八年级数学的教案15篇
作为一名人民教师,有必要进行细致的教案准备工作,编写教案助于积累教学经验,不断提高教学质量。来参考自己需要的教案吧!以下是小编帮大家整理的八年级数学的教案,欢迎阅读与收藏。
八年级数学的教案1
一、教学目标:
1、加深对加权平均数的理解
2、会根据频数分布表求加权平均数,从而解决一些实际问题
3、会用计算器求加权平均数的值
二、重点、难点和难点的突破方法:
1、重点:根据频数分布表求加权平均数
2、难点:根据频数分布表求加权平均数
3、难点的突破方法:
首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。
应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。
为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。
三、例习题的意图分析
1、教材P140探究栏目的意图。
(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。
(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。
这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。
2、教材P140的思考的意图。
(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题
(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。
3、P141利用计算器计算平均值
这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比。一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器。所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单。统计中一些数据较大、较多的计算也变得容易些了。
四、课堂引入
采用教材原有的引入问题,设计的几个问题如下:
(1)、请同学读P140探究问题,依据统计表可以读出哪些信息
(2)、这里的'组中值指什么,它是怎样确定的?
(3)、第二组数据的频数5指什么呢?
(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。
五、随堂练习
1、某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表
所用时间t(分钟)人数
0 0<≤ 6 20 30 40 50 (1)、第二组数据的组中值是多少? (2)、求该班学生平均每天做数学作业所用时间 2、某班40名学生身高情况如下图, 请计算该班学生平均身高 答案1.(1).15. (2)28. 2. 165 六、课后练习: 1、某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表 部门A B C D E F G 人数1 1 2 4 2 2 5 每人创得利润20 5 2.5 2 1.5 1.5 1.2 该公司每人所创年利润的平均数是多少万元? 2、下表是截至到20xx年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得主获奖时的平均年龄? 年龄频数 28≤X<30 4 30≤X<32 3 32≤X<34 8 34≤X<36 7 36≤X<38 9 38≤X<40 11 40≤X<42 2 3、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。 答案:1.约2.95万元2.约29岁3.60.54分贝 一、教学目标 1、认识中位数和众数,并会求出一组数据中的众数和中位数。 2、理解中位数和众数的意义和作用。它们也是数据代表,可以反映一定的数据信息,帮助人们在实际问题中分析并做出决策。 3、会利用中位数、众数分析数据信息做出决策。 二、重点、难点和难点的突破方法: 1、重点:认识中位数、众数这两种数据代表 2、难点:利用中位数、众数分析数据信息做出决策。 3、难点的突破方法: 首先应交待清楚中位数和众数意义和作用: 中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能出现在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势。众数是当一组数据中某一重复出现次数较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少不受极端值的影响。 教学过程中注重双基,一定要使学生能够很好的掌握中位数和众数的求法,求中位数的步骤:⑴将数据由小到大(或由大到小)排列,⑵数清数据个数是奇数还是偶数,如果数据个数为奇数则取中间的数,如果数据个数为偶数,则取中间位置两数的平均值作为中位数。求众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据。 在利用中位数、众数分析实际问题时,应根据具体情况,课堂上教师应多举实例,使同学在分析不同实例中有所体会。 三、例习题的意图分析 1、教材P143的例4的意图 (1)、这个问题的研究对象是一个样本,主要是反映了统计学中常用到一种解决问题的方法:对于数据较多的研究对象,我们可以考察总体中的一个样本,然后由样本的研究结论去估计总体的情况。 (2)、这个例题另一个意图是交待了当数据个数为偶数时,中位数的求法和解题步骤。(因为在前面有介绍中位数求法,这里不再重述) (3)、问题2显然反映学习中位数的意义:它可以估计一个数据占总体的相对位置,说明中位数是统计学中的一个重要的数据代表。 (4)、这个例题再一次体现了统计学知识与实际生活是紧密联系的,所以应鼓励学生学好这部分知识。 2、教材P145例5的意图 (1)、通过例5应使学生明白通常对待销售问题我们要研究的是众数,它代表该型号的产品销售,以便给商家合理的建议。 (2)、例5也交待了众数的求法和解题步骤(由于求法在前面已介绍,这里不再重述) (3)、例5也反映了众数是数据代表的一种。 四、课堂引入 严格的讲教材本节课没有引入的问题,而是在复习和延伸中位数的定义过程中拉开序幕的,本人很同意这种处理方式,教师可以一句话引入新课:前面已经和同学们研究过了平均数的这个数据代表。它在分析数据过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据过程中又起到怎样的'作用。 五、例习题的分析 教材P144例4,从所给的数据可以看到并没有按照从小到大(或从大到小)的顺序排列。因此,首先应将数据重新排列,通过观察会发现共有12个数据,偶数个可以取中间的两个数据146、148,求其平均值,便可得这组数据的中位数。 教材P145例5,由表中第二行可以查到23.5号鞋的频数,因此这组数据的众数可以得到,所提的建议应围绕利于商家获得较大利润提出。 六、随堂练习 1某公司销售部有营销人员15人,销售部为了制定某种商品的销售金额,统计了这15个人的销售量如下(单位:件) 1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150 求这15个销售员该月销量的中位数和众数。 假设销售部负责人把每位营销员的月销售定额定为320件,你认为合理吗?如果不合理,请你制定一个合理的销售定额并说明理由。 2、某商店3、4月份出售某一品牌各种规格的空调,销售台数如表所示: 1匹1.2匹1.5匹2匹 3月12台20台8台4台 4月16台30台14台8台 根据表格回答问题: 商店出售的各种规格空调中,众数是多少? 假如你是经理,现要进货,6月份在有限的资金下进货单位将如何决定? 答案:1. (1)210件、210件(2)不合理。因为15人中有13人的销售额达不到320件(320虽是原始数据的平均数,却不能反映营销人员的一般水平),销售额定为210件合适,因为它既是中位数又是众数,是大部分人能达到的额定。 2. (1)1.2匹(2)通过观察可知1.2匹的销售,所以要多进1.2匹,由于资金有限就要少进2匹空调。 七、课后练习 1.数据8、9、9、8、10、8、99、8、10、7、9、9、8的中位数是,众数是 2.一组数据23、27、20、18、X、12,它的中位数是21,则X的值是. 3.数据92、96、98、100、X的众数是96,则其中位数和平均数分别是( ) A.97、96 B.96、96.4 C.96、97 D.98、97 4.如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是( ) A.24、25 B.23、24 C.25、25 D.23、25 5.随机抽取我市一年(按365天计)中的30天平均气温状况如下表: 温度(℃) -8 -1 7 15 21 24 30 天数3 5 5 7 6 2 2 请你根据上述数据回答问题: (1).该组数据的中位数是什么? (2).若当气温在18℃~25℃为市民“满意温度”,则我市一年中达到市民“满意温度”的大约有多少天? 答案:1. 9;2. 22; 3.B;4.C; 5.(1)15. (2)约97天 一、内容和内容解析 1、内容 正比例函数的概念。 2、内容解析 一次函数是最基本的初等函数,是初中函数学习的重要内容,正比例函数是特殊的一次函数,也是初中学生接触到的第一种函数,要通过对正比例函数内容的学习,为后续类比学习一般一次函数打好基础,了解研究函数的基本套路和方法,积累研究一般一次函数乃至其他各种函数的基本经验。 对正比例函数概念的学习,既要借助具体的函数进一步加深对函数概念的理解,即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的每一个确定的值,另一个变量都有唯一确定的值与之对应,这是理解正比例函数的核心;也要加强对正比例函数基本特征的认识,即根据实际问题构建的函数模型中,函数和自变量每一对对应值的比值是一定的,等于比例系数,反映在函数解析式上,这些函数都是常数与自变量的积的形式,这是正比例函数的基本特征。 本节课主要是通过对生活中大量实际问题的分析,写出变量间的函数关系式,观察比较概括出这些函数关系式具有的共同特征,根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念,再用正比例函数的概念对具体函数进行辨析,对实际事例进行分析,根据已知条件写出正比例函数的解析式。 基于以上分析,确定本节课的教学重点:正比例函数的概念。 二、目标和目标解析 1、目标 (1)经历正比例函数概念的形成过程,理解正比例函数的概念; (2)能根据已知条件确定正比例函数的解析式,体会函数建模思想。 2、目标解析 达成目标(1)的标志是:通过对实际问题的分析,知道自变量和对应函数成正比例的特征,能概括抽象出正比例函数的概念。 达成目标(2)的.