八年级数学下册教案[优选]
在教学工作者实际的教学活动中,就难以避免地要准备教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。教案要怎么写呢?下面是小编为大家收集的八年级数学下册教案,希望对大家有所帮助。
八年级数学下册教案1
一、教学目标
1.掌握一元二次方程的定义,能够判断一个方程是否是一元二次方程.
2.能够将一元二次方程化为一般形式并确定a,b,c的值.
二、(重)难点预见
重点:知道什么叫做一元二次方程,能够判断一个方程是否是一元二次方程. 难点:能够将一元二次方程化为一般形式并确定a,b,c的值.
三、学法指导
结合教材和预习学案,先独立思考,遇到困难小对子之间进行帮扶,完成学习任务.
四、教学过程
开场白设计:
一元二次方程是初中数学中非常重要的内容,它在实际生活中有着非常广泛的应用.什么形式的方程是一元二次方程?这样的方程怎么解答呢?它又能解决哪些问题呢?带着这些问题,让我们一起学习《一元二次方程》这一章,今天我们来学习第一节课,同学们肯定有很多新的收获.
1、忆一忆
在前面我们曾经学习了什么叫做一元一次方程?一元指的是什么含义?一次呢?你能猜想什么叫做一元二次方程吗?
学法指导:
本节课学习一元二次方程先让学生回忆一元一次方程.学习四边形可以让学生回忆三角形,学习四边形的边、角、顶点,可以让学生回忆三角形的边、角、顶点,则可达到水到渠成的效果.
2、想一想
请同学们根据题意,只列出方程,不进行解答:
(1)一个矩形的长比宽多2cm,矩形的面积是15cm,求这个矩形的长和宽.
(2)两个连续正整数的平方和是313,求这两个正整数.
(3)直角三角形三边的长都是整数,它的斜边长为13cm,两条直角边的差为7cm,求两条直角边的长.
预习困难预见:
(1)学生在列方程时没有搞清楚“平方和”与“和的平方”的区别,以至于把方程列错了.
(2)学生在解答第(3)题时,设未知数时忘记带单位.
(3)还有的同学没有注意只列方程,以至于学生列出方程后尝试着解方程,导致耽误了一些时间.
改进措施:
教师巡视指导,发现失误及时引导;小组内互查,辩论,质疑.
3、议一议
请同学们将上面的方程按照以下要求进行整理:
(1)使方程的.右边为0(2)方程的左边按x的降幂排列.我们会得到:
① ② ③
你能发现上面三个方程有什么共同点?
_____________________叫做一元二次方程.在定义中着重强调了几点?哪几点?如果给你一个方程,让你判定它是否是一元二次方程,你关键看哪几方面?
学法指导
学习一元二次方程的概念,让同学们剖析定义,总结判定一个方程是否是一元二次方程的方法.
4、试一试
下面方程是一元二次方程吗?为什么?
①ax-x+2=0;②-x+x=0;③x=1;④-2x+1=0;⑤x+y-1=0; ⑥2x+3=2-x;⑦y-4y=0
方法提升:
由一元二次方程的定义可知,只有同时满足下列三个条件:①整式方程;②只含有一个未知数;③未知数的最高次数是2,这样的方程才是一元二次方程,否则缺少其中任何一个条件的方程都不是一元二次方程.
口诀生成:
判断一元二次方程并不难,三个条件要找全:一元,二次,整式判,正确答案就出现.
5、学一学
一元二次方程都可以化为ax+bx +c =0(a,b,c为常数,a≠0)的形式,称为一元二次方程的一般形式,其中ax,bx,c 分别称为这个方程的二次项,一次项和常数项,a,b分别称为二次项系数,一次项系数.你能指出下列方程的二次项系数,一次项系数,常数项吗?请你用a,b,c表示出来.
