现在位置:范文先生网>教案大全>数学教案>八年级数学教案>八年级数学教案

八年级数学教案

时间:2024-06-23 17:01:43 八年级数学教案 我要投稿

八年级数学教案15篇[经典]

  作为一名专为他人授业解惑的人民教师,就不得不需要编写教案,教案是备课向课堂教学转化的关节点。我们应该怎么写教案呢?以下是小编精心整理的八年级数学教案,欢迎阅读与收藏。

八年级数学教案15篇[经典]

八年级数学教案1

  一、学习目标:

  让学生了解多项式公因式的意义,初步会用提公因式法分解因式

  二、重点难点

  重点:能观察出多项式的公因式,并根据分配律把公因式提出来

  难点:让学生识别多项式的公因式.

  三、合作学习:

  公因式与提公因式法分解因式的概念.

  三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c)

  既ma+mb+mc = m(a+b+c)

  由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法。

  四、精讲精练

  例1、将下列各式分解因式:

  (1)3x+6; (2)7x2-21x; (3)8a3b2-12ab3c+abc (4)-24x3-12x2+28x.

  例2把下列各式分解因式:

  (1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.

  (3) a(x-3)+2b(x-3)

  通过刚才的'练习,下面大家互相交流,总结出找公因式的一般步骤.

  首先找各项系数的____________________,如8和12的公约数是4.

  其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最___________的

  课堂练习

  1.写出下列多项式各项的公因式.

  (1)ma+mb 2)4kx-8ky (3)5y3+20y2 (4)a2b-2ab2+ab

  2.把下列各式分解因式

  (1)8x-72 (2)a2b-5ab

  (3)4m3-6m2 (4)a2b-5ab+9b

  (5)(p-q)2+(q-p)3 (6)3m(x-y)-2(y-x)2

  五、小结:

  总结出找公因式的一般步骤.:

  首先找各项系数的大公约数,

  其次找各项中含有的相同的字母,相同字母的指数取次数最小的

  注意:(a-b)2=(b-a)2

  六、作业

  1、教科书习题

  2、已知2x-y=1/3,xy=2,求2x4y3-x3y4 3、(-2)20xx+(-2)20xx

  4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3

八年级数学教案2

  一、课堂导入

  回顾平行四边的性质定理及定义

  1.什么叫平行四边形?平行四边形有什么性质?

  2.将以上的性质定理,分别用命题形式叙述出来。(如果……那么……)

  根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形性质定理的逆命题是否成立?

  二、新课讲解

  平行四边形的.判定:

  (定义法):两组对边分别平行的四边形的平边形。

  几何语言表达定义法:

  ∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形

  解析:一个四边形只要其两组对边分别互相平行,则可判定这个四边形是一个平行四边形。

  活动:用做好的纸条拼成一个四边形,其中强调两组对边分别相等。

  (平行四边形判定定理):

  (一)两组对边分别相等的四边形是平行四边形。

  设问:这个命题的前提和结论是什么?

  已知:四边形ABCD中,AB=CD,BC=DA。

  求证:四边ABCD是平行四边形。

  分析:判定平行四边形的依据目前只有定义,也就是须证明两组对边分别平行,当然是借助第三条直线证明角等。连结BD。易证三角形全等。

  板书证明过程。

  小结:用几何语言表达用定义法和刚才证明为正确的方法证明一个四边形是平行四边形的方法为:

  平行四边形判定定理1:二组对边分别相等的四边形是平行四边形∵AB=CD,AD=BC,∴四边形ABCD是平行四边形

  (二)设问:若一个四边形有一组对边平行且相等,能否判定这个四边形也是平行四边形呢?

  活动:课本探究内容,并用事准备好的纸条(纸条的长度相等),先将纸条放置不平行位置,让学生设想若二纸条的端点为四边形的顶点,则组成的四边形是不是平行四边形?若将纸条摆放为平行的位置,则同样用二纸条的端点为顶点组成的四边形是不是平行四边形?

  设问:我们能否用推理的方法证明这个命题是正确的呢?(让学生找出题设、结论,然后写出已知、求证及证明过程。)

八年级数学教案3

  教学目标:

  1. 掌握三角形内角和定理及其推论;

  2. 弄清三角形按角的分类, 会按角的大小对三角形进行分类;

  3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。

  4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态

  5. 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。

  教学重点:

  三角形内角和定理及其推论。

  教学难点:

  三角形内角和定理的证明

  教学用具:

  直尺、微机

  教学方法:

  互动式,谈话法

  教学过程:

  1、创设情境,自然引入

  把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。

  问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?

  问题2 你能用几何推理来论证得到的关系吗?

  对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线 ”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)

  新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。

  2、设问质疑,探究尝试

  (1)求证:三角形三个内角的和等于

  让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。

  问题1 观察:三个内角拼成了一个

  什么角?问题2 此实验给我们一个什么启示?

  (把三角形的三个内角之和转化为一个平角)

  问题3 由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的'桥梁?

  其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。

  (2)通过类比“三角形按边分类”,三角形按角怎样分类呢?

