现在位置:范文先生网>教案大全>数学教案>八年级数学下册教案

八年级数学下册教案

时间:2023-02-20 16:33:52 数学教案 我要投稿

八年级数学下册教案(15篇)

  作为一名教职工,可能需要进行教案编写工作,编写教案助于积累教学经验,不断提高教学质量。来参考自己需要的教案吧!以下是小编收集整理的八年级数学下册教案,欢迎大家借鉴与参考,希望对大家有所帮助。

八年级数学下册教案(15篇)

八年级数学下册教案1

  【教学目标】

  一、知识目标

  经历“实际问题-分式方程方程模型”的过程,经历分式方程的概念,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用。

  二、能力目标

  知道分时方程的意义,会解可化为一元一次方程的分式方程。

  三、情感目标

  在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值。

  【教学重难点】

  将实际问题中的等量关系用分式方程表示。找实际问题中的等量关系。

  【教学过程】

  一、课前预习与导学

  1.什么叫做分式方程?解分式方程的步骤有哪几步?

  2.判断下面解方程的过程是否正确,若不正确,请加以改正。

  解方程:=3-

  解:两边同乘以(x-1),得

  2=3-x=1,①

  x=3+1-2,②

  所以x=2.③

  (不正确。正确的解:两边同乘以(x-1),得2=3(x-1)-x-1,所以x=3.)

  3.解下列分式方程:(1)=(2)+=2.

  二、新课

  (一)情境创设:

  1.甲、乙两人加工同一种服装,乙每天比甲多加工1件,已知乙加工24件服装所用时间与甲加工20件服装所用时间相同。怎样用方程来描述其中数量之间的相等关系?

  设甲每天加工服装多少件,可得方程:

  2.一个两位数的各位数字是4,如果把各位数字与十位数字对调,那么所得的两位数与原两位数的比值是。怎样用方程来描述其中数量之间的相等关系?

  设这个两位数的十位数字是x,可得方程:

  3.某校学生到距离学校15km的山坡上植树,一部分学生骑自行车出发40min后,另一部分学生乘汽车出发,结果全体学生同时到达。已知汽车的速度是自行车的速度的3倍。怎样用方程来描述其中数量之间的相等关系?

  设自行车的速度为xkm/h,可得方程:

  (二)探索活动:

  1.上面所得到的方程有什么共同特点?

  2.这些方程与整式方程有什么区别?

  结论:分母中含有未知数的方程叫做分式方程。

  3.如何解分式方程=?

  解:这个分式方程的两边同乘各分式的最简公分母x(x+1),

  可以得到一元一次方程:20(x+1)=24x

  解这个方程,得

  x=5

  为了判断x=5是否是原方程的解,我们把x=5代入原方程:

  左边==4,右边==4,左边=右边。

  x=5是原方程的解。

  说明:解分式方程的'一般步骤是先去分母(在分式方程的两边同乘各分式的最简公分母),把不熟悉的分式方程转化为熟悉的一元一次方程来解决。

  三、例题教学:

  例1.解方程:-=0

  板书出解分式方程的一般过程及完整的书写格式。

  解:方程两边同乘x(x-2),得

  3(x-2)-2x=0

  解这个方程,得

  x=6

  把x=6代入原方程:左边=右边=0,左边=右边。

  x=6是原方程的解。

  四、课堂练习:

  1.下列各式中,分式方程是()

  A.B.C.D.

  2.分式方程解的情况是()

  A.有解,B.有解C.有解,D.无解

  3.解下列方程:

  4.为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。如果设第一次捐款人数为人,那么满足怎样的方程?并求解。

八年级数学下册教案2

  一、教学目标

  1.掌握一元二次方程的定义,能够判断一个方程是否是一元二次方程.

  2.能够将一元二次方程化为一般形式并确定a,b,c的值.

  二、(重)难点预见

  重点:知道什么叫做一元二次方程,能够判断一个方程是否是一元二次方程. 难点:能够将一元二次方程化为一般形式并确定a,b,c的值.

  三、学法指导

  结合教材和预习学案,先独立思考,遇到困难小对子之间进行帮扶,完成学习任务.

  四、教学过程

  开场白设计:

  一元二次方程是初中数学中非常重要的内容,它在实际生活中有着非常广泛的应用.什么形式的方程是一元二次方程?这样的方程怎么解答呢?它又能解决哪些问题呢?带着这些问题,让我们一起学习《一元二次方程》这一章,今天我们来学习第一节课,同学们肯定有很多新的收获.

  1、忆一忆

  在前面我们曾经学习了什么叫做一元一次方程?一元指的`是什么含义?一次呢?你能猜想什么叫做一元二次方程吗?

  学法指导:

  本节课学习一元二次方程先让学生回忆一元一次方程.学习四边形可以让学生回忆三角形,学习四边形的边、角、顶点,可以让学生回忆三角形的边、角、顶点,则可达到水到渠成的效果.

  2、想一想

  请同学们根据题意,只列出方程,不进行解答:

  (1)一个矩形的长比宽多2cm,矩形的面积是15cm,求这个矩形的长和宽.

  (2)两个连续正整数的平方和是313,求这两个正整数.

  (3)直角三角形三边的长都是整数,它的斜边长为13cm,两条直角边的差为7cm,求两条直角边的长.

  预习困难预见:

  (1)学生在列方程时没有搞清楚“平方和”与“和的平方”的区别,以至于把方程列错了.

  (2)学生在解答第(3)题时,设未知数时忘记带单位.

  (3)还有的同学没有注意只列方程,以至于学生列出方程后尝试着解方程,导致耽误了一些时间.

  改进措施:

  教师巡视指导,发现失误及时引导;小组内互查,辩论,质疑.