标志是:能根据实际问题中的已知条件确定变量间的正比例函数关系式,将实际问题抽象为函数模型,体会函数建模思想。 三、教学问题诊断分析 正比例函数是是初中学生接触到的第一种初等函数,由于函数概念比较抽象,学生对函数基本概念理解未必深刻,在对实际问题进行分析过程中,需进一步强化对函数概念的理解:即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的每一个确定的值,另一个变量都有唯一确定的值与之对应;对正比例函数概念的理解关键是对正比例函数基本特征的认识,要通过大量实例分析,写出变量间的函数关系式,观察比较发现这些函数具有的共同特征,即函数与自变量的每一对对应值的比值一定,都等于自变量前的常数,这些函数都是常数与自变量的积的形式,再根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念。对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程学生有一定难度。 因此本节课的教学难点是:对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程。 一、课堂引入 1.什么叫做平行四边形?什么叫做矩形? 2.矩形有哪些性质? 3.矩形与平行四边形有什么共同之处?有什么不同之处? 4.事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行? 通过讨论得到矩形的判定方法. 矩形判定方法1:对角钱相等的平行四边形是矩形. 矩形判定方法2:有三个角是直角的四边形是矩形. (指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.) 二、例习题分析 例1(补充)下列各句判定矩形的说法是否正确?为什么? (1)有一个角是直角的四边形是矩形;(×) (2)有四个角是直角的四边形是矩形;(√) (3)四个角都相等的四边形是矩形;(√) (4)对角线相等的四边形是矩形;(×) (5)对角线相等且互相垂直的四边形是矩形;(×) (6)对角线互相平分且相等的四边形是矩形;(√) (7)对角线相等,且有一个角是直角的四边形是矩形;(×) (8)一组邻边垂直,一组对边平行且相等的`四边形是矩形;(√) (9)两组对边分别平行,且对角线相等的四边形是矩形.(√) 指出: (l)所给四边形添加的条件不满足三个的肯定不是矩形; (2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论. 例2(补充)已知ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4cm,求这个平行四边形的面积. 分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积值. 解:∵ 四边形ABCD是平行四边形, ∴AO=AC,BO=BD. ∵ AO=BO, ∴ AC=BD. ∴ ABCD是矩形(对角线相等的平行四边形是矩形). 在Rt△ABC中, ∵ AB=4cm,AC=2AO=8cm, ∴BC=(cm). 例3(补充)已知:如图(1),ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形. 分析:要证四边形EFGH是矩形,由于此题目可分解出基本图形,如图(2),因此,可选用“三个角是直角的四边形是矩形”来证明 教材分析 1本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式 1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。 2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。 学情分析 1、在学习本课之前应具备的基本知识和技能: ①同类项的定义。 ②合并同类项法则 ③多项式乘以多项式法则。 2、学习者对即将学习的内容已经具备的水平: 在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的`目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。 教学目标 (一)教学目标: 1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。 2、会推导完全平方公式,并能运用公式进行简单的计算。 (二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理 数、实数、代数式、、;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、、不等式、函数等进行描述。 (四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。 (五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。 教学重点和难点 重点:能运用完全平方公式进行简单的计算。 难点:会推导完全平方公式 教学过程 教学过程设计如下: 〈一〉、提出问题 [引入]同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗? (2m+3n)2=_______________,(-2m-3n)2=______________, (2m-3n)2=_______________,(-2m+3n)2=_______________。 