现在位置:范文先生网>教案大全>数学教案>高三数学教案

高三数学教案

时间:2023-01-16 14:56:36 数学教案 我要投稿

人教版高三数学教案(5篇)

  作为一名老师,可能需要进行教案编写工作,教案有利于教学水平的提高,有助于教研活动的开展。来参考自己需要的教案吧!以下是小编为大家收集的人教版高三数学教案,仅供参考,大家一起来看看吧。

人教版高三数学教案(5篇)

人教版高三数学教案1

  一、目标

  知识与技能:了解可导函数的单调性与其导数的关系;能利用导数研究函数的单调性,会求函数的单调区间。

  过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;

  情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。

  二、重点难点

  教学重点:利用导数研究函数的单调性,会求不超过4次的多项式函数的单调区间

  教学难点:利用导数研究函数的单调性,会求不超过4次的多项式函数的单调区间

  三、教学过程:

  函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的通过研究函数的这些性质,我们可以对数量的`变化规律有一个基本的了解.我们以导数为工具,对研究函数的增减及极值和最值带来很大方便.

  四、学情分析

  我们的学生属于平行分班,没有实验班,学生已有的知识和实验水平有差距。需要教师指导并借助动画给予直观的认识。

  五、教学方法

  发现式、启发式

  新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习。

  六、课前准备

  1.学生的学习准备:

  2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。

  七、课时安排:

  1课时

  八、教学过程

  (一)预习检查、总结疑惑

  检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。

  提问

  1.判断函数的单调性有哪些方法?

  (引导学生回答“定义法”,“图象法”。)

  2.比如,要判断y=x2的单调性,如

  何进行?(引导学生回顾分别用定义法、图象法完成。)

  3.还有没有其它方法?如果遇到函数:

  y=x3-3x判断单调性呢?(让学生短时

  间内尝试完成,结果发现:用“定义法”,

  作差后判断差的符号麻烦;用“图象法”,图象很难画出来。)

  4.有没有捷径?(学生疑惑,由此引出课题)这就要用到咱们今天要学的导数法。

  以问题形式复习相关的旧知识,同时引出新问题:三次函数判断单调性,定义法、图象法很不方便,有没有捷径?通过创设问题情境,使学生产生强烈的问题意识,积极主动地参与到学习中来。

  (二)情景导入、展示目标。

  设计意图:步步导入,吸引学生的注意力,明确学习目标。

  (探索函数的单调性和导数的关系)问:函数的单调性和导数有何关系呢?

  教师仍以y=x2为例,借助几何画板动态演示,让学生记录结果在课前发的表格第二行中:

  函数及图象单调性切线斜率k的正负导数的正负

  问:有何发现?(学生回答)

  问:这个结果是否具有一般性呢?

  (三)合作探究、精讲点拨。

  我们来考察两个一般性的例子:

  (教师指导学生动手实验:把准备的牙签放在表中曲线y=f(x)的图象上,作为曲线的切线,移动切线并记录结果在上表第三、四行中。)

  问:能否得出什么规律?

  让学生归纳总结,教师简单板书:

  在某个区间(a,b)内,

  若f ' (x)>0,则f(x)在(a,b)上是增函数;

  若f ' (x)<0,则在f(x)(a,b)上是减函数。

  教师说明:

  要正确理解“某个区间”的含义,它必需是定义域内的某个区间。

  1.这一部分是后面利用导数求函数单调区间的理论依据,重要性不言而喻,而学生又只学习了导数的意义和一些基本运算,要想得到严格的证明是不现实的,因此,只要求学生能借助几何直观得出结论,这与新课标中的要求是相吻合的。

  2.教师对具体例子进行动态演示,学生对一般情况进行实验验证。由观察、猜想到归纳、总结,让学生体验知识的发现、发生过程,变灌注知识为学生主动获取知识,从而使之成为课堂教学活动的主体。