  学生回答后,电脑显示图表。

  (3)三角形中三个内角之和为定值

  ,那么对三角形的其它角还有哪些特殊的关系呢?问题1 直角三角形中,直角与其它两个锐角有何关系?

  问题2 三角形一个外角与它不相邻的两个内角有何关系?

  问题3 三角形一个外角与其中的一个不相邻内角有何关系?

  其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。

  这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。

  3、三角形三个内角关系的定理及推论

  引导学生分析并严格书写解题过程

八年级数学教案4

  教学目标

  1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.

  2.会综合运用平行四边形的判定方法和性质来解决问题

  教学重点:平行四边形的判定方法及应用

  教学难点:平行四边形的判定定理与性质定理的灵活应用

  一.引

  小明的.父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?

  二.探

  阅读教材P44至P45

  利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:

  (1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?

  (2)你怎样验证你搭建的四边形一定是平行四边形?

  (3)你能说出你的做法及其道理吗?

  (4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?

  (5)你还能找出其他方法吗?

  从探究中得到:

  平行四边形判定方法1两组对边分别相等的四边形是平行四边形。

  平行四边形判定方法2对角线互相平分的四边形是平行四边形。

  证一证

  平行四边形判定方法1两组对边分别相等的四边形是平行四边形。

  证明:(画出图形)

  平行四边形判定方法2一组对边平行且相等的四边形是平行四边形。

八年级数学教案5

  教学目标:

  1、掌握平均数、中位数、众数的概念,会求一组数据的平均数、中位数、众数。

  2、在加权平均数中,知道权的差异对平均数的影响,并能用加权平均数解释现实生活中一些简单的现象。

  3、了解平均数、中位数、众数的差别,初步体会它们在不同情境中的应用。

  4、能利和计算器求一组数据的算术平均数。

  教学重点:

  体会平均数、中位数、众数在具体情境中的意义和应用。

  教学难点:

  对于平均数、中位数、众数在不同情境中的应用。

  教学方法:

  归纳教学法。

  教学过程:

  一、知识回顾与思考

  1、平均数、中位数、众数的概念及举例。

  一般地对于n个数X1……Xn把(X1+X2+…Xn)叫做这n个数的算术平均数,简称平均数。

  如某公司要招工,测试内容为数学、语文、外语三门文化课的综合成绩,满分都为100分,且这三门课分别按25%、25%、50%的比例计入总成绩,这样计算出的成绩为数学,语文、外语成绩的加权平均数,25%、25%、50%分别是数学、语文、外语三项测试成绩的权。

  中位数就是把一组数据按大小顺序排列,处在最中间位置的数(或最中间两个数据的平均数)叫这组数据的中位数。

  众数就是一组数据中出现次数最多的那个数据。

  如3,2,3,5,3,4中3是众数。

  2、平均数、中位数和众数的特征:

  (1)平均数、中位数、众数都是表示一组数据“平均水平”的平均数。

  (2)平均数能充分利用数据提供的信息,在生活中较为常用,但它容易受极端数字的影响,且计算较繁。

  (3)中位数的'优点是计算简单,受极端数字影响较小,但不能充分利用所有数字的信息。

  (4)众数的可靠性较差,它不受极端数据的影响,求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”。

  3、算术平均数和加权平均数有什么区别和联系:

  算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数。

  4、利用计算器求一组数据的平均数。

  利用科学计算器求平均数的方法计算平均数。

  二、例题讲解:

  某校规定:学生的平时作业、期中练习、期末考试三项成绩分别按40%、20%、40%的比例计入学期总评成绩,小亮的平时作业、期中练习、期末考试的数学成绩依次为90分,92分,85分,小亮这学期的数学总评成绩是多少?

  三、课堂练习:

  复习题A组

  四、小结:

  1、掌握平均数、中位数与众数的概念及计算。

  2、理解算术平均数与加权平均数的联系与区别。

  五、作业:

  复习题B组、C组(选做)

八年级数学教案6

  一、教学内容:

  本节内容是人教版教材八年级上册,第十四章第2节乘法公式的第二课时——完全平方公式。

  二、教材分析:

  完全平方公式是乘法公式的重要组成部分,也是乘法运算知识的升华,它是在学生学习整式乘法后,对多项式乘法中出现的一种特殊的算式的总结,体现了从一般到特殊的思想方法。完全平方公式是学生后续学好因式分解、分式运算的必备知识,它还是配方法的基本模式,为以后学习一元二次方程、函数等知识奠定了基础,所以说完全平方公式属于代数学的基础地位。

  本节课内容是在学生掌握了平方差公式的基础上,研究完全平方公式的推导和应用,公式的发现与验证为学生体验规律探索提供了一种较好的模式,培养学生逐步形成严密的逻辑推理能力。完全平方公式的学习对简化某些代数式的运算,培养学生的求简意识很有帮助。使学生了解到完全平方公式是有力的数学工具。

