高三数学教案

时间:2022-11-09 23:43:05 高三数学教案 我要投稿

高三数学教案(15篇)

  在教学工作者实际的教学活动中,总归要编写教案,教案有助于学生理解并掌握系统的知识。教案应该怎么写才好呢?下面是小编整理的高三数学教案,欢迎阅读与收藏。

高三数学教案(15篇)

高三数学教案1

  一、导入新课,探究标准方程

  二、掌握知识,巩固练习

  练习:

  1、说出下列圆的方程

  ⑴圆心(3,—2)半径为5

  ⑵圆心(0,3)半径为3

  2、指出下列圆的圆心和半径

  ⑴(x—2)2+(y+3)2=3

  ⑵x2+y2=2

  ⑶x2+y2—6x+4y+12=0

  3、判断3x—4y—10=0和x2+y2=4的位置关系

  4、圆心为(1,3),并与3x—4y—7=0相切,求这个圆的方程

  三、引伸提高,讲解例题

  例1、圆心在y=—2x上,过p(2,—1)且与x—y=1相切求圆的方程(突出待定系数的'数学方法)

  练习:

  1、某圆过(—2,1)、(2,3),圆心在x轴上,求其方程。

  2、某圆过A(—10,0)、B(10,0)、C(0,4),求圆的方程。

  例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求A2P2的长度。

  例3、点M(x0,y0)在x2+y2=r2上,求过M的圆的切线方程(一题多解,训练思维)

  四、小结练习P771,2,3,4

  五、作业P811,2,3,4

高三数学教案2

  学习目标

  明确排列与组合的联系与区别,能判断一个问题是排列问题还是组合问题;能运用所学的排列组合知识,正确地解决的实际问题、

  学习过程

  一、学前准备

  复习:

  1、(课本P28A13)填空:

  (1)有三张参观卷,要在5人中确定3人去参观,不同方法的种数是;

  (2)要从5件不同的礼物中选出3件分送3为同学,不同方法的种数是;

  (3)5名工人要在3天中各自选择1天休息,不同方法的.种数是;

  (4)集合A有个元素,集合B有个元素,从两个集合中各取1个元素,不同方法的种数是;

  二、新课导学

  探究新知(复习教材P14~P25,找出疑惑之处)

  问题1:判断下列问题哪个是排列问题,哪个是组合问题:

  (1)从4个风景点中选出2个安排游览,有多少种不同的方法?

  (2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?

  应用示例

  例1、从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?

  例2、7位同学站成一排,分别求出符合下列要求的不同排法的种数、

  (1)甲站在中间;

  (2)甲、乙必须相邻;

  (3)甲在乙的左边(但不一定相邻);

  (4)甲、乙必须相邻,且丙不能站在排头和排尾;

  (5)甲、乙、丙相邻;

  (6)甲、乙不相邻;

  (7)甲、乙、丙两两不相邻。

  反馈练习

  1、(课本P40A4)某学生邀请10位同学中的6位参加一项活动,其中两位同学要么都请,要么都不请,共有多少种邀请方法?

  2、5男5女排成一排,按下列要求各有多少种排法:(1)男女相间;(2)女生按指定顺序排列

  3、马路上有12盏灯,为了节约用电,可以熄灭其中3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,那么熄灯方法共有______种、

  当堂检测

  1、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目、如果将这两个节目插入原节目单中,那么不同插法的种数为()

  A、42 B、30 C、20 D、12

  2、(课本P40A7)书架上有4本不同的数学书,5本不同的物理书,3本不同的化学书,全部排在同一层,如果不使同类的书分开,一共有多少种排法?

  课后作业

  1、(课本P41B2)用数字0,1,2,3,4,5组成没有重复数字的数,问:(1)能够组成多少个六位奇数?(2)能够组成多少个大于201345的正整数?

  2、(课本P41B4)某种产品的加工需要经过5道工序,问:(1)如果其中某一工序不能放在最后,有多少种排列加工顺序的方法?(2)如果其中两道工序既不能放在最前,也不能放在最后,有多少种排列加工顺序的方法?

高三数学教案3

  【学习目标】

  一、过程目标

  1通过师生之间、学生与学生之间的互相交流,培养学生的数学交流能力和与人合作的精神。

  2通过对对数函数的学习,树立相互联系、相互转化的.观点,渗透数形结合的数学思想。

  3通过对对数函数有关性质的研究,培养学生观察、分析、归纳的思维能力。

  二、识技能目标

  1理解对数函数的概念,能正确描绘对数函数的图象,感受研究对数函数的意义。

  2掌握对数函数的性质,并能初步应用对数的性质解决简单问题。

  三、情感目标

  1通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的学习兴趣。

  2在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质。

  教学重点难点:

  1对数函数的定义、图象和性质。

  2对数函数性质的初步应用。

  教学工具:多媒体

  【学前准备】对照指数函数试研究对数函数的定义、图象和性质。

高三数学教案4

  典例精析

  题型一 求函数f(x)的单调区间

  【例1】已知函数f(x)=x2-ax-aln(x-1)(a∈R),求函数f(x)的单调区间.

  【解析】函数f(x)=x2-ax-aln(x-1)的定义域是(1,+∞).

  f′(x)=2x-a-ax-1=2x(x-a+22)x-1,

  ①若a≤0,则a+22≤1,f′(x)=2x(x-a+22)x-1>0在(1,+∞)上恒成立,所以a≤0时,f(x)的增区间为(1,+∞).

  ②若a>0,则a+22>1,

  故当x∈(1,a+22]时,f′(x)=2x(x-a+22)x-1≤0;

  当x∈[a+22,+∞)时,f′(x)=2x(x-a+22)x-1≥0,

  所以a>0时,f(x)的减区间为(1,a+22],f(x)的增区间为[a+22,+∞).

  【点拨】在定义域x>1下,为了判定f′(x)符号,必须讨论实数a+22与0及1的大小,分类讨论是解本题的关键.

  【变式训练1】已知函数f(x)=x2+ln x-ax在(0,1)上是增函数,求a的取值范围.

  【解析】因为f′(x)=2x+1x-a,f(x)在(0,1)上是增函数,

  所以2x+1x-a≥0在(0,1)上恒成立,

  即a≤2x+1x恒成立.

  又2x+1x≥22(当且仅当x=22时,取等号).

  所以a≤22,

  故a的取值范围为(-∞,22].

  【点拨】当f(x)在区间(a,b)上是增函数时f′(x)≥0在(a,b)上恒成立;同样,当函数f(x)在区间(a,b)上为减函数时f′(x)≤0在(a,b)上恒成立.然后就要根据不等式恒成立的条件来求参数的取值范围了.

  题型二 求函数的极值

  【例2】已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=-1.

  (1)试求常数a,b,c的值;

  (2)试判断x=±1是函数的极小值点还是极大值点,并说明理由.

  【解析】(1)f′(x)=3ax2+2bx+c.

  因为x=±1是函数f(x)的极值点,

  所以x=±1是方程f′(x)=0,即3ax2+2bx+c=0的两根.

  由根与系数的关系,得

  又f(1)=-1,所以a+b+c=-1. ③

  由①②③解得a=12,b=0,c=-32.

  (2)由(1)得f(x)=12x3-32x,

  所以当f′(x)=32x2-32>0时,有x<-1或x>1;

  当f′(x)=32x2-32<0时,有-1

  所以函数f(x)=12x3-32x在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上是减函数.

  所以当x=-1时,函数取得极大值f(-1)=1;当x=1时,函数取得极小值f(1)=-1.

  【点拨】求函数的'极值应先求导数.对于多项式函数f(x)来讲, f(x)在点x=x0处取极值的必要条件是f′(x)=0.但是, 当x0满足f′(x0)=0时, f(x)在点x=x0处却未必取得极 值,只有在x0的两侧f(x)的导数异号时,x0才是f(x)的极值点.并且如果f′(x)在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(x0)是极大值;如果f′(x)在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值.