  3、议一议

  请同学们将上面的方程按照以下要求进行整理:

  (1)使方程的右边为0(2)方程的左边按x的降幂排列.我们会得到:

  ① ② ③

  你能发现上面三个方程有什么共同点?

  _____________________叫做一元二次方程.在定义中着重强调了几点?哪几点?如果给你一个方程,让你判定它是否是一元二次方程,你关键看哪几方面?

  学法指导

  学习一元二次方程的概念,让同学们剖析定义,总结判定一个方程是否是一元二次方程的方法.

  4、试一试

  下面方程是一元二次方程吗?为什么?

  ①ax-x+2=0;②-x+x=0;③x=1;④-2x+1=0;⑤x+y-1=0; ⑥2x+3=2-x;⑦y-4y=0

  方法提升:

  由一元二次方程的定义可知,只有同时满足下列三个条件:①整式方程;②只含有一个未知数;③未知数的最高次数是2,这样的方程才是一元二次方程,否则缺少其中任何一个条件的方程都不是一元二次方程.

  口诀生成:

  判断一元二次方程并不难,三个条件要找全:一元,二次,整式判,正确答案就出现.

  5、学一学

  一元二次方程都可以化为ax+bx +c =0(a,b,c为常数,a≠0)的形式,称为一元二次方程的一般形式,其中ax,bx,c 分别称为这个方程的二次项,一次项和常数项,a,b分别称为二次项系数,一次项系数.你能指出下列方程的二次项系数,一次项系数,常数项吗?请你用a,b,c表示出来.

八年级数学下册教案3

  [教学分析]

  勾股定理是揭示三角形三条边数量关系的一条非常重要的性质,也是几何中最重要的定理之一。它是解直角三角形的主要依据之一,同时在实际生活中具有广泛的用途,“数学源于生活,又用于生活”正是这章书所体现的主要思想。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际操作,使学生获得较为直观的印象;通过联系比较、探索、归纳,帮助学生理解勾股定理,以利于进行正确的应用。

  本节教科书从毕达哥拉斯观察地面发现勾股定理的传说谈起,让学生通过观察计算一些以直角三角形两条直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理,这时教科书以命题的形式呈现了勾股定理。关于勾股定理的证明方法有很多,教科书正文中介绍了我国古人赵爽的证法。之后,通过三个探究栏目,研究了勾股定理在解决实际问题和解决数学问题中的应用,使学生对勾股定理的作用有一定的认识。

  [教学目标]

  一、 知识与技能

  1、探索直角三角形三边关系,掌握勾股定理,发展几何思维。

  2、应用勾股定理解决简单的实际问题

  3学会简单的合情推理与数学说理

  二、 过程与方法

  引入两段中西关于勾股定理的史料,激发同学们的兴趣,引发同学们的思考。通过动手操作探索与发现直角三角形三边关系,经历小组协作与讨论,进一步发展合作交流能力和数学表达能力,并感受勾股定理的应用知识。

  三、 情感与态度目标

  通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,学生亲自动手对勾股定理进行探索与验证,培养学生的合作交流意识和探索精神,以及自主学习的能力。

  四、 重点与难点

  1、探索和证明勾股定理

  2熟练运用勾股定理

  [教学过程]

  一、创设情景,揭示课题

  1、教师展示图片并介绍第一情景

  以中国最早的一部数学著作——《周髀算经》的开头为引,介绍周公向商高请教数学知识时的对话,为勾股定理的出现埋下伏笔。

  周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度.夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘.得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。”

  2、教师展示图片并介绍第二情景

  毕达哥拉斯是古希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的`某种特性。

  二、师生协作,探究问题

  1、现在请你也动手数一下格子,你能有什么发现吗?

  2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有这样的特点呢?

  3、你能得到什么结论吗?

  三、得出命题

  勾股定理:如果直角三角形的两直角边长分别为a、b,斜边长为c,那么,即直角三角形两直角边的平方和等于斜边的平方。解释: 由于我国古代把直角三角形中较短的直角边称为勾,较长的边称为股,斜边称为弦,所以,把它叫做勾股定理。

  四、勾股定理的证明

  赵爽弦图的证法(图2)

  第一种方法:边长为 的正方形可以看作是由4个直角边分别为 、 ,斜边为 的直角三角形围在外面形成的。因为边长为 的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式 ,化简得 。

  第二种方法:边长为 的正方形可以看作是由4个直角边分别为 、 ,斜边为 的

  角三角形拼接形成的(虚线表示),不过中间缺出一个边长为 的正方形“小洞”。

  因为边长为 的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式 ,化简得 。

  这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。

  五、应用举例,拓展训练,巩固反馈。

  勾股定理的灵活运用勾股定理在实际的生产生活当中有着广泛的应用。勾股定理的发现和使用解决了许多生活中的问题,今天我们就来运用勾股定理解决一些问题,你可以吗?试一试。

  例题:小明妈妈买了一部29英寸(74厘米)的电视机,小明量了电视机的屏幕后,发现屏幕只有58厘长和46厘米宽,他觉得一定是售货员搞错了,你同意他的想法吗?你能解释这是为什么吗?

  六、归纳总结1、内容总结:探索直角三角形两直角边的平方和等于斜边的平方,利于勾股定理,解决实际问题

  2、方法归纳:数方格看图找关系,利用面积不变的方法。用直角三角形三边表示正方形的面积观察归纳注意画一个直角三角形表示正方形面积,再次验证自己的发现。

  七、讨论交流

  让学生发表自己的意见,提出他们模糊不清的概念,给他们一个梳理知识的机会,通过提示性的引导,让学生对勾股定理的概念豁然开朗,为后面勾股定理的应用打下基础。

  我们班的同学很聪明。大家很快就通过数格子发现了勾股定理的规律。还有什么地方不懂的吗?跟大家一起来交流一下。请同学们课后在反思天地中都发表一下自己的学习心得。

八年级数学下册教案4

  一、教学目标

  (一)教学知识点

  1.掌握三角形相似的判定方法2、3.