  重点:掌握完全平方公式,会运用公式进行简单的计算。

  难点:理解公式中的字母含义,即对公式中字母a、b的理解与正确应用。

  三、教学目标

  (1)经历探索完全平方公式的推导过程,掌握完全平方公式,并能正确运用公式进行简单计算。

  (2)进一步发展学生的符号感和推理能力,了解公式的几何背景,感受数与形之间的'联系,学会独立思考。

  (3)通过推导完全平方公式及分析结构特征,培养学生观察、分析、归纳的能力,学会与他人合作交流,体验解决问题的多样性。

  (4)体验完全平方公式可以简化运算从而激发学生的学习兴趣;在自主探究、合作交流的学习过程中获得体验成功的喜悦,增强学习数学的自信心。

  四、学情分析与教法学法

  学情分析:课程标准提出数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,本节课就是在前面的学习中,学生已经掌握了整式的乘法运算及平方差公式的基础上开展的,具备了初步的总结归纳能力。另外,14岁的中学生充满了好奇心,有较强的求知欲、创造欲、表现欲,所以只有能调动学生的学习热情,本节内容才较易掌握。但八年级学生的探究能力有差异,逻辑推理能力也有待于提高,而且易粗心马虎,这都是本节课要注意的问题。

  学法:以自主探究为主要学习方式,使学生在独立思考、归纳总结、合作交流

  总结反思中获得数学知识与技能。

  教法:以启发引导式为主要教学方式,在引导探究、归纳总结、典例精析、合作交流的教学过程中,教师做好组织者和引导者,让学生在老师的指导下处于主动探究的学习状态。

  五、教学过程

  (略)

  六、教学评价

  在教学中,教师在精心设置教学环节中,做到以学生为主体,做好组织者和引导者,全面评价学生在知识技能、数学思考、问题解决和情感态度等方面的表现。教师通过情境引入、提供问题引导学生从已有的知识为出发点,自主探究,发现问题,深入思考。学生解决问题要以独立思考为主,当遇到困难时学会求助交流,教师也要给学生思考交流的时间,让学生经历得出结论的过程,培养发现问题解决问题的能力。

  在整个学习过程中,通过对学生参与自主探究的程度、合作交流的意识以及独立思考的习惯,发现问题的能力进行评价,并对学生的想法或结论给予鼓励评价。

八年级数学教案7

  一、教材分析

  1、特点与地位:重点中的重点。

  本课是教材求两结点之间的最短路径问题是图最常见的应用的之一,在交通运输、通讯网络等方面具有一定的实用意义。

  2、重点与难点:结合学生现有抽象思维能力水平,已掌握基本概念等学情,以及求解最短路径问题的自身特点,确立本课的重点和难点如下:

  (1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。

  (2)难点:求解最短路径算法的程序实现。

  3、教学安排:最短路径问题包含两种情况:一种是求从某个源点到其他各结点的最短路径,另一种是求每一对结点之间的最短路径。根据教学大纲安排,重点讲解第一种情况问题的解决。安排一个课时讲授。教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决与算法分析相结合,逐步推动教学过程。

  二、教学目标分析

  1、知识目标:掌握最短路径概念、能够求解最短路径。

  2、能力目标:

  (1)通过将旅游景点线路选择问题抽象成求最短路径问题,培养学生的数据抽象能力。

  (2)通过旅游景点线路选择问题的解决,培养学生的独立思考、分析问题、解决问题的能力。

  3、素质目标:培养学生讲究工作方法、与他人合作,提高效率。

  三、教法分析

  课前充分准备,研读教材,查阅相关资料,制作多媒体课件。教学过程中除了使用传统的“讲授法”以外,主要采用“案例教学法”,同时辅以多媒体课件,以启发的方式展开教学。由于本节课的内容属于图这一章的难点,考虑学生的接受能力,注意与学生沟通,根据学生的反应控制好教学进度是本节课成功的关键。

  四、学法指导

  1、课前上次课结课时给学生布置任务,使其有针对性的预习。

  2、课中指导学生讨论任务解决方法,引导学生分析本节课知识点。

  3、课后给学生布置同类型任务,加强练习。

  五、教学过程分析

  (一)课前复习(3~5分钟)回顾“路径”的.概念,为引出“最短路径”做铺垫。

  教学方法及注意事项:

  (1)采用提问方式,注意及时小结,提问的目的是帮助学生回忆概念。

  (2)提示学生“温故而知新”,养成良好的学习习惯。

  (二)导入新课(3~5分钟)以城市公路网为例,基于求两个点间最短距离的实际需要,引出本课教学内容“求最短路径问题”。教学方法及注意事项:

  (1)先讲实例,再指出概念,既可以吸引学生注意力,激发学习兴趣,又可以实现教学内容的自然过渡。

  (2)此处使用案例教学法,不在于问题的求解过程,只是为了说明问题的存在,所以这里的例子只需要概述,能够说明问题即可。

  (三)讲授新课(25~30分钟)

  1、求某一结点到其他各结点的最短路径(重点)主要采用案例教学法,提出旅游景点选择的例子,解决如何选择代价小、景点多的路线。

  (1)将实际问题抽象成图中求任一结点到其他结点最短路径问题。(3~5分钟)教学方法及注意事项:

  ①主要采用讲授法,将实际问题用图形表示出来。语言描述转换的方法(用圆圈加标号表示某一景点,用箭头表示从某景点到其他景点是否存在旅游线路,并且将旅途费用写在箭头的旁边。)一边用语言描述,一边在黑上画图。

  ②注意示范画图只进行一部分,让学生独立思考、自主完成余下部分的转化。

  ③及时总结,原型抽象(景点作为图的结点,景点间的线路作为图的边,旅途费用作为边的权值),将案例求解问题抽象成求图中某一结点到其他各结点的最短路径问题。

  ④利用多媒体课件,向学生展示一张带权有向图,并略作解释,为后续教学做准备。

  教学方法及注意事项:

  ①启发式教学,如何实现按路径长度递增产生最短路径?