〈二〉、分析问题 1、[学生回答]分组交流、讨论 (2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2, (2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。 (1)原式的特点。 (2)结果的项数特点。 (3)三项系数的特点(特别是符号的特点)。 (4)三项与原多项式中两个单项式的关系。 2、[学生回答]总结完全平方公式的语言描述: 两数和的平方,等于它们平方的和,加上它们乘积的两倍; 两数差的平方,等于它们平方的和,减去它们乘积的两倍。 3、[学生回答]完全平方公式的数学表达式: (a+b)2=a2+2ab+b2; (a-b)2=a2-2ab+b2. 〈三〉、运用公式,解决问题 1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性) (m+n)2=____________, (m-n)2=_______________, (-m+n)2=____________, (-m-n)2=______________, (a+3)2=______________, (-c+5)2=______________, (-7-a)2=______________, (0.5-a)2=______________. 2、判断: ( )① (a-2b)2= a2-2ab+b2 ( )② (2m+n)2= 2m2+4mn+n2 ( )③ (-n-3m)2= n2-6mn+9m2 ( )④ (5a+0.2b)2= 25a2+5ab+0.4b2 ( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2 ( )⑥ (-a-2b)2=(a+2b)2 ( )⑦ (2a-4b)2=(4a-2b)2 ( )⑧ (-5m+n)2=(-n+5m)2 3、一现身手 ① (x+y)2 =______________;② (-y-x)2 =_______________; ③ (2x+3)2 =_____________;④ (3a-2)2 =_______________; ⑤ (2x+3y)2 =____________;⑥ (4x-5y)2 =______________; ⑦ (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________. 〈四〉、[学生小结] 你认为完全平方公式在应用过程中,需要注意那些问题? (1)公式右边共有3项。 (2)两个平方项符号永远为正。 (3)中间项的符号由等号左边的两项符号是否相同决定。 (4)中间项是等号左边两项乘积的2倍。 〈五〉、探险之旅 (1)(-3a+2b)2=________________________________ (2)(-7-2m) 2 =__________________________________ (3)(-0.5m+2n) 2=_______________________________ (4)(3/5a-1/2b) 2=________________________________ (5)(mn+3) 2=__________________________________ (6)(a2b-0.2) 2=_________________________________ (7)(2xy2-3x2y) 2=_______________________________ (8)(2n3-3m3) 2=________________________________ 板书设计 完全平方公式 两数和的平方,等于它们平方的和,加上它们乘积的两倍;(a+b)2=a2+2ab+b2; 两数差的平方,等于它们平方的和,减去它们乘积的两倍。(a-b)2=a2-2ab+b2 菱形 学习目标(学习重点): 1.经历探索菱形的识别方法的过程,在活动中培养探究意识与合作交流的习惯; 2.运用菱形的识别方法进行有关推理. 补充例题: 例1. 如图,在△ABC中,AD是△ABC的角平分线。DE∥AC交AB于E,DF∥AB交AC于F.四边形AEDF是菱形吗?说明你的理由. 例2.如图,平行四边形ABCD的对 角线AC的垂直平分线与边AD、BC分别交于E、F. 四边形AFCE是菱形吗?说明理由. 例3.如图 , ABCD是矩形纸片,翻折B、D,使BC、AD恰好落在AC上,设F、H分别是B、D落在AC上的两点,E、G分别是折痕CE、AG与AB、CD的交点 (1)试说明四边形AECG是平行四边形; (2)若AB=4cm,BC=3cm,求线段EF的长; (3)当矩形两边AB、BC具备怎样的`关系时,四边形AECG是菱形. 课后续助: 一、填空题 1.如果四边形ABCD是平行四边形,加上条件___________________,就可以是矩形;加上条件_______________________,就可以是菱形 2.如图,D、E、F分别是△ABC的边BC、CA、AB上的点, 且DE∥BA,DF∥ CA (1)要使四边形AFDE是菱形,则要增加条件______________________ (2)要使四边形AFDE是矩形,则要增加条件______________________ 二、解答题 1.如图,在□ABCD中 ,若2,判断□ABCD是矩形还是菱形?并说明理由。 2.