  2.会用相似三角形的判定方法2、3来判断、证明及计算.

  (二)能力训练要求

  1.通过自己动手并总结推出相似三角形的判定方法2、3,培养学生的动手操作能力,总结概括能力.

  2.利用相似三角形的判定方法2、3进行判断,训练学生的灵活运用能力.

  (三)情感与价值观要求

  1.通过探索相似三角形的判定方法2、3,体现数学活动充满着探索性和创造性.

  2.通过对判定方法的探索,发展学生思维的灵活性,进一步培养逻辑推理能力,领会分类思想.

  二、教学重难点

  教学重点:相似三角形判定方法2、3的推导过程,掌握判定方法2、3并能灵活运用.教学难点:判定方法的推导及运用

  三、教学过程设计

  (一)创设情境,引入新课

  投影片

  [生]有四对相似三角形,它们是△AEF∽△DEC,△AFB∽△ACD,△AEB∽△CED,△AEF∽△EBA.他们相似的理由都是用相似三角形的判定方法1.

  [师]现在我们已经有两种方法可以判定两个三角形相似,一种是定义,一种是判定方法1,除此之外,是否还有其他的办法来判定两个三角形相似?这一问题就是本节课我们需要研究的问题.

  (二)新课讲授

  [师]相似三角形的判定方法1是只从角的方面考虑的,下面我们只从边的方面去考虑.我们在学习全等三角形的判定方法中,也有只用边来进行判断的,即SSS公理.大家能不能用类比的方法,猜想只用边来判定三角形相似的方法呢?

  [生]三边对应成比例的两个三角形相似.

  [师]下面我们就来验证一下.

  1.相似三角形的判定方法2:三边对应成比例的两个三角形相似.

  投影片

  个组取一个相同的k值,不同的组取不同的k值,好吗?

  [生]好.

  [师]经过大家的亲身参与体会,你们得出的结论是什么呢?

  [生]结论为∠A=∠A′,∠B=∠B′,∠C=∠C′

  △ABC∽△A′B′C′,理由是:

  ∠A=∠A′,∠B=∠B′,∠C=∠C′

  根据相似三角形的定义可知:△ABC∽△A′B′C′.

  [师]其他组的同学的结论相同吗?

  [生]相同.

  [师]经过大家的探讨,我们又掌握了一种相似三角形的判定方法,即三边对应成比例的两个三角形相似.

  2.相似三角形的判定方法3.

  [师]前面两种判定方法我们都是只从角或只从边的方面去考虑的,下面我们要从两方面来考虑.还是要类比全等三角形的判定方法,在全等的判定方法中有ASA,SAS,AAS,其中ASA、AAS我们就不用考虑了,因为我们已经有判定方法1、3,下面来验证SAS,大家还是先猜想,然后再验证.

  [生]两边对应成比例且夹角相等的两个三角形相似.

  [师]好,下面我们还是由大家自己推导吧.请看投影片

  [师]请大家按照上面的步骤进行,同时还要采取不同的组取不同的值法.

  [生]按照要求作出的△ABC与△A′B′C′中,有∠B=∠B′,∠C=∠C′,因此根据判定方法1可知,△ABC∽△A′B′C′.

  [师]大家同意吗?

  [生]同意.

  [师]好,我们又探索出一个相似三角形的.判定方法,即两边对应成比例且夹角相等的两个三角形相似.

  3.想一想

  107

  [师]下面验证SSA,即两边对应成比例,其中一边的对角对应相等,这两个三角形相似吗?

  在全等三角形的判定中SSA就不成立.大家还可以仿照上面的验证过程来进行推导,下面是小明和小颖分别画出的一个满足条件的三角形,由此你能得到什么结论?

  [生]从上面的图中可以得出结论:有两边对应成比例,其中一边的对角相等的三角形不相似.

  4.做一做

  [师]在这两节课中我们已经学完了一般相似三角形的判定方法,下面请大家总结一下有几种方法.

  [生]一共有四种方法.

  第一种:对应角相等,对应边成比例的两个三角形相似.即定义法.

  第二种:即判定方法1

  两角对应相等的两个三角形相似.

  第三种:即判定方法2

  三边对应成比例的两个三角形相似.

  第四种:即判定方法3

  两边对应成比例且夹角相等的两个三角形相似.

  [师]从这四种方法中我们可以看出,第一种判定方法比较麻烦,需要研究三对角、三对边,而后面的几种方法最多只需要研究三对边或角,因此定义法一般不利用.如果已知条件只涉及角,就用第二种判定方法;如果已知条件只涉及边,就用第三种判定方法;如果既有角又有边,则可考虑用第四种方法判断.

  5.议一议

  如图,△ABC与△A′B′C′相似吗?你有哪些判断方法?

  [生]解:△ABC∽△A′B′C′.

  判断方法有.

  1.三边对应成比例的两个三角形相似.

  2.两角对应相等的两个三角形相似.

  3.两边对应成比例且夹角相等.

  4.定义法.

  (三)巩固应用,拓展研究

  下面每组的两个三角形是否相似?为什么?

  生]解:(1)△ABC∽△DEF

  ∵

  ∴△ABC∽△DEF

  (2)在△ABC中

  AB=2,AC=6

  ∵∠A=∠A

  ∴△ABC∽△AEF

  (四)练习巩固,促进迁移

  依据下列各组条件,判定△ABC与△A′B′C′是不是相似,并说明为什么.