  ②结合案例分析求解最短路径过程中(重点)注意此处借助黑板,按照算法思想的步骤。同样,也是只示范一部分,余下部分由学生独立思考完成。

  (四)课堂小结(3~5分钟)

  1、明确本节课重点

  2、提示学生,这种方式形成的图又可以解决哪类实际问题呢?

  (五)布置作业

  1、书面作业:复习本次课内容,准备一道备用习题,灵活把握时间安排。

  六、教学特色

  以旅游路线选择为主线,灵活采用案例教学、示范教学、多媒体课件等多种手段辅助教学,使枯燥的理论讲解生动起来。在顺利开展教学的同时,体现所讲内容的实用性,提高学生的学习兴趣。

八年级数学教案8

  【教学目标】

  知识目标:

  解单项式乘以多项式的意义,理解单项式与多项式的乘法法则,会进行单项式与多项式的乘法运算。

  能力目标:

  (1)经历探索乘法运算法则的过程,发展观察、归纳、猜测、验证等能力;

  (2)体会乘法分配律的作用与转化思想,发展有条理的思考及语言表达能力。

  情感目标:

  充分调动学生学习的积极性、主动性

  【教学重点】

  单项式与多项式的乘法运算

  【教学难点】

  推测整式乘法的.运算法则。

  【教学过程】

  一、复习引入

  通过对已学知识的复习引入课题(学生作答)

  1.请说出单项式与单项式相乘的法则:

  单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里出现的字母,则连同它的指数作为积的一个因式。

  (系数×系数)×(同字母幂相乘)×单独的幂

  例如:( 2a2b3c) (-3ab)

  解:原式=[2· (-3) ] · (a2·a) · (b3 · b) · c

  = -6a3b4c

  2.说出多项式2x2-3x-1的项和各项的系数项分别为:2x2、-3x、-1系数分别为:2、-3、-1

  问:如何计算单项式与多项式相乘?例如:2a2· (3a2 - 5b)该怎样计算?

  这便是我们今天要研究的问题。

  二、新知探究

  已知一长方形长为(a+b+c),宽为m,则面积为:m(a+b+c)

  现将这个长方形分割为宽为m,长分别为a、b、c的三个小长方形,其面积之和为ma+mb+mc因为分割前后长方形没变所以m(a+b+c)=ma+mb+mc

  上一等式根据什么规律可以得到?从中可以得出单项式与多项式相乘的运算法则该如何表述?(学生分组讨论:前后座为一组;找个别同学作答,教师作评)

  结论单项式与多项式相乘的运算法则:

  用单项式分别去乘多项式的每一项,再把所得的积相加。

  用字母表示为:m(a+b+c)=ma+mb+mc

  运算思路:单×多

  转化

  分配律

  单×单

  三、例题讲解

  例计算:(1)(-2a2)· (3ab2– 5ab3)

  (2)(- 4x) ·(2x2+3x-1)

  解:(1)原式= (-2a2)· 3ab2+ (-2a2)·(– 5ab3) ①=-6a3b2+ 10a3b3 ②

  (2)原式=(- 4x) ·2x2+(- 4x) ·3x+(- 4x) ·(-1) ①

八年级数学教案9

  教学目标

  1.知识与技能

  领会运用完全平方公式进行因式分解的方法,发展推理能力.

  2.过程与方法

  经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.

  3.情感、态度与价值观

  培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.

  重、难点与关键

  1.重点:理解完全平方公式因式分解,并学会应用.

  2.难点:灵活地应用公式法进行因式分解.

  3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的

  教学方法

  采用“自主探究”教学方法,在教师适当指导下完成本节课内容.

  教学过程

  一、回顾交流,导入新知

  【问题牵引】

  1.分解因式:

  (1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;

  (3)x2-0.01y2.

  【知识迁移】

  2.计算下列各式:

  (1)(m-4n)2;(2)(m+4n)2;

  (3)(a+b)2;(4)(a-b)2.

  【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律.

  3.分解因式:

  (1)m2-8mn+16n2(2)m2+8mn+16n2;

  (3)a2+2ab+b2;(4)a2-2ab+b2.

  【学生活动】从逆向思维的角度入手,很快得到下面答案:

  解:

  (1)m2-8mn+16n2=(m-4n)2;

  (2)m2+8mn+16n2=(m+4n)2;

  (3)a2+2ab+b2=(a+b)2;

  (4)a2-2ab+b2=(a-b)2.

  【归纳公式】完全平方公式a2±2ab+b2=(a±b)2.