八年级数学下册教案2
一、目标要求
1.理解掌握分式的四则混合运算的顺序。
2.能正确熟练地进行分式的加、减、乘、除混合运算。
二、重点难点
重点:分式的加、减、乘、除混合运算的顺序。
难点:分式的加、减、乘、除混合运算。
分式的加、减、乘、除混合运算的顺序是先进行乘、除运算,再进行加、减运算,遇有括号,先算括号内的。
三、解题方法指导
【例1】计算:(1)[++(+)]·;
(2)(x-y-)(x+y-)÷[3(x+y)-]。
分析:分式的四则混合运算要注意运算顺序及括号的'关系。
解:(1)原式=[++]·=[++]·=·==。
(2)原式=·÷=··=y-x。
【例2】计算:(1)(-+)·(a3-b3);
(2)(-)÷。
解:(1)原式=-+=-+ab
=a2+ab+b2-(a2-b2)-ab
=a2+ab+b2-a2+b2-ab=2b2。
(2)原式=[-]·=-=-====。
说明:分式的加、减、乘、除混合运算注意以下几点:
(1)一般按分式的运算顺序法则进行计算,但恰当地使用运算律会使运算简便。
(2)要随时注意分子、分母可进行因式分解的式子,以备约分或通分时备用,可避免运算烦琐。
(3)注意括号的“添”或“去”、“变大”与“变小”。
(4)结果要化为最简分式。
四、激活思维训练
▲知识点:求分式的值
【例】已知x+=3,求下列各式的值:
八年级数学下册教案3
[教学分析]
勾股定理是揭示三角形三条边数量关系的一条非常重要的性质,也是几何中最重要的定理之一。它是解直角三角形的主要依据之一,同时在实际生活中具有广泛的用途,“数学源于生活,又用于生活”正是这章书所体现的主要思想。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际操作,使学生获得较为直观的印象;通过联系比较、探索、归纳,帮助学生理解勾股定理,以利于进行正确的应用。
本节教科书从毕达哥拉斯观察地面发现勾股定理的传说谈起,让学生通过观察计算一些以直角三角形两条直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理,这时教科书以命题的形式呈现了勾股定理。关于勾股定理的证明方法有很多,教科书正文中介绍了我国古人赵爽的证法。之后,通过三个探究栏目,研究了勾股定理在解决实际问题和解决数学问题中的应用,使学生对勾股定理的作用有一定的认识。
[教学目标]
一、 知识与技能
1、探索直角三角形三边关系,掌握勾股定理,发展几何思维。
2、应用勾股定理解决简单的实际问题
3学会简单的合情推理与数学说理
二、 过程与方法
引入两段中西关于勾股定理的史料,激发同学们的兴趣,引发同学们的思考。通过动手操作探索与发现直角三角形三边关系,经历小组协作与讨论,进一步发展合作交流能力和数学表达能力,并感受勾股定理的应用知识。
三、 情感与态度目标
通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,学生亲自动手对勾股定理进行探索与验证,培养学生的合作交流意识和探索精神,以及自主学习的能力。
四、 重点与难点
1、探索和证明勾股定理
2熟练运用勾股定理
[教学过程]
一、创设情景,揭示课题
1、教师展示图片并介绍第一情景
以中国最早的一部数学著作——《周髀算经》的开头为引,介绍周公向商高请教数学知识时的对话,为勾股定理的出现埋下伏笔。
周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度.夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘.得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。”
2、教师展示图片并介绍第二情景
毕达哥拉斯是古希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性。
二、师生协作,探究问题
1、现在请你也动手数一下格子,你能有什么发现吗?
2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有这样的特点呢?
3、你能得到什么结论吗?
三、得出命题
勾股定理:如果直角三角形的两直角边长分别为a、b,斜边长为c,那么,即直角三角形两直角边的平方和等于斜边的平方。解释: 由于我国古代把直角三角形中较短的直角边称为勾,较长的边称为股,斜边称为弦,所以,把它叫做勾股定理。
四、勾股定理的证明
赵爽弦图的证法(图2)
第一种方法:边长为 的正方形可以看作是由4个直角边分别为 、 ,斜边为 的直角三角形围在外面形成的。因为边长为 的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式 ,化简得 。
第二种方法:边长为 的.正方形可以看作是由4个直角边分别为 、 ,斜边为 的
角三角形拼接形成的(虚线表示),不过中间缺出一个边长为 的正方形“小洞”。
因为边长为 的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式 ,化简得 。
这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。
五、应用举例,拓展训练,巩固反馈。
勾股定理的灵活运用勾股定理在实际的生产生活当中有着广泛的应用。勾股定理的发现和使用解决了许多生活中的问题,今天我们就来运用勾股定理解决一些问题,你可以吗?试一试。
例题:小明妈妈买了一部29英寸(74厘米)的电视机,小明量了电视机的屏幕后,发现屏幕只有58厘长和46厘米宽,他觉得一定是售货员搞错了,你同意他的想法吗?你能解释这是为什么吗?
六、归纳总结1、内容总结:探索直角三角形两直角边的平方和等于斜边的平方,利于勾股定理,解决实际问题
2、方法归纳:数方格看图找关系,利用面积不变的方法。用直角三角形三边表示正方形的面积观察归纳注意画一个直角三角形表示正方形面积,再次验证自己的发现。
七、讨论交流
让学生发表自己的意见,提出他们模糊不清的概念,给他们一个梳理知识的机会,通过提示性的引导,让学生对勾股定理的概念豁然开朗,为后面勾股定理的应用打下基础。
我们班的同学很聪明。大家很快就通过数格子发现了勾股定理的规律。还有什么地方不懂的吗?跟大家一起来交流一下。请同学们课后在反思天地中都发表一下自己的学习心得。
八年级数学下册教案4
一、教学目标
(一)教学知识点
1.掌握三角形相似的判定方法2、3.
2.会用相似三角形的判定方法2、3来判断、证明及计算.
(二)能力训练要求
1.通过自己动手并总结推出相似三角形的判定方法2、3,培养学生的动手操作能力,总结概括能力.
2.利用相似三角形的判定方法2、3进行判断,训练学生的灵活运用能力.
