近似数教学反思 15篇
身为一位优秀的教师,我们要在课堂教学中快速成长,通过教学反思可以快速积累我们的教学经验,优秀的教学反思都具备一些什么特点呢?下面是小编整理的近似数教学反思 ,仅供参考,大家一起来看看吧。
近似数教学反思 1
亿以上数的改写和求近似数是在学生已经学习了亿以内数的读写和改写亿以内的数及求近似数的基础上进行的。通过教学我感觉到:
一、学习资源来源于学生
1.复习亿以内数的改写和求近似数。首先让学生举例说出一个含有两级的大数,其他学生在自己的本子上写出来,一生板演。根据学生举得例子要求将整万的数改写成“万”做单位的数,将不是整万的数,用“四舍五入”法省略万位后面的尾数,重点让学生说一说怎样改写和求近似数的方法。
2.“你能举例含有三级的大数吗?”老师的这个问题引发学生的兴趣,大家争先举例,板书呈现出来。
二、重“迁移”,学生自主探究学习
1.看,这些大数含有三级,你会读吗?这些数有什么特点?你能将它们改写成用“亿”作单位的数吗?对于学生举得例子中整亿的数,老师放手让他们自己改写(比较简单),改写后,说一说怎样改写的,应注意什么?
2.不是整亿的数省略亿后面的尾数求近似数,老师也是给学生充足的.空间时间,自己尝试做一做。汇报交流时,重点强调,省略亿位后面的尾数关键要看哪一位上的数是否满五?
总之,学生自己能学会的知识,老师绝不包办代替,给学生留有空间,鼓励他们大胆尝试,利用已有的知识和学习方法自主探索,解决新的问题,提高数学能力。
近似数教学反思 2
本节课的内容是在学生学习了求整数的近似数的基础上进行教学的,目的是让学生学会用四舍五入法求小数的近似数。本节课的教学重点是理解保留整数、保留一位小数、保留两位小数的含义。教学难点是近似数的连续进位问题。
成功之处:
1.复旧引新,沟通前后知识间的联系。课始出示:把下面各数省略万后面的尾数,求出它们的近似数986413356286521490088,目的'是让学生温故而知新,减少学习中的盲目性,提高课堂教学效率。
2.联系生活实际,体会数学与生活的联系。结合主题图,创设了邻居家的孩子“小豆豆”测身高的生活情境,自然的引入新课,使学生看到小数在生活中的广泛应用。在巩固环节,让学生说出把4、85元精确到元、精确到角分别是多少钱,这样把学习的求一个小数的近似数的知识还原与生活,应用与生活。
3.深刻体会保留保留几位小数的含义。通过学习,使学生体会到保留一位小数就是精确到十分位;保留两位小数就是精确到百分位;保留整数就是精确到十分位。
4.重点比较2.5和2.50的区别。通过在数轴上的取值范围,使学生体会到2.5的取值范围在2.45~2.54,2.50的取值范围在2.495~2.504,虽然大小相等,但是精确度不一样,2.5表示精确到十分位,2.50表示精确到百分位。
不足之处:
1.学生对于保留整数就是看十分位上的数是否满5,但对于精确到十分位就是保留整数的逆向理解有些困难。
2.对于典型题中形如9.956保留整数、保留一位小数,学生还是存在不知如何进位的问题。
再教设计:
1.加强保留整数、保留一位小数、保留两位小数的含义的逆向理解,使学生深刻体会保留几位小数的含义。
2.加强典型易错题的练习,消除学习中易出错、易混淆的问题。
近似数教学反思 3
本节课是在学生学习了求整数的近似数的基础上进行教学的,目的是让学生学会用四舍五入法求小数的近似数,在学习之前,我先让学生复习了求整数的近似数的方 法——四舍五入法,在求小数近似数的过程中,重点把握了三个教学重难点,即:理解“保留几位小数;精确到什么位;省略什么位后面的尾数”这些要求的含义; 表示近似数的时候,小数末尾的“0”必须保留,不能去掉;连续进位的问题。