  3.得出结论后,教师强调正确理解“某个区间”的含义,它必需是定义域内的某个区间。这一点将在例1的变式3具体体现。

  4.考虑到本节课堂容量较大,这里没有提到函数在个别点处导数为零不影响单调性的情况(如y=x3在x=0处),这一问题将在后续课程中给学生补充。

  应用导数求函数的单调区间

  例1.求函数y=x2-3x的单调区间。

  (引导学生得出解题思路:求导→

  令f ' (x)>0,得函数单调递增区间,令f ' (x)<0,得函数单调递减区间→下结论)

  变式1:求函数y=3x3-3x2的单调区间。

  (竞赛活动:将全班同学分成两大组指定分别用单调性的定义,和用求导数的方法解答,每组各推荐一位同学的答案进行投影。)

  求单调区间是导数的一个重要应用,也是本节重点,为此,设计了例1及三个变式:

  设计例1可引导学生得出用导数法求单调区间的解题步骤

  设计变式1及竞赛活动可以激发学生的学习热情,让他们学会比较,并深刻体验导数法的优越性。

  巩固提高

  变式2:求函数y=3e x -3x单调区间。

  (学生上黑板解答)

  变式3:求函数的单调区间。

  设计变式2且让学生上黑板解答可以规范解题格式,同时使学生了解用导数法可以求更复杂的函数的单调区间。

  设计变式3是可使学生体会考虑定义域的必要性

  例1及三个变式,依次涉及二次,三次函数,含指数的函数、反比例函数,这样一题多变,逐步深化,从而让学生领会:如何应用及哪类单调性问题该应用“导数法”解决。

  多媒体展示探究思考题。

  在学生分组实验的过程中教师巡回观察指导。 (课堂实录),

  (四)反思总结,当堂检测。

  教师组织学生反思总结本节课的主要内容,并进行当堂检测。

  设计意图:引导学生构建知识网络并对所学内容进行简单的反馈纠正。(课堂实录)

  (五)发导学案、布置预习。

  设计意图:布置下节课的预习作业,并对本节课巩固提高。教师课后及时批阅本节的延伸拓展训练。

  九、板书设计

  例1.求函数y=3x2-3x的单调区间。

  变式1:求函数y=3x3-3x2的单调区间。

  变式2:求函数y=3e x -3x单调区间。

  变式3:求函数的单调区间。

  十、教学反思

  本课的设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑的地方。课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率的目的。

  在后面的教学过程中会继续研究本节课,争取设计的更科学,更有利于学生的学习,也希望大家提出宝贵意见,共同完善,共同进步!

人教版高三数学教案2

  一、教学内容分析

  本小节是普通高中课程标准实验教科书数学5(必修)第三章第3小节,主要内容是利用平面区域体现二元一次不等式(组)的解集;借助图解法解决在线性约束条件下的二元线性目标函数的最值与解问题;运用线性规划知识解决一些简单的实际问题(如资源利用,人力调配,生产安排等)。突出体现了优化思想,与数形结合的思想。本小节是利用数学知识解决实际问题的典例,它体现了数学源于生活而用于生活的特性。

  二、学生学习情况分析

  本小节内容建立在学生学习了一元不等式(组)及其应用、直线与方程的基础之上,学生对于将实际问题转化为数学问题,数形结合思想有所了解.但从数学知识上看学生对于涉及多个已知数据、多个字母变量,多个不等关系的知识接触尚少,从数学方法上看,学生对于图解法还缺少认识,对数形结合的思想方法的掌握还需时日,而这些都将成为学生学习中的难点。

  三、设计思想

  以问题为载体,以学生为主体,以探究归纳为主要手段,以问题解决为目的,以多媒体为重要工具,激发学生的动手、观察、思考、猜想探究的兴趣。注重引导学生充分体验“从实际问题到数学问题”的数学建模过程,体会“从具体到一般”的抽象思维过程,从“特殊到一般”的探究新知的过程;提高学生应用“数形结合”的思想方法解题的能力;培养学生的分析问题、解决问题的'能力。

  四、教学目标

  1、知识与技能:了解二元一次不等式(组)的概念,掌握用平面区域刻画二元一次不等式(组)的方法;了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行域和解等概念;理解线性规划问题的图解法;会利用图解法求线性目标函数的最值与相应解;

  2、过程与方法:从实际问题中抽象出简单的线性规划问题,提高学生的数学建模能力;在探究的过程中让学生体验到数学活动中充满着探索与创造,培养学生的数据分析能力、化归能力、探索能力、合情推理能力;

  3、情态与价值:在应用图解法解题的过程中,培养学生的化归能力与运用数形结合思想的能力;体会线性规划的基本思想,培养学生的数学应用意识;体验数学来源于生活而服务于生活的特性.