(三)情感与价值观要求
1.通过探索相似三角形的判定方法2、3,体现数学活动充满着探索性和创造性.
2.通过对判定方法的探索,发展学生思维的灵活性,进一步培养逻辑推理能力,领会分类思想.
二、教学重难点
教学重点:相似三角形判定方法2、3的推导过程,掌握判定方法2、3并能灵活运用.教学难点:判定方法的推导及运用
三、教学过程设计
(一)创设情境,引入新课
投影片
[生]有四对相似三角形,它们是△AEF∽△DEC,△AFB∽△ACD,△AEB∽△CED,△AEF∽△EBA.他们相似的理由都是用相似三角形的判定方法1.
[师]现在我们已经有两种方法可以判定两个三角形相似,一种是定义,一种是判定方法1,除此之外,是否还有其他的办法来判定两个三角形相似?这一问题就是本节课我们需要研究的'问题.
(二)新课讲授
[师]相似三角形的判定方法1是只从角的方面考虑的,下面我们只从边的方面去考虑.我们在学习全等三角形的判定方法中,也有只用边来进行判断的,即SSS公理.大家能不能用类比的方法,猜想只用边来判定三角形相似的方法呢?
[生]三边对应成比例的两个三角形相似.
[师]下面我们就来验证一下.
1.相似三角形的判定方法2:三边对应成比例的两个三角形相似.
投影片
个组取一个相同的k值,不同的组取不同的k值,好吗?
[生]好.
[师]经过大家的亲身参与体会,你们得出的结论是什么呢?
[生]结论为∠A=∠A′,∠B=∠B′,∠C=∠C′
△ABC∽△A′B′C′,理由是:
∠A=∠A′,∠B=∠B′,∠C=∠C′
根据相似三角形的定义可知:△ABC∽△A′B′C′.
[师]其他组的同学的结论相同吗?
[生]相同.
[师]经过大家的探讨,我们又掌握了一种相似三角形的判定方法,即三边对应成比例的两个三角形相似.
2.相似三角形的判定方法3.
[师]前面两种判定方法我们都是只从角或只从边的方面去考虑的,下面我们要从两方面来考虑.还是要类比全等三角形的判定方法,在全等的判定方法中有ASA,SAS,AAS,其中ASA、AAS我们就不用考虑了,因为我们已经有判定方法1、3,下面来验证SAS,大家还是先猜想,然后再验证.
[生]两边对应成比例且夹角相等的两个三角形相似.
[师]好,下面我们还是由大家自己推导吧.请看投影片
[师]请大家按照上面的步骤进行,同时还要采取不同的组取不同的值法.
[生]按照要求作出的△ABC与△A′B′C′中,有∠B=∠B′,∠C=∠C′,因此根据判定方法1可知,△ABC∽△A′B′C′.
[师]大家同意吗?
[生]同意.
[师]好,我们又探索出一个相似三角形的判定方法,即两边对应成比例且夹角相等的两个三角形相似.
3.想一想
107
[师]下面验证SSA,即两边对应成比例,其中一边的对角对应相等,这两个三角形相似吗?
在全等三角形的判定中SSA就不成立.大家还可以仿照上面的验证过程来进行推导,下面是小明和小颖分别画出的一个满足条件的三角形,由此你能得到什么结论?
[生]从上面的图中可以得出结论:有两边对应成比例,其中一边的对角相等的三角形不相似.
4.做一做
[师]在这两节课中我们已经学完了一般相似三角形的判定方法,下面请大家总结一下有几种方法.
[生]一共有四种方法.
第一种:对应角相等,对应边成比例的两个三角形相似.即定义法.
第二种:即判定方法1
两角对应相等的两个三角形相似.
第三种:即判定方法2
三边对应成比例的两个三角形相似.
第四种:即判定方法3
两边对应成比例且夹角相等的两个三角形相似.
[师]从这四种方法中我们可以看出,第一种判定方法比较麻烦,需要研究三对角、三对边,而后面的几种方法最多只需要研究三对边或角,因此定义法一般不利用.如果已知条件只涉及角,就用第二种判定方法;如果已知条件只涉及边,就用第三种判定方法;如果既有角又有边,则可考虑用第四种方法判断.
5.议一议
如图,△ABC与△A′B′C′相似吗?你有哪些判断方法?
[生]解:△ABC∽△A′B′C′.
判断方法有.
1.三边对应成比例的两个三角形相似.
2.两角对应相等的两个三角形相似.
3.两边对应成比例且夹角相等.
4.定义法.
(三)巩固应用,拓展研究
下面每组的两个三角形是否相似?为什么?
生]解:(1)△ABC∽△DEF
∵
∴△ABC∽△DEF
(2)在△ABC中
AB=2,AC=6
∵∠A=∠A
∴△ABC∽△AEF
(四)练习巩固,促进迁移
依据下列各组条件,判定△ABC与△A′B′C′是不是相似,并说明为什么.