  【变式训练2】定义在R上的函数y=f(x),满足f(3-x)=f(x),(x-32)f′(x)<0,若x13,则有( )

  A. f(x1)f(x2)

  C. f(x1)=f(x2) D.不确定

  【解析】由f(3-x)=f(x)可得f[3-(x+32)]=f(x+32),即f(32-x)=f(x+32),所以函数f(x)的图象关于x=32对称.又因为(x-32)f′(x)<0,所以当x>32时,函数f(x)单调递减,当x<32时,函数f(x)单调递增.当x1+x22=32时,f(x1)=f(x2),因为x1+x2>3,所以x1+x22>32,相当于x1,x2的中点向右偏离对称轴,所以f(x1)>f(x2).故选B.

  题型三 求函数的最值

  【例3】 求函数f(x)=ln(1+x)-14x2在区间[0,2]上的最大值和最小值.

  【解析】f′(x)=11+x-12x,令11+x-12x=0,化简为x2+x-2=0,解得x1=-2或x2=1,其中x1=-2舍去.

  又由f′(x)=11+x-12x>0,且x∈[0,2],得知函数f(x)的单调递增区间是(0,1),同理, 得知函数f(x)的单调递减区间是(1,2),所以f(1)=ln 2-14为函数f(x)的极大值.又因为f(0)=0,f(2)=ln 3-1>0,f(1)>f(2),所以,f(0)=0为函数f(x)在[0,2]上的最小值,f(1)=ln 2-14为函数f(x)在[0,2]上的最大值.

  【点拨】求函数f(x)在某闭区间[a,b]上的最值,首先需求函数f(x)在开区间(a,b)内的极值,然后,将f(x)的各个极值与f(x)在闭区间上的端点的函数值f(a)、f(b)比较,才能得出函数f(x)在[a,b]上的最值.

  【变式训练3】(20xx江苏)f(x)=ax3-3x+1对x∈[-1,1]总有f(x)≥0成立,则a= .

  【解析】若x=0,则无论a为 何值,f(x)≥0恒成立.

  当x∈(0,1]时,f(x)≥0可以化为a≥3x2-1x3,

  设g(x)=3x2-1x3,则g′(x)=3(1-2x)x4,

  x∈(0,12)时,g′(x)>0,x∈(12,1]时,g′(x)<0.

  因此g(x)max=g(12)=4,所以a≥4.

  当x∈[-1,0)时,f(x)≥0可以化为

  a≤3x2-1x3,此时g′(x)=3(1-2x)x4>0,

  g(x)min=g(-1)=4,所以a≤4.

  综上可知,a=4.

  总结提高

  1.求函数单调区间的步骤是:

  (1)确定函数f(x)的定义域D;

  (2)求导数f′(x);

  (3)根据f′(x)>0,且x∈D,求得函数f(x)的单调递增区间;根据f′(x)<0,且x∈D,求得函数f(x)的单调递减区间.

  2.求函数极值的步骤是:

  (1)求导数f′(x);

  (2)求方程f′(x)=0的根;

  (3)判断f′(x)在方程根左右的值的符号,确定f(x)在这个根处取极大值还是取极小值.

  3.求函数最值的步骤是:

  先求f(x)在(a,b)内的极值;再将f(x)的各极值与端点处的函数值f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值.

高三数学教案5

  一、教学内容分析

  本小节是普通高中课程标准实验教科书数学5(必修)第三章第3小节,主要内容是利用平面区域体现二元一次不等式(组)的解集;借助图解法解决在线性约束条件下的二元线性目标函数的最值与解问题;运用线性规划知识解决一些简单的实际问题(如资源利用,人力调配,生产安排等)。突出体现了优化思想,与数形结合的思想。本小节是利用数学知识解决实际问题的典例,它体现了数学源于生活而用于生活的特性。

  二、学生学习情况分析

  本小节内容建立在学生学习了一元不等式(组)及其应用、直线与方程的基础之上,学生对于将实际问题转化为数学问题,数形结合思想有所了解。但从数学知识上看学生对于涉及多个已知数据、多个字母变量,多个不等关系的知识接触尚少,从数学方法上看,学生对于图解法还缺少认识,对数形结合的思想方法的掌握还需时日,而这些都将成为学生学习中的难点。

  三、设计思想

  以问题为载体,以学生为主体,以探究归纳为主要手段,以问题解决为目的,以多媒体为重要工具,激发学生的动手、观察、思考、猜想探究的兴趣。注重引导学生充分体验“从实际问题到数学问题”的数学建模过程,体会“从具体到一般”的抽象思维过程,从“特殊到一般”的探究新知的过程;提高学生应用“数形结合”的思想方法解题的能力;培养学生的分析问题、解决问题的能力。

  四、教学目标

  1、知识与技能:了解二元一次不等式(组)的概念,掌握用平面区域刻画二元一次不等式(组)的方法;了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行域和解等概念;理解线性规划问题的图解法;会利用图解法求线性目标函数的最值与相应解;

  2、过程与方法:从实际问题中抽象出简单的线性规划问题,提高学生的数学建模能力;在探究的过程中让学生体验到数学活动中充满着探索与创造,培养学生的数据分析能力、化归能力、探索能力、合情推理能力;

  3、情态与价值:在应用图解法解题的过程中,培养学生的化归能力与运用数形结合思想的能力;体会线性规划的基本思想,培养学生的数学应用意识;体验数学来源于生活而服务于生活的特性。

  五、教学重点和难点

  重点:从实际问题中抽象出二元一次不等式(组),用平面区域刻画二元一次不等式组的解集及用图解法解简单的二元线性规划问题;

  难点:二元一次不等式所表示的平面区域的探究,从实际情境中抽象出数学问题的过程探究,简单的二元线性规划问题的图解法的探究。

  六、教学基本流程

  第一课时,利用生动的情景激起学生求知的__,从中抽象出数学问题,引出二元一次不等式(组)的基本概念,并为线性规划问题的引出埋下伏笔。通过学生的自主探究,分类讨论,大胆猜想,细心求证,得出二元一次不等式所表示的.平面区域,从而突破本小节的第一个难点;通过例1、例2的讨论与求解引导学生归纳出画二元一次不等式(组)所表示的平面区域的具体解答步骤(直线定界,特殊点定域);最后通过练习加以巩固。

  第二课时,重现引例,在学生的回顾、探讨中解决引例中的可用方案问题,并由此归纳总结出从实际问题中抽象出数学问题的基本过程:理清数据关系(列表)→设立决策变量→建立数学关系式→画出平面区域。让学生对例3、例4进行分析与讨论进一步完善这一过程,突破本小节的第二个难点。

  第三课时,设计情景,借助前两个课时所学,设立决策变量,画出平面区域并引出新的问题,从中引出线性规划的相关概念,并让学生思考探究,利用特殊值进行猜测,找到方案;再引导学生对目标函数进行变形转化,利用直线的图象对上述问题进行几何探究,把最值问题转化为截距问题,通过几何方法对引例做出完美的解答;回顾整个探究过程,让学生在讨论中达成共识,总结出简单线性规划问题的图解法的基本步骤。通过例5的展示让学生从动态的角度感受图解法。最后再现情景1,并对之作出完美的解答。

  第四课时,给出新的引例,让学生体会到线性规划问题的普遍性。让学生讨论分析,对引例给出解答,并综合前三个课时的教学内容,连缀成线,总结出简单线性规划的应用性问题的一般解答步骤,通过例6,例7的分析与展示进一步完善这一过程。总结线性规划的应用性问题的几种类型,让学生更深入的体会到优化理论,更好的认识到数学来源于生活而运用于生活的特点。

高三数学教案6

 本文题目:高三数学教案:三角函数的周期性

  一、学习目标与自我评估

  1 掌握利用单位圆的几何方法作函数 的图象

  2 结合 的图象及函数周期性的定义了解三角函数的周期性,及最小正周期

  3 会用代数方法求 等函数的周期

  4 理解周期性的几何意义

  二、学习重点与难点

  周期函数的概念, 周期的求解。

  三、学法指导

  1、 是周期函数是指对定义域中所有 都有

  ,即 应是恒等式。

  2、周期函数一定会有周期,但不一定存在最小正周期。

  四、学习活动与意义建构

  五、重点与难点探究

  例1、若钟摆的高度 与时间 之间的函数关系如图所示

  (1)求该函数的周期;