  二、范例学习,应用所学

  【例1】把下列各式分解因式:

  (1)-4a2b+12ab2-9b3;

  (2)8a-4a2-4;

  (3)(x+y)2-14(x+y)+49;(4)+n4.

  【例2】如果x2+axy+16y2是完全平方,求a的值.

  【思路点拨】根据完全平方式的.定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3.

  三、随堂练习,巩固深化

  课本P170练习第1、2题.

  【探研时空】

  1.已知x+y=7,xy=10,求下列各式的值.

  (1)x2+y2;(2)(x-y)2

  2.已知x+=-3,求x4+的值.

  四、课堂总结,发展潜能

  由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个:

  a2-b2=(a+b)(a-b);

  a2±ab+b2=(a±b)2.

  在运用公式因式分解时,要注意:

  (1)每个公式的形式与特点,通过对多项式的项数、次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;(2)在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;(3)当多项式各项有公因式时,应该首先考虑提公因式,然后再运用公式分解.

  五、布置作业,专题突破

八年级数学教案10

  一、教学目标:

  1、知识目标:能熟练掌握简单图形的移动规律,能按要求作出简单平面图形平移后的图形,能够探索图形之间的平移关系;

  2、能力目标:

  ①,在实践操作过程中,逐步探索图形之间的平移关系;

  ②,对组合图形要找到一个或者几个“基本图案”,并能通过对“基本图案”的平移,复制所求的图形;

  3、情感目标:经历对图形进行观察、分析、欣赏和动手操作、画图等过程,发展初步的审美能力,增强对图形欣赏的意识。

  二、重点与难点:

  重点:图形连续变化的特点;

  难点:图形的划分。

  三、教学方法:

  讲练结合。使用多媒体课件辅助教学。

  四、教具准备:

  多媒体、磁性板,若干小正六边形,“工”字的砖,组合图形。

  五、教学设计:

  创设情景,探究新知:

  (演示课件):教材上小狗的图案。提问:

  (1)这个图案有什么特点?

  (2)它可以通过什么“基本图案”,经过怎样的平移而形成?

  (3)在平移过程中,“基本图案”的大小、形状、位置是否发生了变化?

  小组讨论,派代表回答。(答案可以多种)

  让学生充分讨论,归纳总结,老师给予适当的`指导,并对每种答案都要肯定。

  看磁性黑板,展示教材64页图3-9,提问:左图是一个正六边形,它经过怎样的平移能得到右图?谁到黑板做做看?

  小组讨论,派代表到台上给大家讲解。

  气氛要热烈,充分调动学生的积极性,发掘他们的想象力。

  畅所欲言,互相补充。

  课堂小结:

  在教师的引导下学生总结本节课的主要内容,并启发学生在我们周围寻找平移的例子。

  课堂练习:

  小组讨论。

  小组讨论完成。

  例子一定要和大家接触紧密、典型。

  答案不惟一,对于每种答案,教师都要给予充分的肯定。

  六、教学反思:

  本节的内容并不是很复杂,借助多媒体进行直观、形象,内容贴近生活,学生兴致较高,课堂气氛活跃,参与意识较强,学生一般都能在教师的指导下掌握。教学过程中渗透数学美学思想,促进学生综合素质的提高。

八年级数学教案11

  教学目标:

  1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.

  2.会综合运用平行四边形的判定方法和性质来解决问题.

  3.培养用类比、逆向联想及运动的思维方法来研究问题.

  重点、难点

  1.重点:平行四边形的判定方法及应用.

  2.难点:平行四边形的判定定理与性质定理的灵活应用.

  3.难点的突破方法:

  平行四边形的判别方法是本节课的核心内容.同时它又是后面进一步研究矩形、菱形、正方形判别的基础,更是发展学生合情推理及说理的良好素材.本节课的教学重点为平行四边形的判别方法.在本课中,可以探索活动为载体,并将论证作为探索活动的自然延续与必要发展,从而将直观操作与简单推理有机融合,达到突出重点、分散难点的目的.

  (1)平行四边形的判定方法1、2都是平行四边形性质的逆命题,它们的证明都可利用定义或前一个方法来证明.

  (2)平行四边形有四种判定方法,与性质类似,可从边、对角线两方面进行记忆.要注意:

  ①本教材没有把用角来作为判定的方法,教学中可以根据学生的情况作为补充;

  ②本节课只介绍前两个判定方法.

  (3)教学中,我们可创设贴近学生生活、生动有趣的问题情境,开展有效的数学活动,如通过欣赏图片及识别图片中的平行四边形,使学生建立对平行四边形的直觉认识.并复习平行四边形的定义,建立新旧知识间的'相互联系.接着提出问题:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?从而组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中,从整体上把握“平行四边形的判别”的方法.

  然后利用学生手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件.

  在学生拼图的活动中,教师可以以问题串的形式展开对平行四边形判别方法的探讨,让学生在问题解决中,实现对平行四边形各种判别方法的掌握,并发展了学生说理及简单推理的能力.

  (4)从本节开始,就应让学生直接运用平行四边形的性质和判定去解决问题,凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明.应该对学生提出这个要求.

  (5)平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如,求角的度数,线段的长度,证明角相等或线段相等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.