(1)∠A=120°,AB=7 cm,AC=14 cm,
∠A′=120°,A′B′=3 cm,A′C′=6 cm,
(2)AB=4 cm,BC=6 cm,AC=8 cm,
A′B′=12 cm,B′C′=18 cm,A′C′=24 cm.解:
又∵∠A=∠A′
∴△ABC∽△A′B′C′(两边对应成比例且夹角相等,两三角形相似)
∴△ABC∽△A′B′C′(三边对应成比例,两三角形相似)
(五)回顾联系,形成结构
本节课主要探讨了相似三角形的另两种判定方法,即三边对应成比例与两边对应成比例且夹角相等的两个三角形相似.培养了大家的探索精神,同时让学生懂得了数学活动充满着探索与创新,学习的目的是能运用学过的知识去解决问题,在这里就是能利用判定方法进行有关证明.
八年级数学下册教案5
一、教学目标
1、理解分式的基本性质。
2、会用分式的基本性质将分式变形。
二、重点、难点
1、重点:理解分式的基本性质。
2、难点:灵活应用分式的基本性质将分式变形。
3、认知难点与突破方法
教学难点是灵活应用分式的基本性质将分式变形。突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质。应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形。
三、练习题的意图分析
1、P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。
2、P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分。值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。
教师要讲清方法,还要及时地纠正学生做题时出现的`错误,使学生在做提示加深对相应概念及方法的理解。
3。P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“—”号。这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。
“不改变分式的值,使分式的分子和分母都不含‘—’号”是分式的基本性质的应用之一,所以补充例5。
四、课堂引入
1、请同学们考虑:与相等吗?与相等吗?为什么?
2、说出与之间变形的过程,与之间变形的过程,并说出变形依据?
3、提问分数的基本性质,让学生类比猜想出分式的基本性质。
五、例题讲解
P7例2。填空:
[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变。
P11例3。约分:
[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变。所以要找准分子和分母的公因式,约分的结果要是最简分式。
P11例4。通分:
[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。
八年级数学下册教案6
一、学习目标
二、学习过程
阅读教材
独立完成下列预习作业:
1、观察下列算式:
⑴ ⑵
请写出分数的乘除法法则:
乘法法则:分子乘以分子作为积的`分子、分母乘以分母作为积的分母;
除法法则:除以一个数等于乘以这个数的倒数.
2、分式的乘除法法则:(类似于分数乘除法法则)
乘法法则:分子乘以分子作为积的分子、分母乘以分母作为积的分母;
除法法则:除以一个数等于乘以这个数的倒数.
3、分式乘方:即分式乘方,是把分子、分母分别乘方.
三、合作交流,解决问题:
1、计算:
⑴ ; ⑵
2、计算:
⑴ ; ⑵ .
4、计算:⑴ ⑵
四、课堂测控:
1、计算:
八年级数学下册教案7
一、教学目标
1.使学生理解并掌握反比例函数的概念
2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式
3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想
二、重、难点
1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式
2.难点:理解反比例函数的概念
3.难点的突破方法:
(1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解
(2)注意引导学生对反比例函数概念的理解,看形式,等号左边是函数y,等号右边是一个分式,自变量x在分母上,且x的指数是1,分子是不为0的常数k;看自变量x的取值范围,由于x在分母上,故取x≠0的一切实数;看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。讲解时可对照正比例函数y=kx(k≠0),比较二者解析式的相同点和不同点。
(3)(k≠0)还可以写成(k≠0)或xy=k(k≠0)的形式
三、例题的意图分析
教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。
教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。
补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的`能力。
四、课堂引入
1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?
2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?
五、例习题分析
例1.见教材P47
分析:因为y是x的反比例函数,所以先设,再把x=2和y=6代入上式求出常数k,即利用了待定系数法确定函数解析式。
例1.(补充)下列等式中,哪些是反比例函数
(1)(2)(3)xy=21(4)(5)(6)(7)y=x-4
分析:根据反比例函数的定义,关键看上面各式能否改写成(k为常数,k≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x,(6)改写后是,分子不是常数,只有(2)、(3)、(5)能写成定义的形式
例2.(补充)当m取什么值时,函数是反比例函数?
分析:反比例函数(k≠0)的另一种表达式是(k≠0),后一种写法中x的次数是-1,因此m的取值必须满足两个条件,即m-2≠0且3-m2=-1,特别注意不要遗漏k≠0这一条件,也要防止出现3-m2=1的错误
八年级数学下册教案8
一、教学目标
(一)知识目标
1、创设情境引出问题,激起学生探索直角三角形三边的关系的兴趣。
2、让学生带着问题体验勾股定理的探索过程,并正确运用勾股定理解决相关问题。
(二)能力目标
1、培养学生学数学、用数学的意识和能力。
2、能把已有的数学知识运用于勾股定理的探索过程。
3、能熟练掌握勾股定理及其变形公式,并会根据图形找出直角三角形及其三边,从而正确运用勾股定理及其变形公式于图形解决相关问题。 (三)情感目标
1、培养学生的自主探索精神,提高学生合作交流能力和解决问题的能力。
2、让学生感受数学文化的价值和中国传统数学的成就,激发学生的爱国热情,培养学生的民族自豪感,教育学生奋发图强、努力学习。
二、教学重点
通过图形找出直角三角形三边之间的关系,并正确运用勾股定理及其变形公式解决相关问题。
三、教学难点
运用已掌握的相关数学知识探索勾股定理。
四、教学过程
(一)创设情境,引出问题
想一想:
小明妈妈买了一部29英寸(74厘米)的电视机,小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你同意他的想法吗?你能解释这是为什么吗?