教学从生活出发,让学生感受数学与实际的联系。在引入环节,在超市买菜时,总价是7、53元,而售货员只收7元5角钱,这就是在求7、53这个小数的近似 数。在创设情境环节,结合教科书的主题图,创设了邻居家的.孩子“小豆豆”测身高的生活情境,自然的引入新课,使学生看到小数在生活中的广泛应用。在巩固环 节,让学生说出把4、85元精确到元、精确到角分别是多少钱,这样把学习的求一个小数的近似数的知识还原与生活,应用与生活。
在求小数近似数的过程中,引导学生理解保留几位小数的含义。保留一位小数就是精确到十分位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百 分位后面的尾数。这个环节我是让学生看书自学的,在讲完第一个小题0。984≈0。98后,我让学生比较了求小数近似数的方法与求整数近似数的方法,使学 生很快就明确了求小数的近似数要把尾数部分舍去;在教学完0。984≈1。0后,让学生讨论“0”能不能舍去,使学生明确了“0”如果舍去了,小数部分没 有数字就没有保留到十分位;在教学0。984保留整数时,也让学生充分讨论了小数部分要不要加“0”。最后引导学生总结出求小数近似数的方法。
但在“保留几位小数、精确到什么位、省略什么位后面的尾数”都出现以后,没有把它们之间的联系梳理出来,这样就会给学生造成要求太多记不住的麻烦。如果让 学生明白保留两位小数就是要精确到百分位,省略百分位后面的尾数也是要精确到百分位,学生审题后就会自然地归到精确什么位,看什么位进行四舍五入的思维模 式,这样就有了更加清晰的思维。
近似数教学反思 4
师:(出示统计表) 四个城市小学生人数情况统计表
城 市 名 称 小 学 生 人 数
A 91995
B 94955
C 95955
D 98955
师:根据这个统计表,你能知道什么?
生1:我知道A城市小学生最少,D城市小学生最多。
生2:我知道这四个城市小学生人数的后三位数都是995,万位上都是9。
生3:我知道这四个城市的人数都比9万多,都比10万少。
师:同学们真会发现!这些数据都是经过认真调查统计获取的,一个不多,一个不少,都是准确数。(板书:准确数)但在日常生活中往往不说得这样准确,而是主说出大约是多少。例如,我们班有67人,大约是几十人?
生:大约是70人。
师:能说说理由吗?
生:因为67人接近70人,所以大约是70人。
师:像这几个城市的小学生分别大约是多少万人,为什么?
生1:A城市大约是9万人,因为91955接近9万。
生2:B城市大约也是9万人,94955也接近9万。
生3:C城市大约是10万人,因为95955接近10万。
生4:D城市大约是10万人,因为98955也接近10万。
(师进而引出“近似数”和“≈”,板书如下:)
91955≈9万
94955≈9万
95955≈10万
98955≈10万
师:刚才我们把这几个数写成了用“万”作单位的近似数。为什么有的约等于9万,而有的约等于我10万,请你们仔细观察这几个算式,看有什么发现?
生1:我发现这几个数只有千位上的数不同,千位上是1、4,近似数是9万。
生2:我有补充!千位上是5、8,近似数是10万。
生2:我发现这几个数的近似数与千位上的'数有关系,如果千位上的数比5小,这个数就更接近9万,所以它们的近似数是9万;如果比5大或等于5,这个数更接近10万,所以它们的近似数就是10万。
师:同学们说的太妙了!如果把一个数写成用万作单位的近似数,关键要看千位上的数,如果小于5就舍去,如果满5就向前一位进“1”再把后面的数舍去。这就是我们今天学习的“四舍五入法”。
生1:老师,我有不同意见!如果千位上是5,而这个数不是95955,而是95000,我觉得它的近似数可以是9万!就不能“五入”了!
生2:但也可以是10万!
生3:我认为既可以是9万,也可以是10万!
师:能讲讲道理吗?