  (2)求 时钟摆的高度。

  例2、求下列函数的周期。

  (1) (2)

  总结:(1)函数 (其中 均为常数,且

  的周期T= 。

  (2)函数 (其中 均为常数,且

  的周期T= 。

  例3、求证: 的周期为 。

  例4、(1)研究 和 函数的图象,分析其周期性。

  (2)求证: 的周期为 (其中 均为常数,

  且

  总结:函数 (其中 均为常数,且

  的`周期T= 。

  例5、(1)求 的周期。

  (2)已知 满足 ,求证: 是周期函数

  课后思考:能否利用单位圆作函数 的图象。

  六、作业:

  七、自主体验与运用

  1、函数 的周期为 ( )

  A、 B、 C、 D、

  2、函数 的最小正周期是 ( )

  A、 B、 C、 D、

  3、函数 的最小正周期是 ( )

  A、 B、 C、 D、

  4、函数 的周期是 ( )

  A、 B、 C、 D、

  5、设 是定义域为R,最小正周期为 的函数,

  若 ,则 的值等于 ()

  A、1 B、 C、0 D、

  6、函数 的最小正周期是 ,则

  7、已知函数 的最小正周期不大于2,则正整数

  的最小值是

  8、求函数 的最小正周期为T,且 ,则正整数

  的最大值是

  9、已知函数 是周期为6的奇函数,且 则

  10、若函数 ,则

  11、用周期的定义分析 的周期。

  12、已知函数 ,如果使 的周期在 内,求

  正整数 的值

  13、一机械振动中,某质子离开平衡位置的位移 与时间 之间的

  函数关系如图所示:

  (1) 求该函数的周期;

  (2) 求 时,该质点离开平衡位置的位移。

  14、已知 是定义在R上的函数,且对任意 有

  成立,

  (1) 证明: 是周期函数;

  (2) 若 求 的值。

高三数学教案7

  教学目标

  理解数列的概念,掌握数列的运用

  教学重难点

  理解数列的概念,掌握数列的运用

  教学过程

  【知识点精讲】

  1、数列:按照一定次序排列的.一列数(与顺序有关)

  2、通项公式:数列的第n项an与n之间的函数关系用一个公式来表示an=f(n)。

  (通项公式不)

  3、数列的表示:

  (1)列举法:如1,3,5,7,9……;

  (2)图解法:由(n,an)点构成;

  (3)解析法:用通项公式表示,如an=2n+1

  (4)递推法:用前n项的值与它相邻的项之间的关系表示各项,如a1=1,an=1+2an-1

  4、数列分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,xx数列

  5、任意数列{an}的前n项和的性质

高三数学教案8

  1.导数概念及其几何意义

  (1)了解导数概念的实际背景;

  (2)理解导数的几何意义.

  2.导数的运算

  (1)能根据导数定义,求函数y=c(c为常数),y=x,y=x2,y=x3,y= ,y= 的导数;

  (2)能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数.

  3.导数在研究函数中的应用

  (1)了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次);

  (2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).

  4.生活中的优化问题

  会利用导数解决某些实际问题.

  5.定积分与微积分基本定理

  (1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念;

  (2)了解微积分基本定理的含义. 本章重点:

  1.导数的概念;

  2.利用导数求切线的斜率;

  3.利用导数判断函数单调性或求单调区间;

  4.利用导数求极值或最值;

  5.利用导数求实际问题最优解.

  本章难点:导数的综合应用. 导数与定积分是微积分的核心概念之一,也是中学选学内容中较为重要的知识之一.由于其应用的广泛性,为我们解决有关函数、数列问题提供了更一般、更有效的方法.因此,本章知识在高考题中常在函数、数列等有关最值不等式问题中有所体现,既考查数形结合思想,分类讨论思想,也考查学生灵活运用所学知识和方法的能力.考题可能以选择题或填空题的形式来考查导数与定积分的基本运算与简单的几何意义,而以解答 题的形式来综合考查学生的分析问题和解决问题的能力.

  知识网络

  3 .1 导数的概念与运算

  典例精析

  题型一 导数 的概念

  【例1】 已知函数f(x)=2ln 3x+8x,

  求 f(1-2Δx)-f(1)Δx的值.

  【解析】由导数的定义知:

  f(1-2Δx)-f(1)Δx=-2 f(1-2Δx)-f(1)-2Δx=-2f′(1)=-20.

  【点拨】导数的实质是求函数值相对于自变量的.变化率,即求当Δx→0时, 平均变化率ΔyΔx的极限.

  【变式训练1】某市在一次降雨过程中,降雨量y(mm)与时间t(min)的函数关系可以近似地表示为f(t)=t2100,则在时刻t=10 min的降雨强度为( )

  A.15 mm/min B.14 mm/min

  C.12 mm/min D.1 mm/min

  【解析】选A.

  题型二 求导函数

  【例2】 求下列函数的导数.

  (1)y=ln(x+1+x2);

  (2)y=(x2-2x+3)e2x;

  (3)y=3x1-x.

  【解析】运用求导数公式及复合函数求导数法则.

  (1)y′=1x+1+x2(x+1+x2)′

  =1x+1+x2(1+x1+x2)=11+x2.

  (2)y′=(2x-2)e2x+2(x2-2x+3)e2x

  =2(x2-x+2)e2x.

  (3)y′=13(x1-x 1-x+x(1-x)2

  =13(x1-x 1(1-x)2

  =13x (1-x)

  【变式训练2】如下图,函数f(x)的图象是折线段ABC,其中A、B、C的坐标分别为(0,4),(2,0),(6,4),则f(f(0))= ; f(1+Δx)-f(1)Δx= (用数字作答).

  【解析】f(0)=4,f(f(0))=f(4)=2,

  由导数定义 f(1+Δx)-f(1)Δx=f′(1).

  当0≤x≤2时,f(x)=4-2x,f′(x)=-2,f′(1)=-2.

  题型三 利用导数求切线的斜率

  【例3】 已知曲线C:y=x3-3x2+2x, 直线l:y=kx,且l与C切于点P(x0,y0) (x0≠0),求直线l的方程及切点坐标.

  【解析】由l过原点,知k=y0x0 (x0≠0),又点P(x0,y0) 在曲线C上,y0=x30-3x20+2x0,

  所以 y0x0=x20-3x0+2.

  而y′=3x2-6x+2,k=3x20-6x0+2.

  又 k=y0x0,

  所以3x20-6x0+2=x20-3x0+2,其中x0≠0,

  解得x0=32.

  所以y0=-38,所以k=y0x0=-14,

  所以直线l的方程为y=-14x,切点坐标为(32,-38).

  【点拨】利用切点在曲线上,又曲线在切点处的切线的斜率为曲线在该点处的导数来列方程,即可求得切点的坐标.

  【变式训练3】若函数y=x3-3x+4的切线经过点(-2,2),求此切线方程.

  【解析】设切点为P(x0,y0),则由

  y′=3x2-3得切线的斜率为k=3x20-3.

  所以函数y=x3-3x+4在P(x0,y0)处的切线方程为

  y-y0=(3x20-3)(x-x0).

  又切线经过点(-2,2),得

  2-y0=(3x20-3)(-2-x0),①

  而切点在曲线上,得y0=x30-3x0+4, ②

  由①②解得x0=1或x0=-2.

  则切线方程为y=2 或 9x-y+20=0.

  总结提高

  1.函数y=f(x)在x=x0处的导数通常有以下两种求法:

  (1) 导数的定义,即求 ΔyΔx= f(x0+Δx)-f(x0)Δx的值;

  (2)先求导函数f′(x),再将x=x0的值代入,即得f′(x0)的值.

  2.求y=f(x)的导函数的几种方法:

  (1)利用常见函数的导数公式;

  (2)利用四则运算的导数公式;

  (3)利用复合函数的求导方法.

  3.导数的几何意义:函数y=f(x)在x=x0处的导数f′(x0),就是函数y=f(x)的曲线在点P(x0,y0)处的切线的斜率.