要解决这个问题,必须掌握这节课的`内容。这节课我们要探讨的是直角三角形的三边有什么关系。
- 1 -
(二) 探索交流,得出新知
探讨之前我们一起来回忆一下直角三角形的三边:
如图,在Rt △ABC 中,∠C=90° ∠C 所对的边AB :斜边c ∠A 所对的边BC :直角边a ∠B 所对的边AC :直角边b
问题:在直角三角形中,a 、b 、c 三条边之间到底存在着怎样的关系呢? (1)我们先来探讨等腰直角三角形的三边之间的关系。
这个关系2500年前已经有数学家发现了,今天我们把当时的情景重现,A
C
a
B
请同学们也来看一看、找一找。
如图
数学家毕达哥拉斯的发现:S A +SB =SC
即:a 2+b2=c2
也就是说:在等腰直角三角形中,两直角边的平方和等于斜边的平方。
议一议:如果是一般的直角三角形,两直角边的平方和是否还会等于斜边的平方? 如图
分析: SA +SB =SC 是否成立?
(1)正方形A 中含有 个小方格,即S A = 个单位面积。 (2)正方形B 中含有 个小方格,即S B = 个单位面积。 (3)由上可得:S A +SB = 个单位面积 问题:正方形C 的面积要如何求呢?与同伴进行交流。 方法一:
“补”成一个边长为整数格的大正方形,再减去四个直角边为整数格的三角形 方法二:分割成四个直角边为整数格的三角形,再加上一个小方格。 综上:
我们得出:S A +SB =SC
即:a +b=c
2
2
2
C
- 2 -
a
B
也就是说:在一般的直角三角形中,两直角边的平方和等于斜边的平方。
概括:
勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方
数学语言描述:
如图,在Rt △ABC 中,a 2+b2=c2
(用多媒体简单介绍勾股定理的名称由来、中国古代的数学成就及勾股定理的“无字证明”) (三)应用新知,解决问题
例1:求出下列直角三角形中未知边x 的长度 5
注意:要根据图表找出未知边是斜边还是直角边,勾股定理要用对。
从上面这两道例题,我们知道了在直角三角形中,任意已知两边,可以求第三边。 即勾股定理的变形公式: 如图,在Rt △ABC 中
(1)若已知a ,b 则求c 的公式为:c =(2)若已知a ,c 则求b 的公式为:b =(3)若已知b ,c 则求a 的公式为:a =
a +b c -a c -b
22
22
2
C
a
B
2
例2: 如图,在直角三角形ABC 中, ∠C=900, A
(1) 已知: a=5, b=12, 求c;
(2) 已知: b=8,c=10 , 求(3) 已知: a=
3, c=2, 求 请同学们利用这节课学到的勾股定理及推论解决我们课前提出的问题:
电视屏幕:
解:在Rt △ABC 中,AB=46厘米,BC=58厘米
由勾股定理得:AC=
?
D
A
46AB
2
+BC
2
2
=46+58
2
≈74(厘米)
∴不同意小明的想法。
- 3 -
58厘米
C
(四)归纳总结
(1)这节课你学到了什么知识?
①勾股定理:直角三角形两直角边的平方和等于斜边的平方。 ②在直角三角形中,任意已知两边,可以用勾股定理求第三边。 (2) 运用“勾股定理”应注意什么问题? ①要利用图形找到未知边所在的直角三角形; ②看清未知边是所在直角三角形的哪一边; ③勾股定理要用对。
(五)练习巩固
(1)、如图,受台风“麦莎”影响,一棵树在离地面8米处断裂, 树的顶部落在离树跟底部6米处,这棵树折断前有多高?
(2)、学校有一块长方形的花圃,经常有同学为了少走几步而走捷径,于是在草坪上开辟了一条“新路”,他们这样走少走了______步.