  五、教学重点和难点

  重点:从实际问题中抽象出二元一次不等式(组),用平面区域刻画二元一次不等式组的解集及用图解法解简单的二元线性规划问题;

  难点:二元一次不等式所表示的平面区域的探究,从实际情境中抽象出数学问题的过程探究,简单的二元线性规划问题的图解法的探究.

  六、教学基本流程

  第一课时,利用生动的情景激起学生求知的欲望,从中抽象出数学问题,引出二元一次不等式(组)的基本概念,并为线性规划问题的引出埋下伏笔.通过学生的自主探究,分类讨论,大胆猜想,细心求证,得出二元一次不等式所表示的平面区域,从而突破本小节的第一个难点;通过例1、例2的讨论与求解引导学生归纳出画二元一次不等式(组)所表示的平面区域的具体解答步骤(直线定界,特殊点定域);最后通过练习加以巩固。

  第二课时,重现引例,在学生的回顾、探讨中解决引例中的可用方案问题,并由此归纳总结出从实际问题中抽象出数学问题的基本过程:理清数据关系(列表)→设立决策变量→建立数学关系式→画出平面区域.让学生对例3、例4进行分析与讨论进一步完善这一过程,突破本小节的第二个难点。

  第三课时,设计情景,借助前两个课时所学,设立决策变量,画出平面区域并引出新的问题,从中引出线性规划的相关概念,并让学生思考探究,利用特殊值进行猜测,找到方案;再引导学生对目标函数进行变形转化,利用直线的图象对上述问题进行几何探究,把最值问题转化为截距问题,通过几何方法对引例做出完美的解答;回顾整个探究过程,让学生在讨论中达成共识,总结出简单线性规划问题的图解法的基本步骤.通过例5的展示让学生从动态的角度感受图解法。最后再现情景1,并对之作出完美的解答。

  第四课时,给出新的引例,让学生体会到线性规划问题的普遍性。让学生讨论分析,对引例给出解答,并综合前三个课时的教学内容,连缀成线,总结出简单线性规划的应用性问题的一般解答步骤,通过例6,例7的分析与展示进一步完善这一过程。总结线性规划的应用性问题的几种类型,让学生更深入的体会到优化理论,更好的认识到数学来源于生活而运用于生活的特点。

人教版高三数学教案3

  一、教学目标

  1、理解一次函数和正比例函数的概念,以及它们之间的关系。

  2、能根据所给条件写出简单的一次函数表达式。

  二、能力目标

  1、经历一般规律的探索过程、发展学生的抽象思维能力。

  2、通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力。

  三、情感目标1、通过函数与变量之间的关系的联系,一次函数与一次方程的联系,发展学生的数学思维。

  2、经历利用一次函数解决实际问题的'过程,发展学生的数学应用能力。

  四、教学重难点1、一次函数、正比例函数的概念及关系。   2、会根据已知信息写出一次函数的表达式。

  五、教学过程

  1、新课导入有关函数问题在我们日常生活中随处可见,如弹簧秤有自然长度,在弹性限度内,随着所挂物体的重量的'增加,弹簧的长度相应的会拉长,那么所挂物体的重量与弹簧的长度之间就存在某种关系,究竟是什么样的关系,请看:某弹簧的自然长度为3厘米,在弹性限度内,所挂物体的质量x每增加1千克、弹簧长度y增加0.5厘米。

  (1)计算所挂物体的质量分别为1千克、 2千克、 3千克、 4千克、 5千克时弹簧的长度,

  (2)你能写出x与y之间的关系式吗?