高三数学教案9

  根据学科特点,结合我校数学教学的实际情况制定以下教学计划,第二学期高三数学教学计划。

  一、教学内容 高中数学所有内容:

  抓基础知识和基本技能,抓数学的通性通法,即教材与课程目标中要求我们把握的数学对象的基本性质,处理数学问题基本的、常用的数学思想方法,如归纳、演绎、分析、综合、分类讨论、数形结合等。提高学生的思维品质,以不变应万变,使数学学科的复习更加高效优质。研究《考试说明》,全面掌握教材知识,按照考试说明的要求进行全面复习。把握课本是关键,夯实基础是我们重要工作,提高学生的解题能力是我们目标。研究《课程标准》和《教材》,既要关心《课程标准》中调整的内容及变化的要求,又要重视今年数学不同版本《考试说明》的比较。结合上一年的新课改区高考数学评价报告,对《课程标准》进行横向和纵向的分析,探求命题的变化规律。

  二、学情分析:

  我今年教授两个班的数学:(17)班和(18)班,经过与同组的其他老师商讨后,打算第一轮20xx年2月底;第二轮从20xx年2月底至5月上旬结束;第三轮从20xx年5月上旬至5月底结束。

  (一)同备课组老师之间加强研究

  1、研究《课程标准》、参照周边省份20xx年《考试说明》,明确复习教学要求。

  2、研究高中数学教材。

  处理好几种关系:课标、考纲与教材的关系;教材与教辅资料的关系;重视基础知识与培养能力的关系。

  3、研究08年新课程地区高考试题,把握考试趋势。

  特别是山东、广东、江苏、海南、宁夏等课改地区的试卷。

  4、研究高考信息,关注考试动向。

  及时了解09高考动态,适时调整复习方案。

  5、研究本校数学教学情况、尤其是本届高三学生的学情。

  有的放矢地制订切实可行的校本复习教学计划。

  (一)重视课本,夯实基础,建立良好知识结构和认知结构体系 课本是考试内容的载体,是高考命题的依据,也是学生智能的生长点,是最有参考价值的资料。

  (二)提升能力,适度创新 考查能力是高考的.重点和永恒主题。

  教育部已明确指出高考从“以知识立意命题”转向“以能力立意命题”。

  (三)强化数学思想方法 数学不仅仅是一种重要的工具,更重要的是一种思维模式,一种思想。

  注重对数学思想方法的考查也是高考数学命题的显著特点之一。

  数学思想方法是对数学知识最高层次上的概括提炼,它蕴涵于数学知识的发生、发展和应用过程中,能够迁移且广泛应用于相关科学和社会生活,教学工作计划《第二学期高三数学教学计划》。

  在复习备考中,要把数学思想方法渗透到每一章、每一节、每一课、每一套试题中去,任何一道精心编拟的数学试题,均蕴涵了极其丰富的数学思想方法,如果注意渗透,适时讲解、反复强调,学生会深入于心,形成良好的思维品格,考试时才会思如泉涌、驾轻就熟,数学思想方法贯穿于整个高中数学的始终,因此在进入高三复习时就需不断利用这些思想方法去处理实际问题,而并非只在高三复习将结束时去讲一两个专题了事。

  (四)强化思维过程,提高解题质量 数学基础知识的学习要充分重视知识的形成过程,解数学题要着重研究解题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,注意多题一解、一题多解和一题多变。

  多题一解有利于培养学生的求同思维;一题多解有利于培养学生的求异思维;一题多变有利于培养学生思维的灵活性与深刻性。

  在分析解决问题的过程中既构建知识的横向联系,又养成学生多角度思考问题的习惯。

  (五)认真总结每一次测试的得失,提高试卷的讲评效果 试卷讲评要有科学性、针对性、辐射性。

  讲评不是简单的公布正确答案,一是帮学生分析探求解题思路,二是分析错误原因,吸取教训,三是适当变通、联想、拓展、延伸,以例及类,探求规律。还可横向比较,与其他班级比较,寻找个人教学的薄弱环节。根据所教学生实际有针对性地组题进行强化训练,抓基础题,得到基础分对大部分学校而言就是高考成功,这已是不争的共识。第二轮专题过关,对于高考数学的复习,应在一轮系统学习的基础上,利用专题复习,更能提高数学备考的针对性和有效性。在这一阶段,锻炼学生的综合能力与应试技巧,不要重视知识结构的先后次序,需配合着专题的学习,提高学生采用“配方法、待定系数法、数形结合,分类讨论,换元”等方法解决数学问题的能力,同时针对选择、填空的特色,学习一些解题的特殊技巧、方法,以提高在高考考试中的对时间的掌控力。第三轮综合模拟,在前两轮复习的基础上,为了增强数学备考的针对性和应试功能,做一定量的高考模拟试题是必须的,也是十分有效的。

  四、该阶段需要解决的问题是:

  1、强化知识的综合性和交汇性,巩固方法的选择性和灵活性。

  2、检查复习的知识疏漏点和解题易错点,探索解题的规律。

  3、检验知识网络的生成过程。

  4、领会数学思想方法在解答一些高考真题和新颖的模拟试题时的工具性。

  五、在有序做好复习工作的同时注意一下几点:

  (1)从班级实际出发,我要帮助学生切实做到对基础训练限时完成,加强运算能力的训练,严格答题的规范化,如小括号、中括号等,特别是对那些书写“像雾像雨又像风”的学生要加强指导,确保基本得分。

  (2)在考试的方法和策略上做好指导工作,如心理问题的疏导,考试时间的合理安排等等。

  (3)与备课组其他老师保持统一,对内协作,对外竞争。自己多做研究工作,如仔细研读订阅的杂志,研究典型试题,把握高考走势。

  (4)做到“有练必改,有改必评,有评必纠”。

  (5)课内面向大多数同学,课外抓好优等生和边缘生,尤其是边缘生。

  班级是一个集体,我们的目标是“水涨船高”,而不是“水落石出”。

  (6)要改变教学方式,努力学习和实践我校总结推出的“221”模式。

  教学是一门艺术,艺术是无止境的,要一点天份,更要勤奋。

  (7)教研组团队合作 虚心学习别人的优点,博采众长,对工作是很有利的。

  (8)平等对待学生,关心每一位学生的成长,宗旨是教出来的学生不一定都很优秀,但肯定每一位都有进步;让更多的学生喜欢数学。

高三数学教案10

  教学目标:

  1、知识与技能:

  1)了解导数概念的实际背景;

  2)理解导数的概念、掌握简单函数导数符号表示和基本导数求解方法;

  3)理解导数的几何意义;

  4)能进行简单的导数四则运算。

  2、过程与方法:

  先理解导数概念背景,培养观察问题的能力;再掌握定义和几何意义,培养转化问题的能力;最后求切线方程及运算,培养解决问题的能力。

  3、情态及价值观;

  让学生感受数学与生活之间的联系,体会数学的美,激发学生学习兴趣与主动性。

  教学重点:

  1、导数的.求解方法和过程;

  2、导数公式及运算法则的熟练运用。

  教学难点:

  1、导数概念及其几何意义的理解;

  2、数形结合思想的灵活运用。

  教学课型:复习课(高三一轮)

  教学课时:约1课时

高三数学教案11

  一、教材与学情分析

  《随机抽样》是人教版职教新教材《数学(必修)》下册第六章第一节的内容,“简单随机抽样”是“随机抽样”的基础,“随机抽样”又是“统计学‘的基础,因此,在“统计学”中,“简单随机抽样”是基础的基础针对这样的情况,我做了如下的教学设想。

  二、教学设想

  (一)教学目标:

  (1)理解抽样的必要性,简单随机抽样的概念,掌握简单随机抽样的两种方法;

  (2)通过实例分析、解决,体验简单随机抽样的科学性及其方法的可靠性,培养分析问题,解决问题的能力;

  (3)通过身边事例研究,体会抽样调查在生活中的应用,培养抽样思考问题意识,养成良好的个性品质。

  (二)教学重点、难点

  重点:掌握简单随机抽样常见的两种方法(抽签法、随机数表法)

  难点:理解简单随机抽样的科学性,以及由此推断结论的可靠性

  为了突出重点,突破难点,达到预期的教学目标,我再从教法、学法上谈谈我的教学思路及设想。

  下面我再具体谈谈教学实施过程,分四步完成。

  三、教学过程

  (一)设置情境,提出问题

  〈屏幕出示〉例1:请问下列调查宜“普查”还是“抽样”调查?