如图 ,平行四边形A BCD的两条对角线AC,BD相交于点O,OA=4,OB=3,AB=5. (1) AC,BD互相垂直吗?为什么? (2) 四边形ABCD是菱形 吗? 3.如图,在□ABCD中,已知ADAB,ABC的平分线交AD于E,EF∥AB交BC于F,试问: 四 边形ABFE是菱形吗?请说明理由。 4.如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F. ⑴求证:ABF≌ ⑵若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由. 一、教材分析: 《正方形》这节课是九年义务教育人教版数学教材八年级下册第十九章第二节的内容。纵观整个初中教材,《正方形》是在学生掌握了平行线、三角形、平行四边形、矩形、菱形等有关知识及简单图形的平移和旋转等平面几何知识,并且具备有初步的观察、操作等活动经验的基础上出现的。既是前面所学知识的延续,又是对平行四边形、菱形、矩形进行综合的不可缺少的重要环节。 本节课的重点是正方形的概念和性质,难点是理解正方形与平行四边形、矩形、菱形之间的内在联系。根据大纲要求,本节课制定了知识、能力、情感三方面的目标。 (一)知识目标: 1、要求学生掌握正方形的概念及性质; 2、能正确运用正方形的性质进行简单的计算、推理、论证; (二)能力目标: 1、通过本节课培养学生观察、动手、探究、分析、归纳、总结等能力; 2、发展学生合情推理意识,主动探究的习惯,逐步掌握说理的基本方法; (三)情感目标: 1、让学生树立科学、严谨、理论联系实际的良好学风; 2、培养学生互相帮助、团结协作、相互讨论的团队精神; 3、通过正方形图形的完美性,培养学生品格的完美性。 二、学生分析: 该段学生具有一定的独立思考和探究的能力,但语言表达能力方面稍有欠缺,所以在本节课的教学过程中,特意设计了让学生自己组织语言培养说理能力,让学生们能逐步提高。 三、教法分析: 针对本节课的特点,采用"实践--观察--总结归纳--运用"为主线的教学方法。 通过学生动手,采取几种不同的方法构造出正方形,然后引导学生探究正方形的概念。通过观察、讨论、归纳、总结出正方形性质定理,最后以课堂练习加以巩固定理,并通过一道拔高题对定义、性质理解、巩固加以升华。 四、学法分析: 本节课重点是从培养学生探索精神和分析归纳总结能力为出发点,着重指导学生动手、观察、思考、分析、总结得出结论。在小组讨论中通过互相学习,让学生体验合作学习的乐趣。 五、教学程序: 第一环节:相关知识回顾 以提问的形式复习的平行四边形、矩形、菱形的定义及性质之后,引导学生发现矩形、菱形的实质是由平行四边形角度、边长的变化得到的。并启发学生考虑,若这两种变化同时发生在平行四边形上,则会得到什么样的图形?让学生们通过手上的学具演示以上两种变化,从而得出结论。 第二环节:新课讲解通过学生们的发现引出课题“正方形” 1、正方形的定义 引导学生说出自己变化出正方形的过程,并再次利用课件形象演示出由平行四边形的边、角的变化演变出正方形的过程。请同学们举手发言,归纳总结出正方形定义:一组邻边相等,且一个角是直角的平行四边形是正方形。再由此定义启发学生们发现正方形的三个必要条件,并且由这三个条件通过重新组合即一组邻边相等与平行四边形组成菱形再加上一个角是直角可得到正方形的另两个定义:一个角是直角的菱形是正方形;一组邻边相等的矩形是正方形。此内容借助课件演示其变化过程,进一步启发学生发现,正方形既是特殊的菱形,又是特殊的矩形,从而总结出正方形的性质。 2、正方形的性质 定理1:正方形的四个角都是直角,四条边都相等; 定理2:正方形的两条对角线相等,并且互相垂直、平分,每条对角线平分一组对角。 以上是对正方形定义和性质的.学习,之后是进行例题讲解。 3、例题讲解 求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形。此题是文字证明题,由学生们分组相互探讨,共同研究此题的已知、求证部分,然后由小组派代表阐述证明过程,教师板书,在板书的过程中,请其它小组的同学提出合理化建议,使此题证明过程条理更加清晰,更加符合逻辑,同时强调证明格式的书写。从而培养他们语言表达能力,让学生的个性得到充分的展示 4、课堂练习 第一部分采用三道有关正方形的周长、面积、对角线、边长计算的填空题,目的是对正方形性质的进一步理解,并考察学生掌握的情况。 第二部分是选择题,通过体现生活中实际问题,来提升学生所学的知识,并加以综合练习,提高他们的综合素质,使他们充分认识到数学实质是来源于生活并要服务于生活。 5、课堂小结 此环节我是通过图框的形式小结正方形和前阶段所学特殊四边形之间的内在联系,通过对所学几种四边形内在联系体现正方形完美的本质,渲染学生们应追求象正方形一样方正的品质,从而要努力学习以丰富的知识充实自己,达到理想中的完美。 6、作业设计 作业是教材159页,第12、14两小道证明题,通过此作业让同学们进一步巩固有关正方形的知识。 一、教学目标 1.使学生根据分数的通分法则及分式的基本性质,分析、归纳出分式的通分法则,并能熟练掌握通分运算。 2.使学生理解和掌握分式和减法法则,并会应用法则进行分式加减的运算。 3.使学生能够灵活运用分式的有关法则进行分式的四则混合运算。 4.引导学生不断小结运算方法和技巧,提高运算能力。 二、教学重点和难点 1.重点:分式的加减运算。 2.难点:异分母的分式加减法运算。 三、教学方法 启发式、分组讨论。 四、教学手段 幻灯片。 五、教学过程 (一)引入 1.如何计算:2.如何计算:3.若分母不同如何计算?如: (二)新课 1.