生1:因为95000比9万多5000,比10万少5000,它既接近9万,也接近10万,所以它的近似数可以是9万,也可以是10万。
生2:因为95000离9万和10万一样远,所以说它的近似数是9万行,是10万也行。
师:你们说的还真让人信服!像95000的近似数,完全可以这样理解!还有其它不同意见吗?
……
近似数教学反思 5
在复习小数乘、除法时,学生遇到求近似数时,感到困难。我认为如果将有关求近似数的内容联系起来教学,让学生找到之间的联系和区别,把知识连起来,可以起到事半功倍的效果。
我在和学生一同复习时,先带领学生将学过的求近似数的知识列举出来:一、求积的近似数:二、求商的近似数。
1、回忆求积的近似数的方法,——先计算,再用四舍五入的方法保留。
2、回忆求商的近似数的方法,——先计算,再用四舍五入的方法保留,但要注意只需除到比要求保留的位数多一位就行了。
3、在这里要学生比较两种求近似数的方法有什么相同和不同。相同点:用四舍五入的`方法保留,不同点:乘法可算得准确的结果,而除法不一定能除尽,也不需要除完
4、在求商的近似数时,学生最感到困难的是根据实际情况进行保留,提醒学生并不是任何时候都可以用四舍五入的方法保留,有时要用进一法有时用去尾法,我让学生举例说说什么时候进一什么时候去尾,帮助学生理解。
为了验证学生学情,指名五名学生到黑板上分别计算各自的式题,三名学生在老师的监督下艰难做对了,我向他们一一表示祝贺,以此鼓励他们,树立学习的信心。其中两位同学被困难挡住了去路,这时下课的铃声响起,我不得不让他们回到自己的座位上。为了给他们一点压力,当放学的铃声响起,我把它们叫到自己的办公室,指导他们完成练习四的第一题,这五道都是求商的近似数。孙艳花了近一个小时艰难的做完了,其中一道做错,在我的反复指导下终于做对了,我向他表示祝贺,并让他回家吃饭,同时叮嘱他上课要认真听讲,做题要动脑筋。晚上再次研究班上几位同学验算所用的草稿纸,发现错误的原因,有的题不是小数点点错了位置,就是商放错了位置:有的题除数扩大了,被除数却还是没有移动小数点;有的题确立的商和除数乘的积竟然不知道放在什么位置上,总之从孙丹妮所做的式题,可以清楚看到她根本没有掌握求近似值的知识,脑子里完全糊涂着,想孙丹妮这样的学生绝不仅仅是孙丹妮,还要继续强化训练学生求商的近似数,小数点的确立,以及商的位置是求近似数的重点和难点。
近似数教学反思 6
小数除法经常会出现除不尽的情况,或者商的小数位数较多的情况。但是在实际工作和生活中,并不总是需要求出很多位小数的商,而往往只要求出商的近似值就可以了。本节课是在学生已经学过求一个小数的近似值,以及求小数乘法的积的近似值的基础上进行教学的,这里只是通过例7一道计算钱数的应用题,让学生自己想一想,怎样取商的近似值。由于计算钱数时一般算到“分”就可以了,那么题中的结果应保留两位小数,除的时候要除到千分位,也就是要先算出三位小数。然后让学生自己确定,怎样把小数点后面第三位小数按“四舍五入法”处理。接着,让学生试算“做一做”中的练习题。这一题是让学生根据不同要求取商的近似值。使学生更明确,算出的小数位数都要比要求保留的小数位数多一位,然后按“四舍五入法”省略尾数。
1、在读题中理解题意,渗透思想教育。例题给学生留出了更为自由发挥的空间,一句“从中读出了什么信息”的开放问题,引导着学生建立条件与条件间的联系,培养了学生根据条件提出问题的能力,提高了学生收集、处理信息的水平。
2、在试算中发现问题,联系旧知思考。教师有意制造“除不尽”的矛盾冲突,把学生推到自主探究的前台。学生联系求小数的近似数这一旧知,明确了解决问题的方向——取近似数;把握题目中的一个“元”字,结合已有的关于人民币的处理经验,获得了保留两位小数的信息,使学生亲历了“做数学”的过程,学会了用旧知识解决新问题的策略,体验到了学习数学的快乐。