  A、一锅水饺的味道

  B、旅客上飞机前的安全检查

  C、一批炮弹的杀伤半径

  D、一批彩电的质量情况

  E、美国总统的民意支持率

  学生讨论后,教师指出生活中处处有“抽样”,并板书课题——XXXX抽样

  「设计意图」

  生活中处处有“抽样”调查,明确学习“抽样”的必要性。

  (二)主动探究,构建新知

  〈屏幕出示〉例2:语文老师为了了解电(1)班同学对某首诗的背诵情况,应采用下列哪种抽查方式?为什么?

  A、在班级12名班委名单中逐个抽查5位同学进行背诵

  B、在班级45名同学中逐一抽查10位同学进行背诵

  先让学生分析、选择B后,师生一起归纳其特征:

  (1)不放回逐一抽样,

  (2)抽样有代表性(个体被抽到可能性相等),

  学生体验B种抽样的科学性后,教师指出这是简单随机抽样,并复习初中讲过的有关概念,最后教师补充板书课题——(简单随机)抽样及其定义。

  从例1、例2中的正反两方面,让学生体验随机抽样的科学性。这是突破教学难点的'重要环节之一。

  复习基本概念,如“总体”、“个体”、“样本”、“样本容量”等。

  〈屏幕出示〉例4我们班有44名学生,现从中抽出5名学生去参加学生座谈会,要使每名学生的机会均等,我们应该怎么做?谈谈你的想法。

  先让学生独立思考,然后分小组合作学习,最后各小组推荐一位同学发言,最后师生一起归纳“抽签法”步骤:

  (1)编号制签

  (2)搅拌均匀

  (3)逐个不放回抽取n次。教师板书上面步骤。

  请一位同学说说例3采用“抽签法”的实施步骤。

  「设计意图」

  1、反馈练习落实知识点突出重点。

  2、体会“抽签法”具有“简单、易行”的优点。

  〈屏幕出示〉例5、第07374期特等奖号码为08+25+09+21+32+27+13,本期销售金额19872409元,中奖金额500万。

  提问:特等奖号码如何确定呢?彩票中奖号码适合用抽签法确定吗?

  让学生观看观看电视摇奖过程,分析抽签法的局限性,从而引入随机数表法。教师出示一份随机数表,并介绍随机数表,强调数表上的数字都是随机的,各个数字出现的可能性均等,结合上例让学生讨论随机数表法的步骤,最后师生一起归纳步骤:

  (1)编号

  (2)在随机数表上确定起始位置

  (3)取数。教师板书上面步骤。

  请一位同学说说例3采用“随机数表法”的实施步骤。

高三数学教案12

  内容提要:本文把常见的排列问题归纳成三种典型问题,并在排列的一般规定性下,对每一种类型的问题通过典型例题归纳出相应的解决方案,并附以近年的高考原题及解析,使我们对排列问题的认识更深入本质,对排列问题的解决更有章法可寻。

  关键词: 特殊优先,大元素,捆绑法,插空法,等机率法

  排列问题的应用题是学生学习的难点,也是高考的必考内容,笔者在教学中尝试将排列

  问题归纳为三种类型来解决:

  下面就每一种题型结合例题总结其特点和解法,并附以近年的高考原题供读者参研。

  一、能排不能排排列问题(即特殊元素在特殊位置上有特别要求的排列问题)

  解决此类问题的关键是特殊元素或特殊位置优先。或使用间接法。

  例1:(1)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?

  (2)7位同学站成一排,甲、乙只能站在两端的排法共有多少种?

  (3)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?

  (4)7位同学站成一排,其中甲不能在排头、乙不能站排尾的排法共有多少种?

  解析:

  (1)先考虑甲站在中间有1种方法,再在余下的6个位置排另外6位同学,共 种方法;

  (2)先考虑甲、乙站在两端的排法有 种,再在余下的5个位置排另外5位同学的排法有 种,共 种方法;

  (3) 先考虑在除两端外的5个位置选2个安排甲、乙有 种,再在余下的5个位置排另外5位同学排法有 种,共 种方法;本题也可考虑特殊位置优先,即两端的排法有 ,中间5个位置有 种,共 种方法;

  (4)分两类乙站在排头和乙不站在排头,乙站在排头的排法共有 种,乙不站在排头的排法总数为:先在除甲、乙外的5人中选1人安排在排头的方法有 种,中间5个位置选1个安排乙的方法有 ,再在余下的5个位置排另外5位同学的排法有 ,故共有 种方法;本题也可考虑间接法,总排法为 ,不符合条件的甲在排头和乙站排尾的排法均为 ,但这两种情况均包含了甲在排头和乙站排尾的情况,故共有 种。

  例2。某天课表共六节课,要排政治、语文、数学、物理、化学、体育共六门课程,如果第一节不排体育,最后一节不排数学,共有多少种不同的排课方法?

  解法1:对特殊元素数学和体育进行分类解决

  (1)数学、体育均不排在第一节和第六节,有 种,其他有 种,共有 种;

  (2)数学排在第一节、体育排在第六节有一种,其他有 种,共有 种;

  (3)数学排在第一节、体育不在第六节有 种,其他有 种,共有 种;

  (4)数学不排在第一节、体育排在第六节有 种,其他有 种,共有 种;

  所以符合条件的排法共有 种

  解法2:对特殊位置第一节和第六节进行分类解决

  (1)第一节和第六节均不排数学、体育有 种,其他有 种,共有 种;

  (2)第一节排数学、第六节排体育有一种,其他有 种,共有 种;

  (3)第一节排数学、第六节不排体育有 种,其他有 种,共有 种;

  (4)第一节不排数学、第六节排体育有 种,其他有 种,共有 种;

  所以符合条件的排法共有 种。

  解法3:本题也可采用间接排除法解决

  不考虑任何限制条件共有 种排法,不符合题目要求的排法有:(1)数学排在第六节有 种;(2)体育排在第一节有 种;考虑到这两种情况均包含了数学排在第六节和体育排在第一节的情况 种所以符合条件的排法共有 种

  附:

  1、(20xx北京卷)五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有( )

  (A) 种 (B) 种 (C) 种 (D) 种

  解析:本题在解答时将五个不同的子项目理解为5个位置,五个工程队相当于5个不同的元素,这时问题可归结为能排不能排排列问题(即特殊元素在特殊位置上有特别要求的排列问题),先排甲工程队有 ,其它4个元素在4个位置上的排法为 种,总方案为 种。故选(B)。

  2、(20xx全国卷Ⅱ)在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有 个。

  解析:本题在解答时只须考虑个位和千位这两个特殊位置的限制,个位为1、2、3、4中的某一个有4种方法,千位在余下的4个非0数中选择也有4种方法,十位和百位方法数为 种,故方法总数为 种。

  3、(20xx福建卷)从6人中选出4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有 ( )

  A、300种 B、240种 C、144种 D、96种

  解析:本题在解答时只须考虑巴黎这个特殊位置的要求有4种方法,其他3个城市的排法看作标有这3个城市的3个签在5个位置(5个人)中的排列有 种,故方法总数为 种。故选(B)。

  上述问题归结为能排不能排排列问题,从特殊元素和特殊位置入手解决,抓住了问题的本质,使问题清晰明了,解决起来顺畅自然。

  二、相邻不相邻排列问题(即某两或某些元素不能相邻的排列问题)

  相邻排列问题一般采用大元素法,即将相邻的元素捆绑作为一个元素,再与其他元素进行排列,解答时注意释放大元素,也叫捆绑法。不相邻排列问题(即某两或某些元素不能相邻的排列问题)一般采用插空法。

  例3:7位同学站成一排,

  (1)甲、乙和丙三同学必须相邻的排法共有多少种?

  (2)甲、乙和丙三名同学都不能相邻的排法共有多少种?

  (3)甲、乙两同学间恰好间隔2人的排法共有多少种?

