观点和分类能力。

  情感、态度、价值观:通过本节课的学习,体验成功的喜悦,保持学好数学的信心。

  教学重点:

  掌握有理数的两种分类方法

  教学难点:

  给定的'数字将被填入它所属的集合中

  教学方法:

  问题导向法

  学习方法:

  自主探究法

  教学过程:

  一、形势归纳

  小学我们学了整数和分数,上节课我们学了正数和负数。谁能快速提出以下问题?

  1、有以下数字:15,—1/9,—5,2/15,—13/8,0.1,—5.22,—80,0,123,2.33

  (1)将以上数字填入以下两组:正整数集{}和负整数集{}。你填完了吗?

  (2)将以上数字填入以下两个集合:整数集合{}和分数集合{}。你填完了吗?

  称整数和分数为有理数。(指点题,板书)

  二、自学指导

  学生自学课本,根据课本寻找自学的机会

  提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。

  三、展示归纳

  1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;

  2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;

  3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。

  四、变式练习

  逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。

  五、总结与反思:通过本节课的学习,你有什么收获?

  六、作业:必做题:课本14页:1、9题

七年级数学教案11

  教学目标

  1,通过对数“零”的意义的探讨,进一步理解正数和负数的概念;

  2,利用正负数正确表示相反意义的量(规定了指定方向变化的量)

  3,进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。

  教学难点

  深化对正负数概念的理解

  知识重点

  正确理解和表示向指定方向变化的量

  教学过程(师生活动)

  设计理念

  知识回顾与深化

  回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.这就是说:数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负数的数呢?

  问题1:有没有一种既不是正数又不是负数的数呢?学生思考并讨论.(数0既不是正数又不是负数,是正数和负数的分界,是基准.这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)

  例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数.那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数?

  问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类? “数0耽不是正数,也不是负数”也应看作是负数定义的一部分.在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界.了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理毅概念的建立都有帮助。所举的例子,要考虑学生的可接受性.“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明.这个问题只要初步认识即可,不必深究.

  问题3:教科书第6页例题

  说明:这是一个用正负数描述向指定方向变化情况的例子,通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。

  归纳:在同一个问题中,分别用正数和负数表示的量具有相反的'意义(教科书第6页).

  类似的例子很多,如:水位上升-3m,实际表示什么意思呢?收人增加-10%,实际表示什么意思呢?等等。可视教学中的实际情况进行补充.

  这种用正负数描述向指定方向变化情况的例子,在实际生活中有广泛的应用,按题意找准哪种意义的量应该用正数表示是解题的关健.这种描述具有相反数的影子,例如第(1)题中小明的体重可说成是减少-2kg,但现在不必向学生提出.

  巩固练习教科书第6页练习

  阅读思考

  教科书第8页阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流

  小结与作业

  课堂小结以问题的形式,要求学生思考交流:

  1,引人负数后,你是怎样认识数0的,数0的意义有哪些变化?

  2,怎样用正负数表示具有相反意义的量?(用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.)

  本课作业1,必做题:教科书第7页习题1.1第3,6,7,8题

  3,选做题:教师自行安排

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1,本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指

  定方向变化的量。

  2,“数0既不是正数,也不是负数,’(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分.在引人负数后,除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助.由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课.

  3,教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解.

  4,本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识.通过实际例子的学习激发学生学习数学的兴趣.

七年级数学教案12

  教学目标

  1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;

  2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;

  3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。

  教学难点 数轴的概念和用数轴上的点表示有理数

  知识重点

  教学过程(师生活动) 设计理念

  设置情境

  引入课题 教师通过实例、课件演示得到温度计读数.

  问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?

  (多媒体出示3幅图,三个温度分别为零上、零度和零下)

  问题2:在一条东西向的马路上,有一个汽车站,汽车站东3 m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.

  (小组讨论,交流合作,动手操作) 创设问题情境,激发学生的学习热情,发现生活中的数学

  点表示数的感性认识。

  点表示数的理性认识。

  合作交流

  探究新知 教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?

  让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?

  从而得出数轴的三要素:原点、正方向、单位长度 体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。

  从游戏中学数学 做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第3个同学为原点,游戏还能进行吗? 学生游戏体验,对数轴概念的理解

  寻找规律

  归纳结论 问题3:

  1, 你能举出一些在现实生活中用直线表示数的实际例子吗?

  2, 如果给你一些数,你能相应地在数轴上找出它们的'准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?

  3, 哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?

  4, 每个数到原点的距离是多少?由此你会发现了什么规律?