3、在交流中相互启发,探寻取值方法。除到小数位数的哪一位是求商的近似值的`关键,教师以同一问题“还要继续除下去吗?”充分开发和利用教学中的现有资源,加强生生之间的互动,在对比中探寻取值方法,把教学建立在更广阔的交流背景之上,为课堂教学注入新的活力。
4、在小结中对比沟通,形成整体认识。充分利用课堂,致力于学生反思意识的培养,有利于学生把零碎的知识串联起来,建构自己的知识系统;让每一位学生站在元认知的高度重新审视自己的学习方式,这既是对知识本身的反思,更是对整个学习过程的反思,对知识、情感、能力、方法等各个方面的反思,这无论是培养学生从小养成良好的学习品质,还是对学生的终身发展都有着重要的意义。
从课后的练习中来看,学生对于这部分内容的算法是清楚的,但是在笔算的错误率还比较高,还需要对计算技能进行训练。
近似数教学反思 7
1、教学目标要明确,内容要准确。这是基础,学生做题出现问题跟教师有直接关系。
2、教师要明确自己的角色,地位。教师要有自己的威严,要严慈相济;教师是教学活动的'指导者,处于主导地位,把控课堂活动,要顾及全体学生,不能只看回答问题的学生。
3、发挥学生的主体地位。学生自己积极主动的探讨,不要满堂灌。
4、备课要全面。备教材,备学生。对于知识体系有关全面的了解,知道学生已有的知识水平,对于新授课程有铺垫的作用;尤其是学生的了解,可能直接决定教学方式的选择。
5、主副板书使用要合理,主板书部分要留给新授例题。
6、小组活动探究或者学生自己做练习时,教师要下面巡视,掌握学生知识掌握情况和易错点和共性问题,做到心里有数。
7、教师之间可以相互学习,相互借鉴,取其精华,转变成适合自己的模式。
近似数教学反思 8
在导入新课环节我抓住学生的生活实际:从我们二年级各班的人数这个准确数到我们级大约有多少人,引入新课。我努力从学生身边挖掘、选取教学的素材,让数学走近学生的生活。学生所学的知识于他们的生活,也就能很快地进入学习状态了。生活中的许多数量是用近似数表示的,你在哪见过或听过?说明:没有办法得到一个精确结果或没有必要用一个准确数表示时,就用近似数。
通过本课的教学,我意识到以下几点:
让学生在生活中体验。这堂课通过学生收集生活中的一些数据,例如:班级人数、家用电器等一些数据,让学生初步感受这些信息,引入准确数,接着让学生根据自己的生活经验,说说哪些是准确数,哪些是近似数,并让学生说说自己是如何来判断近似数的。从学生找出“大约、接近”等一些词可以看出。
教学如何求近似数是本课的一个难点,我通过独立的看一看,自己试一试,小组讨论交流等活动,让学生做学习的'主人,给他们提供一个广阔思维的空间,鼓励他们自己去发现数学中的一些规律,让学生经历知识的形成与发展过程,从中体会探究与发现带来的乐趣。
近似数教学反思 9
一些比较大的数据,由于书写不方便,需要将它们改写成以万作单位的数,这样既方便书写,又便于读数。亿以内数的改写和省略是本节课的教学重点,难点是亿以内数的省略。通过本节课的学习使学生掌握大数的改写方法和利用“四舍五入”法省略万后面的尾数求近似数的方法。通过预习让学生明白三点,一是亿以内数的改写和求近似数是什么意思,二是哪样的`数适合改写,哪样的数适合用四舍五入,三是四舍五入是什么意思,这样可以使好学生在学习时更有自信,不好的学生先预习,如果不懂,经过第二天老师的点拨会豁然开朗。课中,通过老师举的例子,在小组同学交流的基础上,很快明白了改写的意义。
不足之处及改进:
在教学的过程中可能会有极少数学生对改写与省略尾数的联系与区别不太了解。所以下次教学中,我会强调并让学生明白改写只改变数的计数单位而不影响数本身的大小,用等号;而省略尾数后改变了数的大小,求出的是原数的近似数,用约等号。
近似数教学反思 10
星期四上午,侨中礼堂再一次听到罗老师的数学课很是欣赏和赞叹。
近似数是我们数学老师最不好把握的课。因为太活了,很多答案都对。罗老师一节课紧扣主题,突破重难点上有很多值得我借鉴的地方。先由华西村引入,孩子们通过数据知道72层是准确数,近5000个座位是近似数。当问到建筑面积是 ( )万平方米,让学生猜一猜:21□□□□,可能是多少万呢?这个题目很新颖很有趣。因为不论孩子们说什么都有可能。老师问:是21万还是22万?学生说看后面的数。老师这时翻开最后面个位上的数是8,学生紧接着说不对,前面的。老师又紧接着翻开十位的数是3。学生说还不对。到底是哪一位呢?最后确定是千位。老师问:为什么是千位呢?学生说:因为千位是0.1.2.3.4.就是21万,如果是5.6.7.8.9.就是22万。这是顺势引出四舍五入法。孩子们自然而然的.记住了要学习的知识。
罗老师的课很灵活。比如学校有3179人,用近似数表示约是( )。孩子们说:3180,3000,3200.多好的答案啊。这些都是对的,而我们在教学时往往把握不好,禁锢孩子的思维太多,结果适得其反。最有意思的一道题是:爸爸的工作单位地址是福州市五四路217号。学生说:五四路200号。呵呵,这回可掉进老师的圈套里了。老师反问:去五四路200号能找到爸爸吗?看来这是不能用近似数表示的。
在解决难点问题上,老师用一锤定价的方式出示宝马汽车的价格约是130万元。谁给的价格最高,但是必须约是130万就得到老师的宝马汽车的礼物。孩子们说出:1304999.真是设计的很巧秒。
整节课时间过得很快。老师的每一个环节,每一句话都是围绕着教学目标,都是在突破和解决教学重点难点。没有一丁点浪费。每一个环节设计都很有趣,孩子们喜欢。最重要的是老师善于启发孩子们自己发现,自己解决实际问题。
近似数教学反思 11
《求一个小数的近似数》这节课教学内容是建立在学生已经对求整数的近似数基础上进行教学上,这两个内容都是让学生根据四舍五入法去求数的近似数,但是不同点就是近似的部位不同,针对这个情况,在教学这节课时,以求整数的近似数进行导入,让学生说一说近似的依据——也就是四舍五入法,从而引入小数近似数的教学。这节课是掌握知识教学,在上课之前自己感觉整节课的设计挺不错的,开始的分类,由放到收,让学生在探索中学习。而在知识点的获取时,让学生主观发现,分析比较,概括出求一个小数的近似数的方法,体现了教师的主导作用和学生的主体地位。整节课的设计,总体感觉还是比较适合学生的思维发展的,在结构上,我也注重了前后呼应,使整堂课也显得比较紧凑。
但是上完之后,我觉得:学生掌握得不是不好,尤其是根据“四舍五入法”求一个小数的近似数,这里需要学生从逆向思维的角度去思考,但学生的逆向思维似乎都比较欠缺,这是我对学生在能力上的估计不足。对于重难点的突破尚有所欠缺,驾驭教材的.能力有所欠缺。同时,应该在课堂上多给学生自己表达的机会,同时在“冷场”的时候多调动学生的积极性。
而《求一个小数的近似数》这一部分内容的练习题目要求很多样,如同是保留一位小数,可以说是保留一位小数,也可以说是精确到十分位,或者是省略十分位后的数等等,针对这一情况,让学生在练习时多读题,并逐一进行分析,如精确到十分位,省略十分位后的数都是要求保留几位小数,这样学生就能更好的理解。
近似数教学反思 12