  解析:

  (1)第一步、将甲、乙和丙三人捆绑成一个大元素与另外4人的排列为 种,

  第二步、释放大元素,即甲、乙和丙在捆绑成的大元素内的排法有 种,所以共 种;

  (2)第一步、先排除甲、乙和丙之外4人共 种方法,第二步、甲、乙和丙三人排在4人排好后产生的5个空挡中的任何3个都符合要求,排法有 种,所以共有 种;(3)先排甲、乙,有 种排法,甲、乙两人中间插入的2人是从其余5人中选,有 种排法,将已经排好的4人当作一个大元素作为新人参加下一轮4人组的.排列,有 种排法,所以总的排法共有 种。

  附:1、(20xx辽宁卷)用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1和2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有 个。(用数字作答)

  解析:第一步、将1和2捆绑成一个大元素,3和4捆绑成一个大元素,5和6捆绑成一个大元素,第二步、排列这三个大元素,第三步、在这三个大元素排好后产生的4个空挡中的任何2个排列7和8,第四步、释放每个大元素(即大元素内的每个小元素在捆绑成的大元素内部排列),所以共有 个数。

  2、 (20xx。 重庆理)某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,

  二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰

  好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为 ( )

  A、B、C、D。

  解析:符合要求的基本事件(排法)共有:第一步、将一班的3位同学捆绑成一个大元素,第二步、这个大元素与其它班的5位同学共6个元素的全排列,第三步、在这个大元素与其它班的5位同学共6个元素的全排列排好后产生的7个空挡中排列二班的2位同学,第四步、释放一班的3位同学捆绑成的大元素,所以共有 个;而基本事件总数为 个,所以符合条件的概率为 。故选( B )。

  3、(20xx京春理)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目。如果将这两个节目插入原节目单中,那么不同插法的种数为( )

  A、42 B、30 C、20 D、12

  解析:分两类:增加的两个新节目不相邻和相邻,两个新节目不相邻采用插空法,在5个节目产生的6个空挡排列共有 种,将两个新节目捆绑作为一个元素叉入5个节目产生的6个空挡中的一个位置,再释放两个新节目 捆绑成的大元素,共有 种,再将两类方法数相加得42种方法。故选( A )。

  三、机会均等排列问题(即某两或某些元素按特定的方式或顺序排列的排列问题)

  解决机会均等排列问题通常是先对所有元素进行全排列,再借助等可能转化,即乘以符合要求的某两(或某些)元素按特定的方式或顺序排列的排法占它们(某两(或某些)元素)全排列的比例,称为等机率法或将特定顺序的排列问题理解为组合问题加以解决。

  例4、 7位同学站成一排。

  (1)甲必须站在乙的左边?

  (2)甲、乙和丙三个同学由左到右排列?

  解析:

  (1)7位同学站成一排总的排法共 种,包括甲、乙在内的7位同学排队只有甲站在乙的左边和甲站在乙的右边两类,它们的机会是均等的,故满足要求的排法为 ,本题也可将特定顺序的排列问题理解为组合问题加以解决,即先在7个位置中选出2个位置安排甲、乙, 由于甲在乙的左边共有 种,再将其余5人在余下的5个位置排列有 种,得排法数为 种;

  (2)参见(1)的分析得 (或 )。

  本文通过较为清晰的脉络把排列问题分为三种类型,使我们对排列问题有了比较系统的认识。但由于排列问题种类繁多,总会有些问题不能囊括其中,也一定存在许多不足,希望读者能和我一起研究完善。

高三数学教案13

  一. 教学设计理念

  数学教学是数学活动的教学,是师生交往、互动、共同发展的过程。有效的数学教学应当从学生的生活经验和已有的知识水平出发,向他们提供充分地从事数学活动的机会,在活动中激发学生的学习潜能,促使学生在自主探索与合作交流的过程中真正理解和掌握基本的数学知识、技能和思想方法。提高解决问题的能力,并进一步使学生在意志力、自信心、理性精神等情感、态度方面都得到良好的发展。

  二.对教学内容的认识

  1.教材的地位和作用

  本节课是在学生学习过“一百万有多大”之后,继续研究日常生活中所存在的较小的数,进一步发展学生的数感,并在学完负整数指数幂的运算性质的基础上,尝试用科学记数法来表示百万分之一等较小的数。学生具备良好的数感,不仅对于其正确理解数据所要表达的信息具有重要意义,而且对于发展学生的统计观念也具有重要的价值。

  2.教材处理

  基于设计理念,我在尊重教材的基础上,适时添加了“银河系的直径”这一问题,以向学生渗透辩证的研究问题的思想方法,帮助学生正确认识百万分之一。

  通过本节课的教学,我力争达到以下教学目标:

  3. 教学目标

  (1)知识技能:

  借助自身熟悉的`事物,从不同角度来感受百万分之一,发展学生的数感。能运用科学记数法来表示百万分之一等较小的数。

  (2)数学思考:

  通过对较小的数的问题的学习,寻求科学的记数方法。

  (3)解决问题:

  能解决与科学记数有关的实际问题。

  (4)情感、态度、价值观:

  使学生体会科学记数法的科学性和辩证的研究问题的思想方法。培养学生的合作交流意识与探究精神。

  4. 教学重点与难点

  根据教学目标,我确定本节课的重点、难点如下:

  重点:对较小数据的信息做合理的解释和推断,会用科学记数法来表示绝对值较小的数。

  难点:感受较小的数,发展数感。

  三.教法、学法与教学手段

  1.教法、学法:

  本节课的教学对象是七年级的学生,这一年级的学生对于周围世界和社会环境中的实际问题具有越来越强烈的兴趣。他们对于日常生活中一些常见的数据都想尝试着来加以分析和说明,但又缺乏必要的感知较大数据或较小数据的方法及感知这些数据的活动经验。

  因此根据本节课的教学目标、教学内容,及学生的认知特点,教学上以“问题情境——设疑诱导——引导发现——合作交流——形成结论和认识”为主线,采用“引导探究式”的教学方法。学生将主要采用“动手实践——自主探索——合作交流”的学习方法,使学生在直观情境的观察和自主的实践活动中获取知识,并通过合作交流来深化对知识的理解和认识。

  2.教学手段:

  1.采用现代化的教学手段——多媒体教学,能直观、生动地反映问题情境,充分调动学生学习的积极性。

  2.以常见的生活物品为直观教具,丰富了学生感知认识对象的途径,使学生对百万分之一的认识更贴近生活。

  四.教学过程

  (一).复习旧知,铺垫新知

  问题1:光的速度为300 000km/s

  问题2:地球的半径约为6 400km

  问题3:中国的人口约为1300 000 000人

  (十).教学设计说明

  本节课我以贴近学生生活的数据及问题背景为依托,使学生学会用数学的方法来认识百万分之一,丰富了学生对数学的认识,提高了学生应用数学的能力,并为培养学生的终身学习奠定了基础。在授课时相信会有一些预见不到的情况,我将在课堂上根据学生的实际情况做相应的处理。

高三数学教案14

  1.如图,已知直线L: 的右焦点F,且交椭圆C于A、B两点,点A、B在直线 上的射影依次为点D、E。

  (1)若抛物线 的焦点为椭圆C的上顶点,求椭圆C的方程;

  (2)(理)连接AE、BD,试探索当m变化时,直线AE、BD是否相交于一定点N?若交于定点N,请求出N点的坐标,并给予证明;否则说明理由。

  (文)若 为x轴上一点,求证:

  2.如图所示,已知圆 定点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足 ,点N的轨迹为曲线E。

  (1)求曲线E的方程;

  (2)若过定点F(0,2)的直线交曲线E于不同的两点G、H(点G在点F、H之间),且满足 的取值范围。

  3.设椭圆C: 的左焦点为F,上顶点为A,过点A作垂直于AF的直线交椭圆C于另外一点P,交x轴正半轴于点Q, 且

  ⑴求椭圆C的离心率;

  ⑵若过A、Q、F三点的圆恰好与直线

  l: 相切,求椭圆C的方程.

  4.设椭圆 的离心率为e=

  (1)椭圆的左、右焦点分别为F1、F2、A是椭圆上的一点,且点A到此两焦点的距离之和为4,求椭圆的方程.