  (6)平行四边形的概念、性质、判定都是非常重要的基础知识,这些知识是本章的重点内容,要使学生熟练地掌握这些知识.

  例题的意图分析

  本节课安排了3个例题,例1是教材P96的例3,它是平行四边形的性质与判定的综合运用,此题最好先让学生说出证明的思路,然后老师总结并指出其最佳方法.例2与例3都是补充的题目,其目的就是让学生能灵活和综合地运用平行四边形的判定方法和性质来解决问题.例3是一道拼图题,教学时,可以让学生动起来,边拼图边说明道理,即可以提高学生的动手能力和学生的思维能力,又可以提高学生的学习兴趣.如让学生再用四个不等边三角形拼一个如图的大三角形,让学生指出图中所有的平行四边形,并说明理由.

  课堂引入

  1.欣赏图片、提出问题.

  展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?

  2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?

  让学生利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:

  (1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?

  (2)你怎样验证你搭建的四边形一定是平行四边形?

  (3)你能说出你的做法及其道理吗?

  (4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?

  (5)你还能找出其他方法吗?

  从探究中得到:

  平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。

  平行四边形判定方法2 对角线互相平分的四边形是平行四边形。

  例习题分析

  1(教材P96例3)已知:如图ABCD的对角线AC、BD交于点O,E、F是AC上的两点,并且AE=CF.

  求证:四边形BFDE是平行四边形.

  分析:欲证四边形BFDE是平行四边形可以根据判定方法2来证明.

  (证明过程参看教材)

  问;你还有其它的证明方法吗?比较一下,哪种证明方法简单.

  2(补充) 已知:如图,A′B′∥BA,B′C′∥CB, C′A′∥AC.

  求证:(1) ∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;

  (2) △ABC的顶点分别是△B′C′A′各边的中点.

  证明:(1)∵A′B′∥BA,C′B′∥BC,

  ∴四边形ABCB′是平行四边形.

  ∴ ∠ABC=∠B′(平行四边形的对角相等).

  同理∠CAB=∠A′,∠BCA=∠C′.

  (2) 由(1)证得四边形ABCB′是平行四边形.同理,四边形ABA′C是平行四边形.

  ∴ AB=B′C, AB=A′C(平行四边形的对边相等).

  ∴ B′C=A′C.

  同理 B′A=C′A, A′B=C′B.

  ∴ △ABC的顶点A、B、C分别是△B′C′A′的边B′C′、C′A′、A′B′的中点.

  3(补充)小明用手中六个全等的正三角形做拼图游戏时,拼成一个六边形.你能在图中找出所有的平行四边形吗?并说说你的理由.

  解:有6个平行四边形,分别是ABOF,ABCO, BCDO,CDEO,DEFO,EFAO.

  理由是:因为正△ABO≌正△AOF,所以AB=BO,OF=FA.根据 “两组对边分别相等的四边形是平行四边形”,可知四边形ABCD是平行四边形.其它五个同理.

  随堂练习

  1.如图,在四边形ABCD中,AC、BD相交于点O,

  (1)若AD=8cm,AB=4cm,那么当BC=____cm,CD=____cm时,四边形ABCD为平行四边形;

  (2)若AC=10cm,BD=8cm,那么当AO=___cm,DO=___cm时,四边形ABCD为平行四边形.

  2.已知:如图,ABCD中,点E、F分别在CD、AB上,DF∥BE,EF交BD于点O.求证:EO=OF.

  3.灵活运用课本P89例题,如图:由火柴棒拼出的一列图形,第n个图形由(n+1)个等边三角形拼成,通过观察,分析发现:

  ①第4个图形中平行四边形的个数为_____.

  (6个)

  ②第8个图形中平行四边形的个数为_____.

  (20个)

  课后练习

  1.(选择)下列条件中能判断四边形是平行四边形的是( ).

  (A)对角线互相垂直 (B)对角线相等

  (C)对角线互相垂直且相等 (D)对角线互相平分

  2.已知:如图,△ABC,BD平分∠ABC,DE∥BC,EF∥BC,

  求证:BE=CF

八年级数学教案12

  教学目标:

  (1)理解通分的意义,理解最简公分母的意义;

  (2)掌握分式的通分法则,能熟练掌握通分运算。

  教学重点:分式通分的理解和掌握。

  教学难点:分式通分中最简公分母的确定。

  教学工具:投影仪

  教学方法:启发式、讨论式

  教学过程:

  (一)引入

  (1)如何计算:

  由此让学生复习分数通分的意义、通分的根据、通分的法则以及最简公分母的概念。

  (2)如何计算:

  (3)何计算:

  引导学生思考,猜想如何求解?

  (二)新课

  1、类比分数的通分得到分式的通分:

  把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.

  注意:通分保证

  (1)各分式与原分式相等;

  (2)各分式分母相等。

  2.通分的依据:分式的基本性质.

  3.通分的关键:确定几个分式的最简公分母.

  通常取各分母的.所有因式的最高次幂的积作最简公分母,这样的公分母叫做最简公分母.