在教学第七册数学课本“近似数”一课中,有一道带星号的题是这样的“9□8765000≈10亿,方框里可以填哪些数时,这个数的近似数于10亿?”教学这一练习题时,我先让学生独立练习,要求学生也可以进行进行合作讨论,然后交流。结果,学生经过交流后,展示了两种结果:一种是方框里可以填大于或等于5的数;另一种是方框里可以填5、6、7、8、9。我立即追问学生:“这两种填法一样吗?”话音刚落,学生顿时激烈争论起来。有的学生说一样,而有的学生坚决认为不一样,并且列举出比5大的数还有10、11、12……,我顺着学生的思路不断地往下板书,一直写到二十几,然后甩甩手臂,装出手很酸的样子,问:“写完了没有,我的手都写酸了。”学生马上说“写不完,写不完,比5大的数有许多个。”我马上接着说:“写也写不完的数在数学上有无数个”。这时我又问学生:“这两种填法一样吗?”学生坚决而果断地说:“不一样,填5、6、7、8、9是正确的”。
在完成第二道星号题9□8765000≈9亿时,就更有趣了。当我提出方框里可以填哪些数时,有的学生说:“填比5小的数,只能填4、3、2、1、0”。这时有位学生神气活现地说:“还有-1、-2、-3、2.1、3.7等比5小的数,所以方框里填比5小的数是不正确的”。这位同学的回答超过了当前我们所学的整数范围内的数。看着这些聪明而又可爱的学生,我不由自主地赞叹:“你们太棒了,真了不起,能找到哪么多比5小的数”。这时我问学生比5小的数究竟有多少个时,同学们顿时异口同声地说:“比5小的数也有无数个”。“方框里应该填哪些数,同学们现在知道吗?。学生自信地回答:”方框里应填比5小的自然数都是正确的“。
通过这堂练习课,使我深深地反思到:学生的思维不再是一张白纸,新课程注重培养学生学习的兴趣与愿望,把学习的主动权交给学生,让学生更多地参与教学活动,在主动积极的心境下获取知识和发展能力。对学生思维方法的.教学法,不能仅靠简单的告知。数学教学最本质也是最显著的特点在于,它所传输的信息不仅仅是数学活动忍气吞声结果----数学知识,还应包括数学思维活动的过程,在教学中教师应该让学生经历一次次数学思维的活动过程。对学生来说,无论是构建一种新的数学知识,还是掌握新的数学思维方法,必须让学生经历数学思维的活动过程,才能让学生的思维有感性认识上升到理性认识。
近似数教学反思 13
这节课是在学生学习了求整数的近似数的基础上进行教学的,目的是让学生学会用四舍五入法求小数的近似数,在学习之前,我先让学生复习了求整数的近似数的方法——四舍五入法,在求小数近似数的过程中,重点把握了三个教学重难点,即:理解“保留几位小数;精确到什么位;省略什么位后面的尾数”这些要求的含义;表示近似数的时候,小数末尾的“0”必须保留,不能去掉;连续进位的问题。
1.从生活出发,让学生感受数学与实际的联系
在创设情境环节,结合教科书的主题图,创设了邻居家的孩子“小豆豆”测身高的生活情境,自然的引入新课,使学生看到小数在生活中的广泛应用。在巩固环节,让学生说出把4、85元精确到元、精确到角分别是多少钱,这样把学习的求一个小数的近似数的知识还原与生活,应用与生活。
2.注重过程,让学生在探索中学习
在求小数近似数的过程中,引导学生理解保留几位小数的含义。保留一位小数就是精确到十分位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百分位后面的尾数。这个环节我是让学生看书自学的,在讲完第一个小题0.984≈0.98后,我让学生比较了求小数近似数的方法与求整数近似数的方法,使学生很快就明确了求小数的近似数要把尾数部分舍去;在教学完0.984≈1.0后,让学生讨论“0”能不能舍去,使学生明确了“0”如果舍去了,小数部分没有数字就没有保留到十分位;在教学0.984保留整数时,也让学生充分讨论了小数部分要不要加“0”。最后引导学生总结出求小数近似数的方法。