(每两步约为1米) 3 (3)、已知:Rt △ABC 中,AB =4,AC =3, 则BC 的长为___________。 (六)作业
1. A、B 、C 组:课本第69、70页,习题18.1 第1, 2,3题. 2. A、B :练习册33、34页
3.A :课本第71页“阅读与思考”,了解勾股定理的多种证法。
八年级数学下册教案9
一、学情分析
学生在学习直角三角形全等判定定理“HL”之前,已经掌握了一般三角形全等的判定方法,在本章的前一阶段的学习过程中接触到了证明三角形全等的推论,在本节课要掌握这个定理的证明以及利用这个定理解决相关问题还是一个较高的要求。
二、教学任务分析
本节课是三角形全等的最后一部分内容,也是很重要的一部分内容,凸显直角三角形的特殊性质。在探索证明直角三角形全等判定定理“HL”的同时,进一步巩固命题的相关知识也是本节课的任务之一。因此本节课的教学目标定位为:
1.知识目标:
①能够证明直角三角形全等的“HL”的判定定理,进一步理解证明的必要性 ②利用“HL’’定理解决实际问题
2.能力目标:
①进一步掌握推理证明的方法,发展演绎推理能力
三、教学过程分析
本节课设计了六个教学环节:第一环节:复习提问;第二环节:引入新课;第三环节:做一做;第四环节:议一议;第五环节:课时小结;第六环节:课后作业。
1:复习提问
1.判断两个三角形全等的方法有哪几种?
2.已知一条边和斜边,求作一个直角三角形。想一想,怎么画?同学们相互交流。
3、有两边及其中一边的对角对应相等的两个三角形全等吗?如果其中一个角是直角呢?请证明你的结论。
我们曾从折纸的过程中得到启示,作了等腰三角形底边上的中线或顶角的角平分线,运用公理,证明三角形全等,从而得出“等边对等角”。那么我们能否通
1 / 5
过作等腰三角形底边的高来证明“等边对等角”.
要求学生完成,一位学生的过程如下:
已知:在△ABC中, AB=AC.
求证:∠B=∠C.
证明:过A作AD⊥BC,垂足为C,∴∠ADB=∠ADC=90°
又∵AB=AC,AD=AD,∴△ABD≌△ACD.
∴∠B=∠C(全等三角形的对应角相等)
在实际的教学过程中,有学生对上述证明方法产生了质疑。质疑点在于“在证明△ABD≌△ACD时,用了“两边及其中一边的对角对相等的两个三角形全等”.而我们在前面学习全等的时候知道,两个三角形,如果有两边及其一边的对角相等,这两个三角形是不一定全等的.可以画图说明.(如图所示在ABD和△ABC中,AB=AB,∠B=∠B,AC=AD,但△ABD与△ABC不全等)” .
也有学生认同上述的证明。
教师顺水推舟,询问能否证明:“在两个直角三角形中,直角所对的边即斜边和一条直角边对应相等的两个直角三角形全等.”,从而引入新课。
2:引入新课
(1).“HL”定理.由师生共析完成
已知:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,BC=B′C′. 求证:Rt△ABC≌Rt△A′B′C′
证明:在Rt△ABC中,AC=AB一BC(勾股定理).
又∵在Rt△ A' B' C'中,A' C' =A'C'=A'B'2一B'C'2 (勾股
定理).
AB=A'B',BC=B'C',AC=A'C'.
∴Rt△ABC≌Rt△A'B'C' (SSS).
教师用多媒体演示:
定理 斜边和一条直角边对应相等的两个直角三角形全等.
这一定理可以简单地用“斜边、直角边”或“HL”表示.
2 / 5
22A'B'
从而肯定了第一位同学通过作底边的高证明两个三角形
全等,从而得到“等边对等角”的证法是正确的.
练习:判断下列命题的真假,并说明理由:
(1)两个锐角对应相等的两个直角三角形全等;
(2)斜边及一锐角对应相等的.两个直角三角形全等;
(3)两条直角边对应相等的两个直角三角形全等;
(4)一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等. 对于(1)、(2)、(3)一般可顺利通过,这里教师将讲解的重心放在了问题
(4),学生感觉是真命题,一时有无法直接利用已知的定理支持,教师引导学生证明.
已知:R△ABC和Rt△A'B ' C',∠C=∠C'=90°,BC=B'C',BD、B'D'分别是AC、A'C'边上的中线且BD—B'D' (如图).
求证:Rt△ABC≌Rt△A'B'C'.
证明:在Rt△BDC和Rt△B'D'C'中,∵BD=B'D',BC=B'C',∴Rt△BDC≌Rt△B 'D 'C ' (HL定理).
CD=C'D'.
又∵AC=2CD,A 'C '=2C 'D ',∴AC=A'C'.
∴在Rt△ABC和Rt△A 'B 'C '中,∵BC=B'C ',∠C=∠C '=90°,AC=A'C ',∴Rt△ABC≌CORt△A'B'C(SAS).
通过上述师生共同活动,学生板书推理过程之后可发动学生去纠错,教师最后再总结。
3:做一做
问题 你能用三角尺平分一个已知角吗? 请同学们用手中的三角尺操作完成,并在小组内交流,用自己的语言清楚表达自己的想法.
(设计做一做的目的为了让学生体会数学结论在实际中的应用,教学中就要求学生能用数学的语言清楚地表达自己的想法,并能按要求将推理证明过程写出来。)
4:议一议
3 / 5
BEADCDA'D'BB'
八年级数学下册教案10
教学目标
(一)教学知识点
1.用分式表示生活中的一些量.