  (1)∠A=120°,AB=7 cm,AC=14 cm,

  ∠A′=120°,A′B′=3 cm,A′C′=6 cm,

  (2)AB=4 cm,BC=6 cm,AC=8 cm,

  A′B′=12 cm,B′C′=18 cm,A′C′=24 cm.解:

  又∵∠A=∠A′

  ∴△ABC∽△A′B′C′(两边对应成比例且夹角相等,两三角形相似)

  ∴△ABC∽△A′B′C′(三边对应成比例,两三角形相似)

  (五)回顾联系,形成结构

  本节课主要探讨了相似三角形的另两种判定方法,即三边对应成比例与两边对应成比例且夹角相等的两个三角形相似.培养了大家的探索精神,同时让学生懂得了数学活动充满着探索与创新,学习的目的是能运用学过的知识去解决问题,在这里就是能利用判定方法进行有关证明.

八年级数学下册教案5

  一、学习目标

  二、学习过程

  阅读教材

  独立完成下列预习作业:

  1、观察下列算式:

  ⑴ ⑵

  请写出分数的乘除法法则:

  乘法法则:分子乘以分子作为积的分子、分母乘以分母作为积的分母;

  除法法则:除以一个数等于乘以这个数的倒数.

  2、分式的`乘除法法则:(类似于分数乘除法法则)

  乘法法则:分子乘以分子作为积的分子、分母乘以分母作为积的分母;

  除法法则:除以一个数等于乘以这个数的倒数.

  3、分式乘方:即分式乘方,是把分子、分母分别乘方.

  三、合作交流,解决问题:

  1、计算:

  ⑴ ; ⑵

  2、计算:

  ⑴ ; ⑵ .

  4、计算:⑴ ⑵

  四、课堂测控:

  1、计算:

八年级数学下册教案6

  活动一、创设情境

  引入:首先我们来看几道练习题(幻灯片)

  (复习:平行线及三角形全等的知识)

  下面我们一起来欣赏一组图片(幻灯片)

  [学生活动]观看后答问题:你看到了哪些图形?

  (各式各样的图案装点着我们的生活,使我们这个世界变得如此美丽,那么,请你用两个相同的300的三角板,看能拼出哪些图案?)

  [学生活动]小组合作交流,拼出图案的类型。

  同学们所拼的图形中,除了有我们学过的三角形,还有很多四边形,今天,我们一起来研究四边形,探索四边形的.性质。(幻灯片出示课题)

  活动二、合作交流,探求新知

  问题(1):为什么我们把(甲)图叫平行四边形,而(乙)图不是平行四边形呢?你怎么知道这些四边形是平行四边形?(拿一模型,幻灯片)

  [学生活动]认真观察、讨论、思考、推理。

  鼓励学生交流,并是试着用自己的语言概括出平行四边形的定义。

  学生交流,归纳:有两组对边分别平行的四边形叫做平行四边形。

  并说明:平行四边形不相邻的两个顶点连成的线段叫它的对角线。

  平行四边形用“”表示,如图平行四边形ABCD记作“ABCD”读作:平行四边形ABCD。(幻灯片出示揭示课题)

  问题(2):由平行四边形的定义,我们知道平行四边形的两组对边分别平行,平行四边形还有什么特征呢?

  [学生活动]动手操作,小组演示交流。鼓励学生用多种方法探究。

  小结平行四边形的性质:

  平行四边形的对边相等

  平行四边形的对角相等(这里要弄清对角、对边两个名词)

  你能演示你的结论是如何得到的吗?(学生演示)

  你能证明吗?(幻灯片出示证明题)

  [学生活动]先分析思路尤其是辅助线,请学生上黑板证明。

  自己完成性质2的证明。

  活动三、运用新知

  性质掌握了吗?一起来看一道题目:

  尝试练习(幻灯片)例1

  [学生活动]作尝试性解答。

八年级数学下册教案7

  例题讲解

  引入问题:有甲乙两种客车,甲种客车每车能拉30人,乙种客车每车能拉40人,现在有400人要乘车,

  1、你有哪些乘车方案?

  2、只租8辆车,能否一次把客人都运送走?

  问题2;怎样租车

  某学校计划在总费用2300元的限额内,利用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少有1名教师。现有甲、乙两种大客车,它们的载客量和租金如表:

  甲种客车乙种客车

  载客量(单位:人/辆)4530

  租金(单位:元/辆)400280

  (1)共需租多少辆汽车?

  (2)给出最节省费用的租车方案。

  分析;

  (1)要保证240名师生有车坐

  (2)要使每辆汽车上至少要有1名教师

  根据(1)可知,汽车总数不能小于____;根据(2)可知,汽车总数不能大于____。综合起来可知汽车总数为_____。

  设租用x辆甲种客车,则租车费用y(单位:元)是x的函数,即

  y=400x+280(6-x)

  化简为:y=120x+1680

  讨论:

  根据问题中的条件,自变量x的取值应有几种可能?

  为使240名师生有车坐,x不能小于____;为使租车费用不超过2300元,X不能超过____。综合起来可知x的'取值为____。

  在考虑上述问题的基础上,你能得出几种不同的租车方案?为节省费用应选择其中的哪种方案?试说明理由。

  方案一:

  4两甲种客车,2两乙种客车

  y1=120×4+1680=2160

  方案二:

  5两甲种客车,1辆乙种客车

八年级数学下册教案8

  教学准备

  教师准备:投影仪,教具:课本“探究”内容;补充材料制成投影片.

  学生准备:复习平行四边形性质;学具:课本“探究”内容.

  学法解析

  1.认知题后:学习了三角形全等、平行四边形定义、性质以后学习本节课内容.

  2.知识线索:

  3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.