  (2)求b为何值时,过圆x2+y2=t2上一点M(2, )处的切线交椭圆于Q1、Q2两点,而且OQ1OQ2.

  5.已知曲线 上任意一点P到两个定点F1(- ,0)和F2( ,0)的距离之和为4.

  (1)求曲线 的方程;

  (2)设过(0,-2)的直线 与曲线 交于C、D两点,且 为坐标原点),求直线 的方程.

  6.已知椭圆 的左焦点为F,左、右顶点分别为A、C,上顶点为B.过F、B、C作⊙P,其中圆心P的坐标为(m,n).

  (Ⅰ)当m+n0时,求椭圆离心率的范围;

  (Ⅱ)直线AB与⊙P能否相切?证明你的结论.

  7.有如下结论:圆 上一点 处的切线方程为 ,类比也有结论:椭圆 处的切线方程为 ,过椭圆C: 的右准线l上任意一点M引椭圆C的两条切线,切点为 A、B.

  (1)求证:直线AB恒过一定点;(2)当点M在的纵坐标为1时,求△ABM的面积

  8.已知点P(4,4),圆C: 与椭圆E: 有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.

  (Ⅰ)求m的值与椭圆E的方程;

  (Ⅱ)设Q为椭圆E上的一个动点,求 的取值范围.

  9.椭圆的对称中心在坐标原点,一个顶点为 ,右焦点 与点 的距离为 。

  (1)求椭圆的方程;

  (2)是否存在斜率 的直线 : ,使直线 与椭圆相交于不同的两点 满足 ,若存在,求直线 的倾斜角 ;若不存在,说明理由。

  10.椭圆方程为 的一个顶点为 ,离心率 。

  (1)求椭圆的方程;

  (2)直线 : 与椭圆相交于不同的两点 满足 ,求 。

  11.已知椭圆 的左焦点为F,左右顶点分别为A,C上顶点为B,过F,B,C三点作 ,其中圆心P的坐标为 .

  (1) 若椭圆的离心率 ,求 的方程;

  (2)若 的圆心在直线 上,求椭圆的方程.

  12.已知直线 与曲线 交于不同的两点 , 为坐标原点.

  (Ⅰ)若 ,求证:曲线 是一个圆;

  (Ⅱ)若 ,当 且 时,求曲线 的离心率 的取值范围.

  13.设椭圆 的左、右焦点分别为 、 ,A是椭圆C上的一点,且 ,坐标原点O到直线 的距离为 .

  (1)求椭圆C的方程;

  (2)设Q是椭圆C上的一点,过Q的直线l交x轴于点 ,较y轴于点M,若 ,求直线l的方程.

  14.已知抛物线的顶点在原点,焦点在y轴的负半轴上,过其上一点 的切线方程为 为常数).

  (I)求抛物线方程;

  (II)斜率为 的直线PA与抛物线的另一交点为A,斜率为 的直线PB与抛物线的另一交点为B(A、B两点不同),且满足 ,求证线段PM的中点在y轴上;

  (III)在(II)的条件下,当 时,若P的坐标为(1,-1),求PAB为钝角时点A的纵坐标的取值范围.

  15.已知动点A、B分别在x轴、y轴上,且满足|AB|=2,点P在线段AB上,且

  设点P的轨迹方程为c。

  (1)求点P的轨迹方程C;

  (2)若t=2,点M、N是C上关于原点对称的两个动点(M、N不在坐标轴上),点Q

  坐标为 求△QMN的面积S的最大值。

  16.设 上的两点,

  已知 , ,若 且椭圆的离心率 短轴长为2, 为坐标原点.

  (Ⅰ)求椭圆的方程;

  (Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;

  (Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由

  17.如图,F是椭圆 (a0)的一个焦点,A,B是椭圆的两个顶点,椭圆的离心率为 .点C在x轴上,BCBF,B,C,F三点确定的圆M恰好与直线l1: 相切.

  (Ⅰ)求椭圆的方程:

  (Ⅱ)过点A的直线l2与圆M交于PQ两点,且 ,求直线l2的方程.

  18.如图,椭圆长轴端点为 , 为椭圆中心, 为椭圆的右焦点,且 .

  (1)求椭圆的标准方程;

  (2)记椭圆的上顶点为 ,直线 交椭圆于 两点,问:是否存在直线 ,使点 恰为 的垂心?若存在,求出直线 的方程;若不存在,请说明理由.

  19.如图,已知椭圆的中心在原点,焦点在 轴上,离心率为 ,且经过点 . 直线 交椭圆于 两不同的点.

  20.设 ,点 在 轴上,点 在 轴上,且

  (1)当点 在 轴上运动时,求点 的轨迹 的方程;

  (2)设 是曲线 上的点,且 成等差数列,当 的垂直平分线与 轴交于点 时,求 点坐标.

  21.已知点 是平面上一动点,且满足

  (1)求点 的轨迹 对应的.方程;

  (2)已知点 在曲线 上,过点 作曲线 的两条弦 和 ,且 ,判断:直线 是否过定点?试证明你的结论.

  22.已知椭圆 的中心在坐标原点,焦点在坐标轴上,且经过 、 、 三点.

  (1)求椭圆 的方程:

  (2)若点D为椭圆 上不同于 、 的任意一点, ,当 内切圆的面积最大时。求内切圆圆心的坐标;

  (3)若直线 与椭圆 交于 、 两点,证明直线 与直线 的交点在直线 上.

  23.过直角坐标平面 中的抛物线 的焦点 作一条倾斜角为 的直线与抛物线相交于A,B两点。

  (1)用 表示A,B之间的距离;

  (2)证明: 的大小是与 无关的定值,

  并求出这个值。

  24.设 分别是椭圆C: 的左右焦点

  (1)设椭圆C上的点 到 两点距离之和等于4,写出椭圆C的方程和焦点坐标

  (2)设K是(1)中所得椭圆上的动点,求线段 的中点B的轨迹方程

  (3)设点P是椭圆C 上的任意一点,过原点的直线L与椭圆相交于M,N两点,当直线PM ,PN的斜率都存在,并记为 试探究 的值是否与点P及直线L有关,并证明你的结论。

  25.已知椭圆 的离心率为 ,直线 : 与以原点为圆心、以椭圆 的短半轴长为半径的圆相切.

  (I)求椭圆 的方程;

  (II)设椭圆 的左焦点为 ,右焦点 ,直线 过点 且垂直于椭圆的长轴,动直线 垂直 于点 ,线段 垂直平分线交 于点 ,求点 的轨迹 的方程;

  (III)设 与 轴交于点 ,不同的两点 在 上,且满足 求 的取值范围.

  26.如图所示,已知椭圆 : , 、 为

  其左、右焦点, 为右顶点, 为左准线,过 的直线 : 与椭圆相交于 、

  两点,且有: ( 为椭圆的半焦距)

  (1)求椭圆 的离心率 的最小值;

  (2)若 ,求实数 的取值范围;

  (3)若 , ,

  求证: 、 两点的纵坐标之积为定值;

  27.已知椭圆 的左焦点为 ,左右顶点分别为 ,上顶点为 ,过 三点作圆 ,其中圆心 的坐标为

  (1)当 时,椭圆的离心率的取值范围

  (2)直线 能否和圆 相切?证明你的结论

  28.已知点A(-1,0),B(1,-1)和抛物线. ,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.

  (I)证明: 为定值;

  (II)若△POM的面积为 ,求向量 与 的夹角;

  (Ⅲ) 证明直线PQ恒过一个定点.

  29.已知椭圆C: 上动点 到定点 ,其中 的距离 的最小值为1.

  (1)请确定M点的坐标

  (2)试问是否存在经过M点的直线 ,使 与椭圆C的两个交点A、B满足条件 (O为原点),若存在,求出 的方程,若不存在请说是理由。

  30.已知椭圆 ,直线 与椭圆相交于 两点.

  (Ⅰ)若线段 中点的横坐标是 ,求直线 的方程;

  (Ⅱ)在 轴上是否存在点 ,使 的值与 无关?若存在,求出 的值;若不存在,请说明理由.