  (小组讨论,交流归纳)

  归纳出一般结论,教科书第12的归纳。 这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。

  巩固练习

  教科书第12页练习

  小结与作业

  课堂小结 请学生总结:

  1, 数轴的三个要素;

  2, 数轴的作以及数与点的转化方法。

  本课作业 1, 必做题:教科书第18页习题1.2第2题

  2,选做题:教师自行安排

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1, 数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

  2, 教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

  3, 注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

七年级数学教案13

  教学内容:

  课本61——62页。

  教学目标:

  1、 在实际情境中,认识并会求一组数据的中位数、众数,并解释其实际意义。

  2、 根据具体的问题,能选择适当的统计量表示数据的不同特征。

  3、感受统计在生活中的应用,增强统计意识,发展统计观念。

  教学重点 :

  认识中位数、众数,并解释其实际意义。

  教学难点 :

  会求一组数据的中位数、众数。

  教具准备:

  课件

  教学过程:

  一、设疑激趣

  1、设疑:草地上有五个人在玩,他们的平均年龄是10岁,请你想象一个是怎样年龄的五个人在玩?

  2、揭题

  二、探索新知

  1、与学生一起欣赏

  淘气所在班级学生的升高情况。

  2、根据淘气所在班级学生身高统计表完成下面的`统计图

  结合上面的统计图,回答问题

  (1)哪个身高段的人数最多?哪个身高段的人数最少?

  (2 )说说淘气身高在班级的位置。

  (3 )你可以对淘气所在的班级定制运动服提出建议。

  3、数学书61----62页

  某地20xx年1月到12月等离子电视和液晶电视销售情况统计表

  月份 1 2 3 4 5 6 7 8 9 10 11 12

  等离子/台 200 250 300 450 600 300 350 400 450 650 450 300

  液晶/台 400 500 550 650 800 650 700 550 800 1000 750 600

  (1)制作复式折线统计图

  (2)根据统计图你有什么启示

  (3)两种电视全年中销售的月份占

  全年销售数量的百分之几?

  (4)液晶电视全年销售数目比等离子电

  视销售数目高了百分之几?

  (5)你还能提出哪些数学问题。

  出示题,引导学生思考,交流

  学生交流后,出示答案:引导学生通过求平均数验证

  改编例题后,出示

  与学生一起欣赏

  引导学生观察

  出示小练习

  引导对中位数和众数又有那些认识

  小结:当一组数据的个数是偶数时,中位数取中间两个数的平均数,一组数据的众数不,也可以没有,一组数的中位数、众数和平均数可能是一个数

  三、巩固练习:完成课后的“练一练”。

  完成后,让学生讨论用哪一个数表示这组同学跳绳的平均水平。

  下表是华星小学五年级男女人数统计情况

  班 级 5、1 5、2 5、3 5、4

  男/人 24 30 28 19

  女/人 23 22 22 28

  (1)制作复式条形统计图

  (2)五年级女生占总人数的百分之几?

  (3)四班男生比二班男生少百分之几?

  (4)从图中你能获得哪些信息?你能提出数学问题并解答吗?

  板书设计 :

  身高的情况

  收集数据

  分段整理 不重复

  制成统计图 不遗漏

  分析数据

七年级数学教案14

  教学内容:

  课本第57——58页“扇形统计图“。

  教学目标:

  1、通过实例,认识扇形统计图,了解扇形统计图的特点与作用。

  2、能读懂扇形统计图,从中获取有效信息,体会统计图在现实生活中的作用。

  3、提高学生的实际应用能力。

  教学重点:

  认识扇形统计图,了解扇形统计图的特点与作用。

  教学难点:

  学生的实际应用能力的提高。

  教具准备:

  课件

  教学过程:

  一、复习旧知,引入新知

  1、电脑课件呈现下表

  种 类 摄入量/克 占总摄入量的百分比

  油脂类 50

  奶类和豆类 450

  鱼、禽、肉、蛋等类 600

  蔬菜和水果类 900

  谷类 1800

  2、电脑课件呈现统计图(或以学生的作品亦可)。

  3、引入新知。

  二、探索交流,获取新知

  1、什么样的统计图是扇形统计图呢?

  2、了解扇形统计图特点

  3、即时练习。

  完成课后的“说一说”。

  (1)学生观察课文中的扇形统计图,读一凑统计图中的各类信息。

  (2)说一说,你有什么体会。

  学生说信息,并计算各种成分的百分比

  汇报计算结果,订正

  学生发言、交流

  学生汇报:条形统计图可以清楚地看到每一种食物的摄入量。

  观察,说出获得的信息

  根据教师引导说出发现

  从扇形统计图中能够清楚地看到各类食物的摄入量占总摄入量的百分之几。

  观察数据,发现,说出不同,说出自己的看法

  进行计算,订正

  三、小结本课学习内容

  谈话:这张表是小丽一家三口一天各类食物的摄入量,请你运用条形统计图表示表中的数据。说一说,条形统计图有什么特点?