  教学过程

  一、回顾交流,逆向思索

  教师提问:

  1.平行四边形定义是什么?如何表示?

  2.平行四边形性质是什么?如何概括?

  学生活动:思考后举手回答:

  回答:1.两组对边分别平行的`四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)

  回答:2.平行四边形性质从边考虑:(1)对边平行,(2)对边相等,(3)对边平行且相等(“”);从角考虑:对角相等;从对角线考虑:两条对角线互相平分.(借助上图直观理解).

  教师归纳:(投影显示)

  平行四边形【活动方略】

  教师活动:操作投影仪,显示课本P96和P97“探究”的问题.用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成4人小组讨论,然后再进行小组汇报,教师同时也拿出教具同学在一起探索.

  学生活动:分四人小组,拿出准备好的学具探究.在活动中发现:

  (1)将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;

  (2)若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.

  (3)将两条等长的木条平行放置,另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形。

八年级数学下册教案9

  1.请同学们回忆(≥0,b≥0)是如何得到的?

  2.学生观察下面的例子,并计算:

  由学生总结上面两个式的关系得:

  类似地,请每个同学再举一个例子,然后由这些特殊的例子,得出:

  (≥0,b0)

  使学生回忆起二次根式乘法的运算方法的推导过程.

  类似地,请每个同学再举一个例子,

  请学生们思考为什么b的取值范围变小了?

  与学生一起写清解题过程,提醒他们被开方式一定要开尽.

  对比二次根式的乘法推导出除法的运算方法

  增强学生的自信心,并从一开始就使他们参与到推导过程中来.

  对学生进一步强化被开方数的取值范围,以及分母不能为零.

  强化学生的解题格式一定要标准.

  教学过程设计

  问题与情境师生行为设计意图

  活动二自我检测

  活动三挑战逆向思维

  把反过来,就得到

  (≥0,b0)

  利用它就可以进行二次根式的化简.

  例2化简:

  (1)

  (2)(b≥0).

  解:(1)(2)练习2化简:

  (1)(2)活动四谈谈你的收获

  1.商的算术平方根的性质(注意公式成立的条件).

  2.会利用商的算术平方根的性质进行简单的二次根式的化简.

  找四名学生上黑板板演,其余学生在练习本上计算,然后再找学生指出不足.

  二次根式的'乘法公式可以逆用,那除法公式可以逆用吗?

  找学生口述解题过程,教师将过程写在黑板上.

  请学生仿照例题自己解决这两道小题,组长检查本组的学习情况.

  请学生自己谈收获,并总结本节课的主要内容.

  为了更快地发现学生的错误之处,以便纠正.

  此处进行简单处理是因为有二次根式的乘法公式的逆用作基础理解并不难.

  让学困生在自己做题时有一个参照.

  充分发挥组长的作用,尽可能在课堂上将问题解决.

八年级数学下册教案10

  教学目标

  (一)知识与技能目标

  使学生理解并掌握分式的基本性质,并能运用这些性质进行分式化简.

  (二)过程与方法目标

  通过分式的化简提高学生的运算能力.

  (三)情感与价值目标.

  渗透类比转化的数学思想方法.

  教学重点和难点

  1.重点:使学生理解并掌握分式的基本性质,这是学好本章的关键.

  2.难点:灵活运用分式的基本性质进行分式化简.

  教学方法:分组讨论.

  教学过程

  (一)情境引入

  1.数学小笑话:

  从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:“我每天三餐每顿给你做两个馒头,够吗?”他哭丧着脸说:“不够,不够!”厨师又问:“那我就一天给你吃六个,怎么样?”他马上欣喜地说:“够了!够了!”

  2.问:这个富家子弟为什么会犯这样的错误?

  3.分数约分的方法及依据是什么?

  (1)的依据是什么?呢?

  (2)你认为分式与相等吗?与呢?

  (二)新课

  1.类比分数的基本性质,由学生小结出分式的基本性质:

  分式的`分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即:

  =,=(其中M是不等于零的整式)

  2.加深对分式基本性质的理解:

  例1下列等式的右边是怎样从左边得到的?

  由学生口述分析,并反问:为什么c≠0?

  解:∵c≠0,∴==(2)=学生口答,教师设疑:为什么题目未给x≠0的条件?(引导学生学会分析题目中的隐含条件.)

八年级数学下册教案11

  教学目标:

  1、理解运用平方差公式分解因式的方法。

  2、掌握提公因式法和平方差公式分解因式的综合运用。

  3、进一步培养学生综合、分析数学问题的能力。

  教学重点:

  运用平方差公式分解因式。

  教学难点:

  高次指数的转化,提公因式法,平方差公式的灵活运用。

  教学案例:

  我们数学组的观课议课主题:

  1、关注学生的合作交流

  2、如何使学困生能积极参与课堂交流。

  在精心备课过程中,我设计了这样的自学提示:

  1、整式乘法中的平方差公式是___,如何用语言描述?把上述公式反过来就得到_____,如何用语言描述?

  2、下列多项式能用平方差公式分解因式吗?若能,请写出分解过程,若不能,说出为什么?

  ①-x2+y2②-x2-y2③4-9x2

  ④(x+y)2-(x-y)2⑤a4-b4

  3、试总结运用平方差公式因式分解的条件是什么?

  4、仿照例4的.分析及旁白你能把x3y-xy因式分解吗?

  5、试总结因式分解的步骤是什么?