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。 2.通分的依据:分式的`基本性质。 3.通分的关键:确定几个分式的公分母。 通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。 例1通分: (1)解:∵最简公分母是, 小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数。 (2)解: 例2通分: (1)解:∵最简公分母的是2x(x+1)(x—1), 小结:当分母是多项式时,应先分解因式。 (2)解:将分母分解因式:∴最简公分母为2(x+2)(x—2), 练习:教材P,79中1、2、3。 (三)课堂小结 1.通分与约分虽都是针对分式而言,但却是两种相反的变形。约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来。 2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变。 3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备。 课时目标 1.掌握分式、有理式的概念。 2.掌握分式是否有意义、分式的值是否等于零的识别方法。 教学重点 正确理解分式的意义,分式是否有意义的条件及分式的值为零的条件。 教学难点: 正确理解分式的意义,分式是否有意义的条件及分式的值为零的条件。 教学时间:一课时。 教学用具:投影仪等。 教学过程: 一.复习提问 1.什么是整式?什么是单项式?什么是多项式? 2.判断下列各式中,哪些是整式?哪些不是整式? ①+m2 ②1+x+y2- ③ ④ ⑤ ⑥ ⑦ 二.新课讲解: 设问:不是整工式子中,和整式有什么区别? 小结:1.分式的概念:一般地,形如的式子叫做分式,其中A和B均为整式,B中含有字母。 练习:下列各式中,哪些是分式哪些不是? (1)、、(2)、(3)、(4)、(5)x2、(6)+4 强调:(6)+4带有是无理式,不是整式,故不是分式。 2.小结:对整式、分式的正确区别:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必须含有字母,这是分式与整式的根本区别。 练习:课后练习P6练习1、2题 设问:(让学生看课本上P5“思考”部分,然后回答问题。) 例题讲解:课本P5例题1 分析:各分式中的分母是:(1)3x(2)x-1(3)5-3b(4)x-y。只要这引起分母不为零,分式便有意义。 (板书解题过程。) 3.小结:分式是否有意义的识别方法:当分式的`分母为零时,分式无意义;当分式的分母不等于零时,分式有意义。 增加例题:当x取什么值时,分式有意义? 解:由分母x2-4=0,得x=±2。 ∴ 当x≠±2时,分式有意义。 设问:什么时候分式的值为零呢? 例: 解:当 ① 分式的值为零 平方差公式 学习目标: 1、能推导平方差公式,并会用几何图形解释公式; 2、能用平方差公式进行熟练地计算; 3、经历探索平方差公式的推导过程,发展符号感,体会特殊一般特殊的认识规律. 学习重难点: 重点:能用平方差公式进行熟练地计算; 难点:探索平方差公式,并用几何图形解释公式. 学习过程: 一、自主探索 1、计算:(1)(m+2) (m-2) (2)(1+3a) (1-3a) (3) (x+5y)(x-5y) (4)(y+3z) (y-3z) 2、观察以上算式及其运算结果,你发现了什么规律?再举两例验证你的发现. 3、你能用自己的语言叙述你的发现吗? 4、平方差公式的特征: (1)、公式左边的两个因式都是二项式。必须是相同的两数的和与差。或者说两 个二项式必须有一项完全相同,另一项只有符号不同。 (2)、公式中的`a与b可以是数,也可以换成一个代数式。 二 、试一试 例1、利用平方差公式计算 (1)(5+6x)(5-6x) (2)(x-2y)(x+2y) (3)(-m+n)(-m-n) 例2、利用平方差公式计算 (1)(1)(- x-y)(- x+y) (2)(ab+8)(ab-8) (3)(m+n)(m-n)+3n2 三、合作交流 如图,边长为a的大正方形中有一个边长为b的小正方形. (1)请表示图中阴影部分的面积. (2)小颖将阴影部分拼成了一个长方形,这个长方形的长和宽分别是多少?你能表示出它的面积吗? a a b (3)比较(1)(2)的结果,你能验证平方差公式吗? 四、巩固练习 1、利用平方差公式计算 (1)(a+2)(a-2) (2)(3a+2b)(3a-2b) (3)(-x+1)(-x-1) (4)(-4k+3)(-4k-3) 2、利用平方差公式计算 (1)803797 (2)398402 3.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示( ) A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以 4.下列多项式的乘法中,可以用平方差公式计算的是( ) A.(a+b)(b+a) B.(-a+b)(a-b) C.( a+b)(b- a) D.(a2-b)(b2+a) 5.下列计算中,错误的有( ) ①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2; ③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y)(x+y)=-x2-y2. A.1个 B.2个 C.3个 D.4个[来源:中.