  提问:从条形统计图中,可以清楚地看到每一类食物的`摄入量,能看出每一类食物的摄人量占总摄入量的百分之几吗?

  揭题,板书课题:扇形统计图。

  出示课件一边呈现扇形统计图,一边进行简要讲解,使学生了解扇形统计图是用扇形面积的大小(占圆面积的百分之几)来表示各类数量的多少。(占总摄人量的百分之几)

  四、巩固升华

  完成课后“试一试”。

  1、比较各项活动时间,说一说有什么不同。提出数学问题

  2、总时间是多少?各项活动时间可以怎么计算?

  3、参照题目,画一个扇形统计图表示自己一天的作息时间,并和同学进行交流。

  五、全课小结:你今天有什么收获?还有什么不懂的地方?

  板书设计:

  扇形统计图

  能清楚地反映整体与部分的关系。

七年级数学教案15

  一、课题

  2.1数怎么不够用了(2)

  二、教学目标

  1.使学生理解有理数的意义,并能将给出的有理数进行分类;

  2.培养学生树立分类讨论的思想。

  三、教学重点和难点

  重点

  难点

  有理数包括哪些数.

  有理数的分类及其分类的标准.

  四、教学手段

  现代课堂教学手段

  五、教学方法

  启发式教学

  六、教学过程

  (一)、从学生原有的认知结构提出问题

  1.什么是正、负数?

  2.如何用正、负数表示具有相反意义的量?数0表示量的意义是什么?举例说明.

  3.任何一个正数都比0大吗?任何一个负数都比0小吗?

  4.什么是整数?什么是分数?

  根据学生的回答引出新课.

  (二)、讲授新课

  1.给出新的整数、分数概念

  引进负数后,数的范围扩大了.过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数,即

  2.给出有理数概念

  整数和分数统称为有理数,即

  有理数是英语“Rational number”的译名,更确切的译名应译作“比

  3.有理数的分类

  为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法?

  待学生思考后,请学生回答、评议、补充.

  教师小结:按有理数的符号分为三类:正有理数、负有理数和零,简称正数、负数和零,即

  并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.

  (三)、运用举例 变式练习

  例1

  将下列数按上述两种标准分类:

  例2

  下列各数是正数还是负数,是整数还是分数:

  课堂练习

  25、-100按两种标准分类.

  2、下列各数是正数还是负数,是整数还是分数?

  (四)、小结

  教师引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?

  七、练习设计

  1.把下列各数填在相应的括号里(将各数用逗号分开):

  正整数集合:{ …};

  负整数集合:{ …};

  正分数集合:{ …};

  负分数集合:{ …}.

  2.填空题:

  的`数是______,在分数集合里的数是______;

  (2)整数和分数合起来叫做______,正分数和负分数合起来叫做______.

  3.选择题

  (1)-100不是

  A.有理数 B.自然数 C.整数 D.负有理数

  (2)在以下说法中,正确的是[ ]

  A.非负有理数就是正有理数

  B.零表示没有,不是有理数

  C.正整数和负整数统称为整数

  D.整数和分数统称为有理数

  八、板书设计

  2.1数怎么不够用了(2)

  (一)知识回顾 (三)例题解析 (五)课堂小结

  (二)观察发现 例1、例2

  (四)课堂练习 练习设计

  九、教学后记

  在传授知识的同时,一定要重视数学基本思想方法的教学.关于这一点,布鲁纳有过精彩的论述.他指出,掌握数学思想和方法可以使数学更容易理解和更容易记忆,更重要的是领会数学思想和方法是通向迁移大道的“光明之路”,如果把数学思想和方法学好了,在数学思想和方法的指导下运用数学方法驾驭数学知识,就能培养学生的数学能力.不但使数学学习变得容易,而且会使得别的学科容易学习.显然,按照布鲁纳的观点,数学教学就不能就知识论知识,而是要使学生掌握数学最根本的东西,用数学思想和方法统摄具体知识,具体解决问题的方法,逐步形成和发展数学能力.

  为了使学生掌握必要的数学思想和方法,需要在教学中结合内容逐步渗透,而不能脱离内容形式地传授.本课中,我们有意识地突出“分类讨论”这一数学思想方法,并在教学中注意渗透两点:

  1.分类的标准不同,分类的结果也不相同;

  2.分类的结果应是无遗漏、无重复,即每一个数必须属于某一类,又不能同时属于不同的两类.

【七年级数学教案】相关文章:

七年级数学教案08-19

七年级人教版数学教案11-03

七年级上数学教案02-07

初中七年级数学教案06-24

七年级下册数学教案08-26

最新七年级数学教案09-28

七年级数学教案数轴12-29

初中七年级数学教案12-30

【热】七年级数学教案12-22

七年级数学教案【精】01-06