  师巡回指导,生自主探究后交流合作。

  生交流热情很高,但把全部问题分析完已用了30分钟。

  生展示自学成果。

  生1:-x2+y2能用平方差公式分解,可分解为(y+x)(y-x)

  生2:-x2+y2=-(x2-y2)=-(x+y)(x-y)

  师:这两种方法都可以,但第二种方法提出负号后,一定要注意括号里的各项要变号。

  生3:4-9x2也能用平方差公式分解,可分解为(2+9x)(2-9x)

  生4:不对,应分解为(2+3x)(2-3x),要运用平方差公式必须化为两个数或整式的平方差的形式。

  生5:a4-b4可分解为(a2+b2)(a2-b2)

  生6:不对,a2-b2还能继续分解为a+b)(a-b)

  师:大家争论的很好,运用平方差公式分解因式,必须化为两个数或两个整式的平方的差的形式,另因式分解必须分解到不能再分解为止。……

  反思:这节课我备课比较认真,自学提示的设计也动了一番脑筋,为让学生顺利得出运用平方差公式因式分解的'条件,我设计了问题2,为让学生能更容易总结因式分解的步骤,我又设计了问题4,自认为,本节课一定会上的非常成功,学生的交流、合作,自学展示一定会很精彩,结果却出乎我的意料,本节课没有按计划完成教学任务,学生练习很少,作业有很大一部分同学不能独立完成,反思这节课主要有以下几个问题:

  (1)我在备课时,过高估计了学生的能力,问题2中的③、④、⑤多数学生刚预习后不能熟练解答,导致在小组交流时,多数学生都在交流这几题该怎样分解,耽误了宝贵的时间,也分散了学生的注意力,导致难点、重点不突出,若能把问题2改为:

  下列多项式能用平方差公式因式分解吗?为什么?可能效果会更好。

  (2)教师备课时,要考虑学生的知识层次,能力水平,真正把学生放在第一位,要考虑学生的接受能力,安排习题要循序渐进,切莫过于心急,过分追求课堂容量、习题类型全等等,例如在问题2的设计时可写一些简单的,像④、⑤可到练习时再出现,发现问题后再强调、归纳,效果也可能会更好。

  我及时调整了自学提示的内容,在另一个班也上了这节课。果然,学生的讨论有了重点,很快(大约10分钟)便合作得出了结论,课堂气氛非常活跃,练习量大,准确率高,但随之我又发现我在处理课后练习时有点不能应对自如。例如:师:下面我们把课后练习做一下,话音刚落,大家纷纷拿着本到我面前批改。师:都完了?生:全完了。我很兴奋。来:“我们再做几题试试。”生又开始紧张地练习……下课后,无意间发现竟还有好几个同学课后题没做。原因是预习时不会,上课又没时间,还有几位同学练习题竟然有误,也没改正,原因是上课慌着展示自己,没顾上改……。看来,以后上课不能单听学生的齐答,要发挥组长的职责,注重过关落实。给学生一点机动时间,让学习有困难的学生有机会释疑,练习不在于多,要注意融会贯通,会举一反三。

  确实,“学海无涯,教海无边”。我们备课再认真,预设再周全,面对不同的学生,不同的学情,仍然会产生新的问题,“没有,只有更好!”我会一直探索、努力,不断完善教学设计,更新教育观念,直到永远……

八年级数学下册教案12

  第一步;理解体验:

  1、复习平均数、中位数和众数定义

  2、引入课本P146R的例子

  思路点拨:商场统计每位营业员在某月的销售额组成一个样本,从样本数据中的平均数、中位数、众数中得到信息估计总体的趋势,达到问题的解决。

  由例题中(2)问和(3)问的不同,导致结果的不同,其目的是告诉学生应该根据题目具体要求来灵活运用三个数据代表解决问题。

  本例题也客观的反映了数学知识对生活实践的指导有重要的意义,也体现了统计知识与生活实践是紧密联系的。

  第二步:总结提升:

  平均数、众数和中位数这三个数据代表的异同:

  平均数、中位数和众数都可以作为一组数据的代表,主要描述一组数据集中趋势的量。平均数是应用较多的一种量

  平均数计算要用到所有的数据,它能够充分利用所有的数据信息,但它受极端值的影响较大.

  众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少也不受极端值的影响.

  平均数的大小与一组数据中的每个数据均有关系,任何一个数据的.变动都会相应引起平均数的变动.

  中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势.

  实际问题中求得的平均数,众数,中位数应带上单位.

  第三步:随堂练习:

  1、在一次环保知识竞赛中,某班50名学生成绩如下表所示:

  得分5060708090100110120

  人数2361415541

  分别求出这些学生成绩的众数、中位数和平均数.

  2、公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下:(单位:岁)

  甲群:13、13、14、15、15、15、16、17、17。

  乙群:3、4、4、5、5、6、6、54、57。

  (1)、甲群游客的平均年龄是岁,中位数是岁,众数是岁,其中能较好反映甲群游客年龄特征的是。

  (2)、乙群游客的平均年龄是岁,中位数是岁,众数是岁。其中能较好反映乙群游客年龄特征的是。

  答案:1.众数90中位数85平均数84.6

  2.(1)15、15、15、众数(2).15、5.5、6、中位数

  第四步:课后练习:

  1、某公司的33名职工的月工资(以元为单位)如下:

  职员董事长副董事长董事总经理经理管理员职员

  人数11215320

  工资5500500035003000250020001500

  (1)、求该公司职员月工资的平均数、中位数、众数?

  (2)、假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是什么?(精确到元)

  (3)、你认为应该使用平均数和中位数中哪一个来描述该公司职工的工资水平?

  2、某公司有15名员工,它们所在的部门及相应每人所创的年利润如下表示

八年级数学下册教案13

  教学目标:

  1、掌握一次函数解析式的特点及意义

  2、知道一次函数与正比例函数的关系

  3、理解一次函数图象特点与解析式的联系规律

  教学重点:

  1、 一次函数解析式特点

  2、 一次函数图象特征与解析式的联系规律

  教学难点:

  1、一次函数与正比例函数关系

  2、根据已知信息写出一次函数的表达式。

  教学过程:

  Ⅰ.提出问题,创设情境

  问题1 小明暑假第一次去北京.汽车驶上A地的高速公路后,小明观察里程碑,发现汽车的平均车速是95千米/小时.已知A地直达北京的高速公路全程为570千米,小明想知道汽车从A地驶出后,距北京的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己和北京的距离.