考.资.源.网WWW.ZK5U.COM] 6.若x2-y2=30,且x-y=-5,则x+y的值是( ) A.5 B.6 C.-6 D.-5 7.(-2x+y)(-2x-y)=______. 8.(-3x2+2y2)(______)=9x4-4y4. 9.(a+b-1)(a-b+1)=(_____)2-(_____)2. 10.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____. 11.利用平方差公式计算:20 19 . 12.计算:(a+2)(a2+4)(a4+16)(a-2). 五、学习反思 我的收获: 我的疑惑: 六、当堂测试 1、下列多项式乘法中能用平方差公式计算的是( ). (A)(x+1)(1+x) (B)(1/2b+b)(-b-1/2a) (C)(-a+b)(-a-b) (D)(x2-y)(x+y2)[ 2、填空:(1)(x2-2)(x2+2)= (2)(5x-3y)( )=25x2-9y2 3、计算: (1)(-2x+3y)(-2x-3y) (2)(a-2)(a+2)(a2+4) 4.利用平方差公式计算 ①1003997 ②14 15 七、课外拓展 下列各式哪些能用平方差公式计算?怎样用? 1) (a-b+c)(a-b-c) 2) (a+2b-3)(a-2b+3) 3) (2x+y-z+5)(2x-y+z+5) 4) (a-b+c-d)(-a-b-c-d) 2.2完全平方公式(1) 一、 教学目标 1.了解分式、有理式的概念. 2.理解分式有意义的条件,能熟练地求出分式有意义的条件. 二、重点、难点 1.重点:理解分式有意义的条件. 2.难点:能熟练地求出分式有意义的条件. 三、课堂引入 1.让学生填写P127[思考],学生自己依次填出:,,,. 2.学生看问题:一艘轮船在静水中的最大航速为30 /h,它沿江以最大航速顺流航行90 所用时间,与以最大航速逆流航行60 所用时间相等,江水的流速为多少? 请同学们跟着教师一起设未知数,列方程. 设江水的流速为v /h. 轮船顺流航行90 所用的时间为小时,逆流航行60 所用时间小时,所以=. 3. 以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点? 四、例题讲解 P128例1. 当下列分式中的字母为何值时,分式有意义. [分析]已知分式有意义,就可以知道分式的分母不为零,进一步解 出字母的'取值范围. [补充提问]如果题目为:当字母为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念. (补充)例2. 当为何值时,分式的值为0? (1) (2) (3) [分析] 分式的值为0时,必须同时满足两个条件:分母不能为零;分子为零,这样求出的的解集中的公共部分,就是这类题目的解. [答案] (1)=0 (2)=2 (3)=1 五、随堂练习 1.判断下列各式哪些是整式,哪些是分式? 9x+4, , , , , 2. 当x取何值时,下列分式有意义? (1) (2) (3) 3. 当x为何值时,分式的值为0? (1) (2) (3) 六、课后练习 1.下列代数式表示下列数量关系,并指出哪些是正是?哪些是分式? (1)甲每小时做x个零件,则他8小时做零件 个,做80个零件需 小时. (2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时. (3)x与的差于4的商是 . 2.当x取何值时,分式 无意义? 3. 当x为何值时,分式 的值为0? 一、内容和内容解析 1.内容 三角形高线、中线及角平分线的概念、几何语言表达及它们的画法. 2.内容解析 本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的能力;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探索的思想感情。 理解三角形高、角平分线及中线概念到用几何语言精确表述,这是学生在几何学习上的一个深入.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着十分重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备. 本节的重点是了解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系. 二、目标和目标解析 1.教学目标 (1)理解三角形的高、中线与角平分线等概念; (2)会用工具画三角形的高、中线与角平分线; 2.教学目标解析 (1)经历画图实践过程,理解三角形的高、中线与角平分线等概念. (2)能够熟练用几何语言表达三角形的高、中线与角平分线的性质. (3)掌握三角形的高、中线与角平分线的画法. (4)了解三角形的三条高、三条中线与三条角平分线分别相交于一点. 三、教学问题诊断分析 三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上. 三角形的.中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点. 三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联系又有本质的区别. 