  分析:当不挂物体时,弹簧长度为3厘米,当挂1千克物体时,增加0.5厘米,总长度为3.5厘米,当增加1千克物体,即所挂物体为2千克时,弹簧又增加0.5厘米,总共增加1厘米,由此可见,所挂物体每增加1千克,弹簧就伸长0.5厘米,所挂物体为x千克,弹簧就伸长0.5x厘米,则弹簧总长为原长加伸长的长度,即y=3+0.5x。

  2、做一做某辆汽车油箱中原有汽油100升,汽车每行驶50千克耗油9升。你能写出x与y之间的关系吗?(y=1000.18x或y=100 x)接着看下面这些函数,你能说出这些函数有什么共同的特点吗?上面的几个函数关系式,都是左边是因变量,右边是含自变量的代数式,并且自变量和因变量的指数都是一次。

  3、一次函数,正比例函数的概念若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。

  4、例题讲解例1:下列函数中,y是x的一次函数的是( )   ①y=x6;②y= ;③y= ;④y=7x   A、①②③ B、①③④ C、①②③④ D、②③④分析:这道题考查的是一次函数的概念,特别要强调一次函数自变量与因变量的指数都是1,因而②不是一次函数,答案为B

人教版高三数学教案4

  一、教材分析及处理

  函数是高中数学的重要内容之一,函数的基础知识在数学和其他许多学科中有着广泛的应用;函数与代数式、方程、不等式等内容联系非常密切;函数是近一步学习数学的重要基础知识;函数的概念是运动变化和对立统一等观点在数学中的具体体现;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,《函数》教学设计。

  对函数概念本质的理解,首先应通过与初中定义的比较、与其他知识的联系以及不断地应用等,初步理解用集合与对应语言刻画的函数概念.其次在后续的学习中通过基本初等函数,引导学生以具体函数为依托、反复地、螺旋式上升地理解函数的本质。

  教学重点是函数的概念,难点是对函数概念的本质的理解。

  学生现状

  学生在第一章的时候已经学习了集合的概念,同时在初中时已学过一次函数、反比例函数和二次函数,那么如何用集合知识来理解函数概念,结合原有的知识背景,活动经验和理解走入今天的课堂,如何有效地激活学生的学习兴趣,让学生积极参与到学习活动中,达到理解知识、掌握方法、提高能力的目的,使学生获得有益有效的学习体验和情感体验,是在教学设计中应思考的。

  二、教学三维目标分析

  1、知识与技能(重点和难点)

  (1)、通过实例让学生能够进一步体会到函数是描述变量之间的依赖关系的重要数学模型。并且在此基础上学习应用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。不但让学生能完成本节知识的学习,还能较好的复习前面内容,前后衔接。

  (2)、了解构成函数的三要素,缺一不可,会求简单函数的定义域、值域、判断两个函数是否相等等。

  (3)、掌握定义域的表示法,如区间形式等。

  (4)、了解映射的概念。

  2、过程与方法

  函数的概念及其相关知识点较为抽象,难以理解,学习中应注意以下问题:

  (1)、首先通过多媒体给出实例,在让学生以小组的形式开展讨论,运用猜想、观察、分析、归纳、类比、概括等方法,探索发现知识,找出不同点与相同点,实现学生在教学中的主体地位,培养学生的创新意识。

  (2)、面向全体学生,根据课本大纲要求授课。

  (3)、加强学法指导,既要让学生学会本节知识点,也要让学生会自我主动学习。

  3、情感态度与价值观

  (1)、通过多媒体给出实例,学生小组讨论,给出自己的结论和观点,加上老师的辅助讲解,培养学生的实践能力和和大胆创新意识。

  (2)、让学生自己讨论给出结论,培养学生的自我动手能力和小组团结能力。

  三、教学器材

  多媒体ppt课件

  四、教学过程

  教学内容教师活动学生活动设计意图

  《函数》课题的引入(用时一分钟)配着简单的音乐,从简单的例子引入函数应用的广泛,将同学们的视线引入函数的学习上听着悠扬的音乐,让同学们的视线全注意在老师所讲的内容上从贴近学生生活入手,符合学生的认知特点。让学生在领略大自然的美妙与和谐中进入函数的世界,体现了新课标的理念:从知识走向生活