  分析 我们知道汽车距北京的路程随着行车时间而变化,要想找出这两个变化着的量的关系,并据此得出相应的值,显然,应该探求这两个变量的变化规律.为此,我们设汽车在高速公路上行驶时间为t小时,汽车距北京的路程为s千米,根据题意,s和t的函数关系式是

  s=570-95t.

  说明 找出问题中的变量并用字母表示是探求函数关系的第一步,这里的s、t是两个变量,s是t的函数,t是自变量,s是因变量.

  问题2 小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.试写出小张的存款与从现在开始的月份之间的函数关系式.

  分析 我们设从现在开始的月份数为x,小张的存款数为y元,得到所求的函数关系式为:y=50+12x.

  问题3 以上问题1和问题2表示的这两个函数有什么共同点?

  Ⅱ.导入新课

  上面的两个函数关系式都是左边是因变量y,右边是含自变量x的代数式。并且自变量和因变量的指数都是一次。若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的.形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称

  y是x的正比例函数。

  例1:下列函数中,y是x的一次函数的是( )

  ①y=x-6;②y=2x;③y=;④y=7-x x8

  A、①②③B、①③④ C、①②③④ D、②③④

  例2 下列函数关系中,哪些属于一次函数,其中哪些又属于正比例函数?

  (1)面积为10cm2的三角形的底a(cm)与这边上的高h(cm);

  (2)长为8(cm)的平行四边形的周长L(cm)与宽b(cm);

  (3)食堂原有煤120吨,每天要用去5吨,x天后还剩下煤y吨;

  (4)汽车每小时行40千米,行驶的路程s(千米)和时间t(小时).

  (5)汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间x(时)之间的关系式;

  (6)圆的面积y(厘米2)与它的半径x(厘米)之间的关系;

  (7)一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度为y(厘米) 分析 确定函数是否为一次函数或正比例函数,就是看它们的解析式经过整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此题必须先写出函数解析式后解答. 解 (1)a?20,不是一次函数. h

  (2)L=2b+16,L是b的一次函数.

  (3)y=150-5x,y是x的一次函数.

  (4)s=40t,s既是t的一次函数又是正比例函数.

  (5)y=60x,y是x的一次函数,也是x的正比例函数;

  (6)y=πx2,y不是x的正比例函数,也不是x的一次函数;

  (7)y=50+2x,y是x的一次函数,但不是x的正比例函数

  例3 已知函数y=(k-2)x+2k+1,若它是正比例函数,求k的值.若它是一次函数,求k的值.

  分析 根据一次函数和正比例函数的定义,易求得k的值.

  解 若y=(k-2)x+2k+1是正比例函数,则2k+1=0,即k=?

  若y=(k-2)x+2k+1是一次函数,则k-2≠0,即k≠2.

  例4 已知y与x-3成正比例,当x=4时,y=3.

  (1)写出y与x之间的函数关系式;

  (2)y与x之间是什么函数关系;

  (3)求x=2.5时,y的值.

  解 (1)因为 y与x-3成正比例,所以y=k(x-3).

  又因为x=4时,y=3,所以3= k(4-3),解得k=3,

  所以y=3(x-3)=3x-9.

  (2) y是x的一次函数.

  (3)当x=2.5时,y=3×2.5=7.5.

  1. 2

  例5 已知A、B两地相距30千米,B、C两地相距48千米.某人骑自行车以每小时12千米的速度从A地出发,经过B地到达C地.设此人骑行时间为x(时),离B地距离为y(千米).

  (1)当此人在A、B两地之间时,求y与x的函数关系及自变量x取值范围.

  (2)当此人在B、C两地之间时,求y与x的函数关系及自变量x的取值范围.

  分析 (1)当此人在A、B两地之间时,离B地距离y为A、B两地的距离与某人所走的路程的差.

  (2)当此人在B、C两地之间时,离B地距离y为某人所走的路程与A、B两地的距离的差.

  解 (1) y=30-12x.(0≤x≤2.5)

  (2) y=12x-30.(2.5≤x≤6.5)

  例6 某油库有一没储油的储油罐,在开始的8分钟时间内,只开进油管,不开出油管,油罐的进油至24吨后,将进油管和出油管同时打开16分钟,油罐中的油从24吨增至40吨.随后又关闭进油管,只开出油管,直至将油罐内的油放完.假设在单位时间内进油管与出油管的流量分别保持不变.写出这段时间内油罐的储油量y(吨)与进出油时间x(分)的函数式及相应的x取值范围.

  分析 因为在只打开进油管的8分钟内、后又打开进油管和出油管的16分钟和最后的只开出油管的三个阶级中,储油罐的储油量与进出油时间的函数关系式是不同的,所以此题因分三个时间段来考虑.但在这三个阶段中,两变量之间均为一次函数关系.

  解 在第一阶段:y=3x(0≤x≤8);

  在第二阶段:y=16+x(8≤x≤16);

  在第三阶段:y=-2x+88(24≤x≤44).

  Ⅲ.随堂练习

  根据上表写出y与x之间的关系式是:________________,y是否为x一的次函数?y是否为x有正比例函数?