  31.直线AB过抛物线 的焦点F,并与其相交于A、B两点。Q是线段AB的中点,M是抛物线的准线与y轴的交点.O是坐标原点.

  (I)求 的取值范围;

  (Ⅱ)过 A、B两点分剐作此撒物线的切线,两切线相交于N点.求证: ∥ ;

  (Ⅲ) 若P是不为1的正整数,当 ,△ABN的面积的取值范围为 时,求该抛物线的方程.

  32.如图,设抛物线 ( )的准线与 轴交于 ,焦点为 ;以 、 为焦点,离心率 的椭圆 与抛物线 在 轴上方的一个交点为 .

  (Ⅰ)当 时,求椭圆的方程及其右准线的方程;

  (Ⅱ)在(Ⅰ)的条件下,直线 经过椭圆 的右焦点 ,与抛物线 交于 、 ,如果以线段 为直径作圆,试判断点 与圆的位置关系,并说明理由;

  (Ⅲ)是否存在实数 ,使得 的边长是连续的自然数,若存在,求出这样的实数 ;若不存在,请说明理由.

  33.已知点 和动点 满足: ,且存在正常数 ,使得 。

  (1)求动点P的轨迹C的方程。

  (2)设直线 与曲线C相交于两点E,F,且与y轴的交点为D。若 求 的值。

  34.已知椭圆 的右准线 与 轴相交于点 ,右焦点 到上顶点的距离为 ,点 是线段 上的一个动点.

  (I)求椭圆的方程;

  (Ⅱ)是否存在过点 且与 轴不垂直的直线 与椭圆交于 、 两点,使得 ,并说明理由.

  35.已知椭圆C: ( .

  (1)若椭圆的长轴长为4,离心率为 ,求椭圆的标准方程;

  (2)在(1)的条件下,设过定点 的直线 与椭圆C交于不同的两点 ,且 为锐角(其中 为坐标原点),求直线 的斜率k的取值范围;

  (3)如图,过原点 任意作两条互相垂直的直线与椭圆 ( )相交于 四点,设原点 到四边形 一边的距离为 ,试求 时 满足的条件.

  36.已知 若过定点 、以 ( )为法向量的直线 与过点 以 为法向量的直线 相交于动点 .

  (1)求直线 和 的方程;

  (2)求直线 和 的斜率之积 的值,并证明必存在两个定点 使得 恒为定值;

  (3)在(2)的条件下,若 是 上的两个动点,且 ,试问当 取最小值时,向量 与 是否平行,并说明理由。

  37.已知点 ,点 (其中 ),直线 、 都是圆 的切线.

  (Ⅰ)若 面积等于6,求过点 的抛物线 的方程;

  (Ⅱ)若点 在 轴右边,求 面积的最小值.

  38.我们知道,判断直线与圆的位置关系可以用圆心到直线的距离进行判别,那么直线与椭圆的位置关系有类似的判别方法吗?请同学们进行研究并完成下面问题。

  (1)设F1、F2是椭圆 的两个焦点,点F1、F2到直线 的距离分别为d1、d2,试求d1d2的值,并判断直线L与椭圆M的位置关系。

  (2)设F1、F2是椭圆 的两个焦点,点F1、F2到直线

  (m、n不同时为0)的距离分别为d1、d2,且直线L与椭圆M相切,试求d1d2的值。

  (3)试写出一个能判断直线与椭圆的位置关系的充要条件,并证明。

  (4)将(3)中得出的结论类比到其它曲线,请同学们给出自己研究的有关结论(不必证明)。

  39.已知点 为抛物线 的焦点,点 是准线 上的动点,直线 交抛物线 于 两点,若点 的纵坐标为 ,点 为准线 与 轴的交点.

  (Ⅰ)求直线 的方程;(Ⅱ)求 的面积 范围;

  (Ⅲ)设 , ,求证 为定值.

  40.已知椭圆 的离心率为 ,直线 : 与以原点为圆心、以椭圆 的短半轴长为半径的圆相切.

  (I)求椭圆 的方程;

  (II)设椭圆 的左焦点为 ,右焦点 ,直线 过点 且垂直于椭圆的长轴,动直线 垂直 于点 ,线段 垂直平分线交 于点 ,求点 的轨迹 的方程;

  (III)设 与 轴交于点 ,不同的两点 在 上,且满足 求 的取值范围.

  41.已知以向量 为方向向量的直线 过点 ,抛物线 : 的顶点关于直线 的对称点在该抛物线的准线上.

  (1)求抛物线 的方程;

  (2)设 、 是抛物线 上的两个动点,过 作平行于 轴的直线 ,直线 与直线 交于点 ,若 ( 为坐标原点, 、 异于点 ),试求点 的轨迹方程。

  42.如图,设抛物线 ( )的准线与 轴交于 ,焦点为 ;以 、 为焦点,离心率 的椭圆 与抛物线 在 轴上方的一个交点为 .

  (Ⅰ)当 时,求椭圆的方程及其右准线的方程;

  (Ⅱ)在(Ⅰ)的条件下,直线 经过椭圆 的右焦点 ,

  与抛物线 交于 、 ,如果以线段 为直径作圆,

  试判断点 与圆的位置关系,并说明理由;

  (Ⅲ)是否存在实数 ,使得 的边长是连续的自然数,若存在,求出这样的实数 ;若不存在,请说明理由.

  43.设椭圆 的一个顶点与抛物线 的焦点重合, 分别是椭圆的左、右焦点,且离心率 且过椭圆右焦点 的直线 与椭圆C交于 两点.

  (Ⅰ)求椭圆C的方程;

  (Ⅱ)是否存在直线 ,使得 .若存在,求出直线 的方程;若不存在,说明理由.

  (Ⅲ)若AB是椭圆C经过原点O的弦, MN AB,求证: 为定值.

  44.设 是抛物线 的焦点,过点M(-1,0)且以 为方向向量的直线顺次交抛物线于 两点。

  (Ⅰ)当 时,若 与 的夹角为 ,求抛物线的方程;

  (Ⅱ)若点 满足 ,证明 为定值,并求此时△ 的面积

  45.已知点 ,点 在 轴上,点 在 轴的正半轴上,点 在直线 上,且满足 .

  (Ⅰ)当点 在 轴上移动时,求点 的轨迹 的方程;

  (Ⅱ)设 、 为轨迹 上两点,且 0, ,求实数 ,

  使 ,且 .

  46.已知椭圆 的右焦点为F,上顶点为A,P为C 上任一点,MN是圆 的一条直径,若与AF平行且在y轴上的截距为 的直线 恰好与圆 相切。

  (1)已知椭圆 的离心率;

  (2)若 的最大值为49,求椭圆C 的方程.

高三数学教案15

  一、指导思想与理论依据

  数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。

  二、教材分析

  三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六)。本节是第一课时,教学内容为公式(二)、(三)、(四)。教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与、、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四)。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。为此本节内容在三角函数中占有非常重要的地位。

  三、学情分析

  本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。

  四、教学目标

  (1)、基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;

  (2)、能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;

  (3)、创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;

  (4)、个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的.本质属性,培养学生的唯物史观。

  五、教学重点和难点

  1、教学重点

  理解并掌握诱导公式。

  2、教学难点

  正确运用诱导公式,求三角函数值,化简三角函数式。

  六、教法学法以及预期效果分析

  “授人以鱼不如授之以鱼”,作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法,如何实现这一目的,要求我们每一位教者苦心钻研、认真探究。下面我从教法、学法、预期效果等三个方面做如下分析。

  1、教法

  数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质。

  在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦。

  2、学法

  “现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情。如何能让学生程度的消化知识,提高学习热情是教者必须思考的问题。

  在本节课的教学过程中,本人引导学生的学法为思考问题、共同探讨、解决问题简单应用、重现探索过程、练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习。

  3、预期效果

  本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题。

【高三数学教案】相关文章:

高三数学教案11-07

人教版高三数学教案11-02

高三数学教案(精选15篇)01-11

高三数学教案15篇11-08

人教版高三数学教案5篇01-16

人教版高三数学教案(5篇)01-16

高三数学教案(集锦15篇)02-17

高三数学教案(汇编15篇)02-17

人教版高三数学教案4篇11-03