  知识回顾:初中所学习的函数知识(用时两分钟)回顾初中函数定义及其性质,简单回顾一次函数、二次函数、正比例函数、反比例函数的性质、定义及简单作图认真听老师回顾初中知识,发现异同在初中知识的基础上引导学生向更深的内容探索、求知。即复习了所学内容又做了即将所学内容的铺垫

  思考与讨论:通过给出的问题,引出本节课的主要内容(用时四分钟)给出两个简单的问题让同学们思考,讲述初中内容无法给出正确答案,需要从新的高度来认识函数结合老师所回顾的知识,结合自己所掌握的知识,思考老师给出的问题,小组形式作讨论,从简单问题入手,循序渐进,引出本节主要知识,回顾前一节的集合感念,应用到本节知识,前后联系、衔接新知识的讲解:从概念开始讲解本节知识(用时三分钟)详细讲解函数的知识,包括定义域,值域等,回到开始提问部分作答做笔记,专心听讲讲解函数概念,由知识讲解回到问题身上,解决问题对提问的回答(用时五分钟)引导学生自己解决开始所提的两个问题,然后同个互动给出最后答案通过与老师共同讨论回答开始问题,总结更好的掌握函数概念,通过问题来更好的掌握知识

  函数区间(用时五分钟)引入函数定义域的表示方法简洁明了的方法表示函数的定义域或值域,在集合表示方法的基础上引入另一种方法

  注意点(用时三分钟)做个简单的的回顾新内容,把难点重点提出来,让同学们记住通过问题回答,概念解答,把重难点给出,提醒学生注意内容和知识点

  习题(用时十分钟)给出习题,分析题意在稿纸上简单作答,回答问题通过习题练习明确重难点,把不懂的地方记住,课后学生在做进一步的联系

  映射(用时两分钟)从概念方面讲解映射的意义,象与原象在新知识的基础上了解更多知识,映射的学习给以后的知识内容做更好的.铺垫

  小结(用时五分钟)简单讲述本节的知识点,重难点做笔记前后知识的连贯,总结,使学生更明白知识点

  五、教学评价

  为了使学生了解函数概念产生的背景,丰富函数的感性认识,获得认识客观世界的体验,本课采用"突出主题,循序渐进,反复应用"的方式,在不同的场合考察问题的不同侧面,由浅入深。本课在教学时采用问题探究式的教学方法进行教学,逐层深入,这样使学生对函数概念的理解也逐层深入,从而准确理解函数的概念。函数引入中的三种对应,与初中时学习函数内容相联系,这样起到了承上启下的作用。这三种对应既是函数知识的生长点,又突出了函数的本质,为从数学内部研究函数打下了基础。

  在培养学生的能力上,本课也进行了整体设计,通过探究、思考,培养了学生的实践能力、观察能力、判断能力;通过揭示对象之间的内在联系,培养了学生的辨证思维能力;通过实际问题的解决,培养了学生的分析问题、解决问题和表达交流能力;通过案例探究,培养了学生的创新意识与探究能力。

  虽然函数概念比较抽象,难以理解,但是通过这样的教学设计,学生基本上能很好地理解了函数概念的本质,达到了课程标准的要求,体现了课改的教学理念。

人教版高三数学教案5

  教学目标

  掌握等差数列与等比数列的性质,并能灵活应用等差(比)数列的性质解决有关等差(比)数列的综合性问题。

  教学重难点

  掌握等差数列与等比数列的性质,并能灵活应用等差(比)数列的性质解决有关等差(比)数列的`综合性问题。

  教学过程

  【示范举例】

  例1:数列是首项为23,公差为整数,

  且前6项为正,从第7项开始为负的等差数列

  (1)求此数列的公差d;

  (2)设前n项和为Sn,求Sn的值;

  (3)当Sn为正数时,求n的值.

【高三数学教案】相关文章:

高三数学教案11-07

人教版高三数学教案11-02

高三数学教案(精选15篇)01-11

高三数学教案15篇11-08

高三数学教案(15篇)11-09

人教版高三数学教案5篇01-16

高三数学教案(集锦15篇)02-17

高三数学教案(汇编15篇)02-17

人教版高三数学教案4篇11-03