  2、为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按0.6元/米3收费;每户每月用水量超过6米3时,超过部分按1元/米3收费。设每户每月用水量为x米3,应缴水费y元。(1)写出每月用水量不

  超过6米3和超过6米3时,y与x之间的函数关系式,并判断它们是否为一次函数。(2)已知某户5月份的用水量为8米3,求该用户5月份的水费。[①y=0.6x,y=x-2.4,y是x的一次函数。②y=8-2.4=5.6(元)]

  Ⅳ.课时小结

  1、一次函数、正比例函数的概念及关系。

  2、能根据已知简单信息,写出一次函数的表达式。

  Ⅴ.课后作业

  1、已知y-3与x成正比例,且x=2时,y=7

  (1)写出y与x之间的函数关系.

  (2)y与x之间是什么函数关系.

  (3)计算y=-4时x的值.

  2.甲市到乙市的包裹邮资为每千克0.9元,每件另加手续费0.2元,求总邮资y(元)与包裹重量x(千克)之间的函数解析式,并计算5千克重的包裹的邮资.

  3.仓库内原有粉笔400盒.如果每个星期领出36盒,求仓库内余下的粉笔盒数Q与星期数t之间的函数关系.

  4.今年植树节,同学们种的树苗高约1.80米.据介绍,这种树苗在10年内平均每年长高0.35米.求树高与年数之间的函数关系式.并算一算4年后同学们中学毕业时这些树约有多高.

  5.按照我国税法规定:个人月收入不超过800元,免交个人所得税.超过800元不超过1300元部分需缴纳5%的个人所得税.试写出月收入在800元到1300元之间的人应缴纳的税金y(元)和月收入x(元)之间的函数关系式.

八年级数学下册教案14

  一、创设情境

  1.一次函数的图象是什么,如何简便地画出一次函数的图象?

  (一次函数y=kx+b(k≠0)的图象是一条直线,画一次函数图象时,取两点即可画出函数的图象).

  2.正比例函数y=kx(k≠0)的图象是经过哪一点的直线?

  (正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线).

  3.平面直角坐标系中,x轴、y轴上的点的坐标有什么特征?

  4.在平面直角坐标系中,画出函数的图象.我们画一次函数时,所选取的两个点有什么特征,通过观察图象,你发现这两个点在坐标系的什么地方?

  二、探究归纳

  1.在画函数的图象时,通过列表,可知我们选取的点是(0,-1)和(2,0),这两点都在坐标轴上,其中点(0,-1)在y轴上,点(2,0)在x轴上,我们把这两个点依次叫做直线与y轴与x轴的交点.

  2.求直线y=-2x-3与x轴和y轴的交点,并画出这条直线.

  分析x轴上点的纵坐标是0,y轴上点的横坐标0.由此可求x轴上点的横坐标值和y轴上点的纵坐标值.

  解因为x轴上点的`纵坐标是0,y轴上点的横坐标0,所以当y=0时,x=-1.5,点(-1.5,0)就是直线与x轴的交点;当x=0时,y=-3,点(0,-3)就是直线与y轴的交点.

  过点(-1.5,0)和(0,-3)所作的直线就是直线y=-2x-3.

  所以一次函数y=kx+b,当x=0时,y=b;当y=0时,.所以直线y=kx+b与y轴的交点坐标是(0,b),与x轴的交点坐标是.

  三、实践应用

  例1若直线y=-kx+b与直线y=-x平行,且与y轴交点的纵坐标为-2;求直线的表达式.

  分析直线y=-kx+b与直线y=-x平行,可求出k的值,与y轴交点的纵坐标为-2,可求出b的值.

  解因为直线y=-kx+b与直线y=-x平行,所以k=-1,又因为直线与y轴交点的纵坐标为-2,所以b=-2,因此所求的直线的表达式为y=-x-2.

  例2求函数与x轴、y轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积.

  分析求直线与x轴、y轴的交点坐标,根据x轴、y轴上点的纵坐标和横坐标分别为0,可求出相应的横坐标和纵坐标?

八年级数学下册教案15

  一、目标要求

  1.理解掌握分式的四则混合运算的顺序。

  2.能正确熟练地进行分式的加、减、乘、除混合运算。

  二、重点难点

  重点:分式的加、减、乘、除混合运算的顺序。

  难点:分式的'加、减、乘、除混合运算。

  分式的加、减、乘、除混合运算的顺序是先进行乘、除运算,再进行加、减运算,遇有括号,先算括号内的。

  三、解题方法指导

  【例1】计算:(1)[++(+)]·;

  (2)(x-y-)(x+y-)÷[3(x+y)-]。

  分析:分式的四则混合运算要注意运算顺序及括号的关系。

  解:(1)原式=[++]·=[++]·=·==。

  (2)原式=·÷=··=y-x。

  【例2】计算:(1)(-+)·(a3-b3);

  (2)(-)÷。

  解:(1)原式=-+=-+ab

  =a2+ab+b2-(a2-b2)-ab

  =a2+ab+b2-a2+b2-ab=2b2。

  (2)原式=[-]·=-=-====。

  说明:分式的加、减、乘、除混合运算注意以下几点:

  (1)一般按分式的运算顺序法则进行计算,但恰当地使用运算律会使运算简便。

  (2)要随时注意分子、分母可进行因式分解的式子,以备约分或通分时备用,可避免运算烦琐。

  (3)注意括号的“添”或“去”、“变大”与“变小”。

  (4)结果要化为最简分式。

  四、激活思维训练

  ▲知识点:求分式的值

  【例】已知x+=3,求下列各式的值:

【八年级数学下册教案】相关文章:

八年级数学下册教案01-10

数学下册教案03-16

人教版八年级数学下册教案04-27

八年级下册数学教案01-01

八年级数学下册教案15篇01-10

八年级数学下册教案(通用15篇)02-20

八年级下册数学教案3篇01-01

数学下册教案 15篇03-16

数学下册教案 (15篇)03-16