2.分式的基本性质及分式的有关运算法则.
3.分式方程的概念及其解法.
4.列分式方程,建立现实情境中的数学模型.
(二)能力训练要求
1.使学生有目的的梳理知识,形成这一章完整的知识体系.
2.进一步体验“类比”与“转化”在学习分式的基本性质、分式的运算法则及其分式方程解法过程中的重要作用.
3.提高学生的归纳和概括能力,形成反思自己学习过程的意识.
(三)情感与价值观要求
使学生在总结学习经验和活动经验的过程中,体验因学习方法的大力改进而带来的快乐,成为一个乐于学习的`人.
●教学重点
1.分式的概念及其基本性质.
2.分式的运算法则.
3.分式方程的概念及其解法.
4.分式方程的应用.
●教学难点
1.分式的运算及分式方程的解法.
2.分式方程的应用.
●教学方法
讨论——交流法
讨论交流本章学习过程中的经验和收获,在反思过程中建立知识体系.
●教具准备
投影片两张,实物投影仪
第一张:问题串,(记作§3.5A)
第二张:例题分析,(记作§3.5B)
●教学过程
Ⅰ.提出问题,回顾本章的知识.
出示投影片(§3.5A)
问题串:
1.实际生活中的一些量可以用分式表示,一些问题可以通过列分式方程解决,请举一例.
2.分式的性质及有关运算法则与分数有什么异同?
3.如何解分式方程?它与解一元一次方程有何联系与区别?
[师]同学们可针对以上问题,以小组为单位讨论、交流,然后在全班进行交流.
(教师可参与于学生的讨论中,注意扫除他们学习中常犯的错误)
[生]实际生活中的一些量可以用分式表示,例如(用实物投影)
某人在外面晨练,有m分钟,他每分钟走a米;有n分钟,他每分钟跑b米.求此人晨练平均每分钟行多少米?
[生]我们组来回答此问题,此人晨练时平均每分钟行米.
我们组也举出一个例子:长方形的面积为8m2,长为pm,宽为____________m.
[生]应为m.
[师]同学们举的例子都很有特色,谁还能举.
[生]如果某商品降价x%后的售价为a元,那么该商品的原价为多少元?
[生]原价为元.……
[师]都是分式.分式有什么特点?和整式有何区别?
[生]整式A除以整式B,可表示成的形式,如果除式B中含有字母,则称是分式.而整式分母中不含字母.
[生]实际生活中的一些问题可用分式方程来解决.例如(用实物投影仪)
某车间加工1200个零件后,采用了新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用10h,采用新工艺前、后每时分别加工多少个零件?
解:设采用新工艺前、后每时分别加工x个,1.5x个,根据题意,得
八年级数学下册教案11
活动1、提出问题
一个运动场要修两块长方形草坪,第一块草坪的长是10米,宽是米,第二块草坪的长是20米,宽也是米。你能告诉运动场的负责人要准备多少面积的`草皮吗?
问题:10+20是什么运算?
活动2、探究活动
下列3个小题怎样计算?
问题:1)-还能继续往下合并吗?
2)看来二次根式有的能合并,有的不能合并,通过对以上几个题的观察,你能说说什么样的二次根式能合并,什么样的不能合并吗?
二次根式加减时,先将二次根式化简成最简二次根式后,再将被开方数相同的进行合并。
活动3
练习1指出下列每组的二次根式中,哪些是可以合并的二次根式?(字母均为正数)
创设问题情景,引起学生思考。
学生回答:这个运动场要准备(10+20)平方米的草皮。
教师提问:学生思考并回答教师出示课题并说明今天我们就共同来研究该如何进行二次根式的加减法运算。
我们可以利用已学知识或已有经验来分组讨论、交流,看看+到底等于什么?小组展示讨论结果。
教师引导验证:
①设=,类比合并同类项或面积法;
②学生思考,得出先化简,再合并的解题思路
③先化简,再合并
学生观察并归纳:二次根式化为最简二次根式后,被开方数相同的能合并。
教师巡视、指导,学生完成、交流,师生评价。
提醒学生注意先化简成最简二次根式后再判断。
八年级数学下册教案12
教学目标
(一)知识与技能目标
使学生理解并掌握分式的基本性质,并能运用这些性质进行分式化简.
(二)过程与方法目标
通过分式的化简提高学生的运算能力.
(三)情感与价值目标.
渗透类比转化的数学思想方法.
教学重点和难点
1.重点:使学生理解并掌握分式的基本性质,这是学好本章的关键.
2.难点:灵活运用分式的基本性质进行分式化简.
教学方法:分组讨论.
教学过程
(一)情境引入
1.数学小笑话:
从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他马上欣喜地说:“够了!够了!”
2.问:这个富家子弟为什么会犯这样的错误?
3.分数约分的方法及依据是什么?
(1)的依据是什么?呢?
(2)你认为分式与相等吗?与呢?