虽然求小数的近似数的'方法与整数的近似数相似。而在知识点的获取时,让学生主观发现,分析比较,概括出求一个小数的近似数的方法,体现了教师的主导作用和学生的主体地位。
课堂也存在一些问题:
一些基础差的学生在求小数的近似数时却还是遇到了一些困难。最典型的就是他们忘了精确到哪一位,以为精确到哪一位就是看哪一位。还有些同学甚至“连环进位”,让他保留两位小数,他就把千分位、百分位、十分位的数都往前进一了。这不仅说明这些同学基础差,还说明了反馈练习的重要性。如果没有反馈,我们就不知道每个学生的课堂学习效果,也就不能帮助接受能力弱的同学,提升有巨大潜力的学生了。
近似数教学反思 14
本节课的内容是在学生学习了求整数的近似数的基础上进行教学的,目的是让学生学会用四舍五入法求小数的近似数。本节课的教学重点是理解保留整数、保留一位小数、保留两位小数的含义。教学难点是近似数的连续进位问题。
成功之处:
1、复旧引新,沟通前后知识间的联系。课始出示:把下面各数省略万后面的尾数,求出它们的近似数986413 35628 65214 90088 ,目的是让学生温故而知新,减少学习中的盲目性,提高课堂教学效率。
2、联系生活实际,体会数学与生活的联系。结合主题图,创设了同学们测身高的生活情境,自然的引入新课,使学生看到小数在生活中的广泛应用。在巩固环节,让学生说出把盛维维的身高1.584米精确到分米、厘米。这样把学习求一个小数的近似数的知识还原与生活,应用与生活。
3、深刻体会保留保留几位小数的含义。通过学习,使学生体会到保留一位小数就是精确到十分位;保留两位小数就是精确到百分位;保留整数就是精确到个位。
4、重点比较,保留整数的'1和保留一位小数1.0的区别。通过在数轴上的取值范围,使学生体会到保留整数1的取值范围在0.5~1.4,保留一位小数的1.0的取值范围在0.95~1.04,保留整数的1和保留一位小数1.0虽然大小相等,但是精确度不一样,保留的小数位数越多,就越接近准确值,也就更精确。
不足之处:
1、 练习时间有点少。
2、 个别辅导不够。
近似数教学反思 15
教学如何求一个数的近似数是本课的一个难点,在课堂上,学生没有知识积累,这以前他们没接触过数字估算,根本不会估算,当然也不可能有不同的策略交流;当要求举生活中的近似数的例子时,学生没有生活积累,举不出生活中估算的例子,我觉得一是学生没有仔细观察生活,另外也是学生的估算经历少;在作业中,求近似数也是出现了不少问题,有的.乱估,有的离准确数太远,还有一些学生不会做题,我觉得他们是没有找到做题的方法。
估算就是推算出某数的大概数,即准确数的近似数。教学时重点强调,估算是没有唯一答案的,但在比较多个答案之后,让学生明白估算[]出的数要最接近于准确数。实践中我认为下列方法效果会好一些:让学生看十位。十位是1—4就把十位和个位都写成0,百位、千位不变。例如:7046≈7000、1837≈1800。如果十位是5—9就把十位、个位写成0,在百位上加1,千位再随百位变化而变化。例如:6080≈6100、9960≈10000。
总之,学生估算意识和能力的形成需要长期的潜移默化地渗透,需要教师每堂课坚持不懈、持之以恒的努力,当学生将估算内化成一种自觉意识,才会迸发出许多有价值的、创造性的估算方法,学生的估算能力才能真正的提高。
【近似数教学反思 】相关文章:
近似数教学反思02-09
《商的近似数》教学反思08-27
商的近似数教学反思01-20
《小数的近似数》教学反思03-27
求近似数的教学反思01-16
求小数的近似数教学反思03-23
《商的近似数》教学反思10篇01-21
《商的近似数》教学反思(10篇)03-28
《商的近似数》教学反思精选10篇04-05