  根据分式通分和最简公分母的定义,将分式通分:

  最简公分母为:

  然后根据分式的基本性质,分别对原来的各分式的分子和分母乘一个适当的整式,使各分式的分母都化为通分如下:xxx

  通过本例使学生对于分式的通分大致过程和思路有所了解。让学生归纳通分的思路过程。

  例1 通分:xxx

  分析:让学生找分式的公分母,可设问“分母的系数各不相同如何解决?”,依据分数的通分找最小公倍数。

  解:∵ 最简公分母是12xy2,

  小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数.

  解:∵最简公分母是10a2b2c2,

  由学生归纳最简公分母的思路。

  分式通分中求最简公分母概括为:(1)取各分母系数的最小公倍数;(2)凡出现的字母为底的幂的因式都要取;(3)相同字母的幂的因式取指数最大的。取这些因式的积就是最简公分母。

八年级数学教案13

  一、教学目的

  1.使学生进一步理解自变量的取值范围和函数值的意义.

  2.使学生会用描点法画出简单函数的图象.

  二、教学重点、难点

  重点:1.理解与认识函数图象的意义.

  2.培养学生的看图、识图能力.

  难点:在画图的三个步骤的列表中,如何恰当地选取自变量与函数的对应值问题.

  三、教学过程

  复习提问

  1.函数有哪三种表示法?(答:解析法、列表法、图象法.)

  2.结合函数y=x的图象,说明什么是函数的图象?

  3.说出下列各点所在象限或坐标轴:

  新课

  1.画函数图象的方法是描点法.其步骤:

  (1)列表.要注意适当选取自变量与函数的对应值.什么叫“适当”?——这就要求能选取表现函数图象特征的几个关键点.比如画函数y=3x的图象,其关键点是原点(0,0),只要再选取另一个点如M(3,9)就可以了.

  一般地,我们把自变量与函数的对应值分别作为点的横坐标和纵坐标,这就要把自变量与函数的对应值列出表来.

  (2)描点.我们把表中给出的有序实数对,看作点的坐标,在直角坐标系中描出相应的点.

  (3)用光滑曲线连线.根据函数解析式比如y=3x,我们把所描的两个点(0,0),(3,9)连成直线.

  一般地,根据函数解析式,我们列表、描点是有限的'几个,只需在平面直角坐标系中,把这有限的几个点连成表示函数的曲线(或直线).

  2.讲解画函数图象的三个步骤和例.画出函数y=x+0.5的图象.

  小结

  本节课的重点是让学生根据函数解析式画函数图象的三个步骤,自己动手画图.

  练习

  ①选用课本练习(前一节已作:列表、描点,本节要求连线)

  ②补充题:画出函数y=5x-2的图象.

  作业

  选用课本习题.

  四、教学注意问题

  1.注意渗透数形结合思想.通过研究函数的图象,对图象所表示的一个变量随另一个变量的变化而变化就更有形象而直观的认识.把函数的解析式、列表、图象三者结合起来,更有利于认识函数的本质特征.

  2.注意充分调动学生自己动手画图的积极性.

  3.认识到由于计算器和计算机的普及化,代替了手工绘图功能.故在教学中要倾向培养学生看图、识图的能力.

八年级数学教案14

  一.教学目标:

  1.了解方差的定义和计算公式。

  2.理解方差概念的产生和形成的过程。

  3.会用方差计算公式来比较两组数据的波动大小。

  二.重点、难点和难点的突破方法:

  1.重点:方差产生的必要性和应用方差公式解决实际问题。

  2.难点:理解方差公式

  3.难点的突破方法:

  方差公式:S = [( - ) +( - ) +…+( - )]比较复杂,学生理解和记忆这个公式都会有一定困难,以致应用时常常出现计算的错误,为突破这一难点,我安排了几个环节,将难点化解。

  (1)首先应使学生知道为什么要学习方差和方差公式,目的不明确学生很难对本节课内容产生兴趣和求知欲望。教师在授课过程中可以多举几个生活中的小例子,不如选择仪仗队队员、选择运动员、选择质量稳定的电器等。学生从中可以体会到生活中为了更好的做出选择判断经常要去了解一组数据的波动程度,仅仅知道平均数是不够的。

  (2)波动性可以通过什么方式表现出来?第一环节中点明了为什么去了解数据的波动性,第二环节则主要使学生知道描述数据,波动性的方法。可以画折线图方法来反映这种波动大小,可是当波动大小区别不大时,仅用画折线图方法去描述恐怕不会准确,这自然希望可以出现一种数量来描述数据波动大小,这就引出方差产生的必要性。

  (3)第三环节教师可以直接对方差公式作分析和解释,波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。所以方差公式是能够反映一组数据的波动大小的一个统计量,教师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。

  三.例习题的意图分析:

  1.教材P125的讨论问题的意图:

  (1).创设问题情境,引起学生的学习兴趣和好奇心。

  (2).为引入方差概念和方差计算公式作铺垫。

  (3).介绍了一种比较直观的'衡量数据波动大小的方法——画折线法。

  (4).客观上反映了在解决某些实际问题时,求平均数或求极差等方法的局限性,使学生体会到学习方差的意义和目的。

  2.教材P154例1的设计意图:

  (1).例1放在方差计算公式和利用方差衡量数据波动大小的规律之后,不言而喻其主要目的是及时复习,巩固对方差公式的掌握。

  (2).例1的解题步骤也为学生做了一个示范,学生以后可以模仿例1的格式解决其他类似的实际问题。

  四.课堂引入:

  除采用教材中的引例外,可以选择一些更时代气息、更有现实意义的引例。例如,通过学生观看2004年奥运会刘翔勇夺110米栏冠军的录像,进而引导教练员根据平时比赛成绩选择参赛队员这样的实际问题上,这样引入自然而又真实,学生也更感兴趣一些。

  五.例题的分析:

  教材P154例1在分析过程中应抓住以下几点:

  1.题目中“整齐”的含义是什么?说明在这个问题中要研究一组数据的什么?学生通过思考可以回答出整齐即波动小,所以要研究两组数据波动大小,这一环节是明确题意。

  2.在求方差之前先要求哪个统计量,为什么?学生也可以得出先求平均数,因为公式中需要平均值,这个问题可以使学生明确利用方差计算步骤。

  3.方差怎样去体现波动大小?

  这一问题的提出主要复习巩固方差,反映数据波动大小的规律。

  六.随堂练习:

  1.从甲、乙两种农作物中各抽取1株苗,分别测得它的苗高如下:(单位:cm)

  甲:9、10、11、12、7、13、10、8、12、8;

  乙:8、13、12、11、10、12、7、7、9、11;

  问:(1)哪种农作物的苗长的比较高?

  (2)哪种农作物的苗长得比较整齐?

  2.段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?

  测试次数1 2 3 4 5

  段巍13 14 13 12 13

  金志强10 13 16 14 12

  参考答案:1.(1)甲、乙两种农作物的苗平均高度相同;(2)甲整齐

  2.段巍的成绩比金志强的成绩要稳定。

  七.课后练习:

  1.已知一组数据为2、0、-1、3、-4,则这组数据的方差为。

  2.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:

  甲:7、8、6、8、6、5、9、10、7、4

  乙:9、5、7、8、7、6、8、6、7、7

  经过计算,两人射击环数的平均数相同,但S S,所以确定去参加比赛。

  3.甲、乙两台机床生产同种零件,10天出的次品分别是( )

  甲:0、1、0、2、2、0、3、1、2、4

  乙:2、3、1、2、0、2、1、1、2、1

  分别计算出两个样本的平均数和方差,根据你的计算判断哪台机床的性能较好?

  4.小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒)

  小爽10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

  小兵10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

  如果根据这几次成绩选拔一人参加比赛,你会选谁呢?

  答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙机床性能好

  4. =10.9、S =0.02;

  =10.9、S =0.008

  选择小兵参加比赛。

八年级数学教案15

  菱形

  学习目标(学习重点):

  1.经历探索菱形的识别方法的过程,在活动中培养探究意识与合作交流的习惯;

  2.运用菱形的识别方法进行有关推理.

  补充例题:

  例1. 如图,在△ABC中,AD是△ABC的角平分线。DE∥AC交AB于E,DF∥AB交AC于F.四边形AEDF是菱形吗?说明你的理由.

  例2.如图,平行四边形ABCD的对 角线AC的垂直平分线与边AD、BC分别交于E、F.

  四边形AFCE是菱形吗?说明理由.

  例3.如图 , ABCD是矩形纸片,翻折B、D,使BC、AD恰好落在AC上,设F、H分别是B、D落在AC上的两点,E、G分别是折痕CE、AG与AB、CD的.交点

  (1)试说明四边形AECG是平行四边形;

  (2)若AB=4cm,BC=3cm,求线段EF的长;

  (3)当矩形两边AB、BC具备怎样的关系时,四边形AECG是菱形.

  课后续助:

  一、填空题

  1.如果四边形ABCD是平行四边形,加上条件___________________,就可以是矩形;加上条件_______________________,就可以是菱形

  2.如图,D、E、F分别是△ABC的边BC、CA、AB上的点,

  且DE∥BA,DF∥ CA

  (1)要使四边形AFDE是菱形,则要增加条件______________________

  (2)要使四边形AFDE是矩形,则要增加条件______________________

  二、解答题

  1.如图,在□ABCD中 ,若2,判断□ABCD是矩形还是菱形?并说明理由。

  2.如图 ,平行四边形A BCD的两条对角线AC,BD相交于点O,OA=4,OB=3,AB=5.

  (1) AC,BD互相垂直吗?为什么?

  (2) 四边形ABCD是菱形 吗?

  3.如图,在□ABCD中,已知ADAB,ABC的平分线交AD于E,EF∥AB交BC于F,试问: 四 边形ABFE是菱形吗?请说明理由。

  4.如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.

  ⑴求证:ABF≌

  ⑵若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由.

【八年级数学教案】相关文章:

八年级的数学教案12-14

八年级《函数》数学教案08-17

八年级数学教案12-09

初中八年级数学教案11-03

【荐】八年级数学教案12-03

八年级数学教案【热门】12-03

【精】八年级数学教案12-04

八年级数学教案【推荐】12-04

【热门】八年级数学教案11-29

【热】八年级数学教案12-07