(二)新课
1.类比分数的基本性质,由学生小结出分式的'基本性质:
分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即:
=,=(其中M是不等于零的整式)
2.加深对分式基本性质的理解:
例1下列等式的右边是怎样从左边得到的?
由学生口述分析,并反问:为什么c≠0?
解:∵c≠0,∴==(2)=学生口答,教师设疑:为什么题目未给x≠0的条件?(引导学生学会分析题目中的隐含条件.)
八年级数学下册教案13
例题讲解
引入问题:有甲乙两种客车,甲种客车每车能拉30人,乙种客车每车能拉40人,现在有400人要乘车,
1、你有哪些乘车方案?
2、只租8辆车,能否一次把客人都运送走?
问题2;怎样租车
某学校计划在总费用2300元的限额内,利用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少有1名教师。现有甲、乙两种大客车,它们的载客量和租金如表:
甲种客车乙种客车
载客量(单位:人/辆)4530
租金(单位:元/辆)400280
(1)共需租多少辆汽车?
(2)给出最节省费用的租车方案。
分析;
(1)要保证240名师生有车坐
(2)要使每辆汽车上至少要有1名教师
根据(1)可知,汽车总数不能小于____;根据(2)可知,汽车总数不能大于____。综合起来可知汽车总数为_____。
设租用x辆甲种客车,则租车费用y(单位:元)是x的函数,即
y=400x+280(6-x)
化简为:y=120x+1680
讨论:
根据问题中的条件,自变量x的取值应有几种可能?
为使240名师生有车坐,x不能小于____;为使租车费用不超过2300元,X不能超过____。综合起来可知x的取值为____。
在考虑上述问题的`基础上,你能得出几种不同的租车方案?为节省费用应选择其中的哪种方案?试说明理由。
方案一:
4两甲种客车,2两乙种客车
y1=120×4+1680=2160
方案二:
5两甲种客车,1辆乙种客车
八年级数学下册教案14
一、教学目标
1.使学生根据分数的通分法则及分式的基本性质,分析、归纳出分式的通分法则,并能熟练掌握通分运算。
2.使学生理解和掌握分式和减法法则,并会应用法则进行分式加减的运算。
3.使学生能够灵活运用分式的有关法则进行分式的四则混合运算。
4.引导学生不断小结运算方法和技巧,提高运算能力。
二、教学重点和难点
1.重点:分式的加减运算。
2.难点:异分母的分式加减法运算。
三、教学方法
启发式、分组讨论。
四、教学手段
幻灯片。
五、教学过程
(一)引入
1.如何计算:2.如何计算:3.若分母不同如何计算?如:
(二)新课
1.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
2.通分的依据:分式的基本性质。
3.通分的关键:确定几个分式的公分母。
通常取各分母的所有因式的'最高次幂的积作公分母,这样的公分母叫做最简公分母。
例1通分:
(1)解:∵最简公分母是,
小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数。
(2)解:
例2通分:
(1)解:∵最简公分母的是2x(x+1)(x—1),
小结:当分母是多项式时,应先分解因式。
(2)解:将分母分解因式:∴最简公分母为2(x+2)(x—2),
练习:教材P,79中1、2、3。
(三)课堂小结
1.通分与约分虽都是针对分式而言,但却是两种相反的变形。约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来。
2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变。
3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备。
八年级数学下册教案15
一、学习目标
二、学习过程
阅读教材
独立完成下列预习作业:
1、利用分式的基本性质:将分式的分子和分母同乘适当的整式,不改变分式的值,使几个分式化为分母相同的分式,这样的分式变形叫做分式的通分.
2、根据你的预习和理解找出:
①与的最简公分母是; ②与的最简公分母是;
③与最简公分母是;④与的最简公分母是.
★★如何确定最简公分母?一般是取各分母的所有因式的次幂的'积
三、合作交流,解决问题:
1、通分:⑴与⑵,
2、通分:⑴与; ★⑵,.
四、课堂测控:
1、分式和的最简公分母是.分式和的最简公分母是.
2、化简:
3、分式,,,中已为最简分式的有( )
A、1个B、2个C、3个D、4个
4、化简分式的结果为( )
A、 B、 C、 D、
5、若分式的分子、分母中的x与y同时扩大2倍,则分式的值( )
A、扩大2倍B、缩小2倍C、不变D、是原来的2倍
6、不改变分式的值,使分式的各项系数化为整数,分子、分母应乘以( )
A、10 B、9 C、45 D、90
7、不改变分式的值,使分子、分母次项的系数为整数,正确的是( )
A、 B、 C、 D、
8、通分:
⑴与⑵与
【八年级数学下册教案】相关文章:
八年级数学下册教案05-16
八年级数学下册教案01-10
数学下册教案03-16
人教版八年级数学下册教案04-27
八年级下册数学教案01-01
八年级数学下册教案【热门】05-19
八年级数学下册教案(15篇)02-20
八年级下册数学教案优秀02-29
八年级数学下册教案15篇01-10
数学下册教案 15篇03-16