一、学情分析 认知基础:学生在七年级下册第四章已学习了《变量之间的关系》,对变量间互相依存的关系有了一定的认识,但对于变量间的变化规律尚不明确,理解的很肤浅,也缺乏理论高度,另外本章在认知方式和思维深度上对学生有较高的要求,学生在理解和运用时会有一定的难度。 活动经验基础:在七年级下册《变量之间的关系》一章中,学生接触了大量的生活实例额,体会了变量之间相互依赖关系的普遍性,感受到了学习变量关系的必要性,初步具备了一定的识图能力和主动参与、合作的意识和初步的观察、分析、抽象概括的能力。 二、教学目标: 知识与技能目标: (1)初步掌握函数概念,能判断两个变量之间的关系是否可以看作函数。 (2)根据两个变量之间的关系式,给定其中一个变量的值相应的会求出另一个变量的值。 (3)会对一个具体实例进行概括抽象成为函数问题。 过程与方法目标: (1)通过函数概念初步形成利用函数的.观点认识现实世界的意识和能力。 (2)经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。 情感态度与价值观目标: (1)经历函数概念的抽象概括过程,体会函数的模型思想。 (2)能主动从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。 教学目标: 1、知识目标:了解图案最常见的构图方式:轴对称、平移、旋转……,理解简单图案设计的意图。认识和欣赏平移,旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案。 2、能力目标:经历收集、欣赏、分析、操作和设计的过程,培养学生收集和整理信息的能力,分析和解决问题的能力,合作和交流的能力以及创新能力。 3、情感体验点:经历对典型图案设计意图的分析,进一步发展学生的空间观念,增强审美意识,培养学生积极进取的生活态度。 重点与难点: 重点:灵活运用轴对称、平移、旋转……等方法及它们的组合进行的图案设计。 难点:分析典型图案的设计意图。 疑点:在设计的图案中清晰地表现自己的设计意图 教具学具准备: 提前一周布置学生以小组为单位,通过各种渠道收集到的图案、图标的剪贴、临摹以及。多种常见的图案及其形成过程的`动画演示。 教学过程设计: 1、情境导入:在优美的音乐中,逐个展示生活中常见的典型图案,并让学生试着说一说每种图案标志的对象。(展示课本图3—23) 明确在欣赏了图案后,简单地复习平移、旋转的概念,为下面图案的设计作好理论准备。对教材给出的六个图案通过观察、分析进行议论交流,让学生初步了解图案的设计中常常运用图形变换的思想方法,为学生自己设计图案指明方向。其中图(1)、(2)、(3)、(4)、(5)、(6)都可以通过旋转适合角度形成(可以让学生自己说说每个旋转的角度和旋转的次数及旋转中心的位置),另外图(2)、(3)、(5)也可以通过轴对称变换形成(可以让学生指出对轴对称及对称轴的条数),而图(2)可以通过平移形成。 2、课本 1 欣赏课本75页图3—24的图案,并分析这个图案形成过程。 评注:图案是密铺图案的代表,旨在通过对典型图案的分析欣赏,使学生逐步能够进行图案设计,同时了解轴对称、平移、旋转变换是图案制作的基本手段。例题解答的关键是确定“基本图案”,然后再运用平移、旋转关系加以说明,注意旋转中心可以为图形上某一特征的点。 评注:可以取其中的任何一个为基本图案,然后通过变换得到。而且变化方式也可以是:左下角的图案通过轴对称变换得到左上图和右下图。 (二)课内练习 (1) 以小组为单位,由每组指定一个同学展示该组搜集得到的图案,并在全班交流。 (2) 利用下面提供的基本图形,用平移、旋转、轴对称、中心对称等方法进行图案设计,并简要说明自己的设计意图。 (三)议一议 生活中还有那些图案用到了平移或旋转?分析其中的一个,并与同伴进行交流。 (四)课时小结 本课时的重点是了解平移、旋转和轴对称变换是图案设计的基本方法,并能运用这些变换设计出一些简单的图案。 通过今天的学习,你对图案的设计又增加了哪些新的认识?(可以利用平移、旋转、轴对称等多种方法来设计,而且设计的图案要能表达自己的创作意图,再就是图案的设计一定要新颖,独特,这样才能使人过目不忘,达到标志的效果。) 八年级数学上册教案(五)延伸拓展 进一步搜集身边的各种标志性图案,尝试着重新设计它,并结合实际背景分析它的设计意图。 我们听了两节优秀的公开课,很成功,两位老师精心准备,教学氛围和谐、积极。两位老师素质好,基本功扎实,讲授知识有深度、有广度、有技巧。教师的形体语言亲切、自然,口头语言清晰、流畅。营造了积极、和谐的教学氛围和平等、民主、自由的师生的关系,很好的实现了教师角色的转变,为教师指导下学生自由地对知识探究作了很好的教学铺垫。教师调控能力和应变能力强、富有激情。使学生在轻松愉快的'氛围中接受知识。总体来看比较成功,这些现象都是可喜的。主要体现在以下几方面; 一、整个课堂设计完整、结构紧凑、逻辑严密、前后呼应,准备得比较充分,能引导学生循序渐进,思路很清晰,讲解也很到位。 二、不搞题海战术,精讲精练,举一反三、触类旁通。题型设计选题有针对性、典型性、层次性,亦有梯度,两位老师都设计了分层练习,作业分层设计精巧,适合满足不同层次学生的要求。 三、两位老师引入新课都很自然,两位老师都能从学生的实际水平出发,面向全体学生,因材施教,分层次开展教学工作,全面提高学习效率。 教师在整个教学过程中老师敢于让学生探索、体验,给了学生以最大的自由运用和探索规律的开阔的地带。特别是新塘三中的曾老师在教学中,通过教师有序的导、学生积极的学习参与、体验、讨论与交流,培养学生具有主动、负责、开拓、创新的个性特征和科学的思维方式。将知识与技能,过程与方法,情感态度和价值观完美结合。在整个教学活动中始终面对全体学生,让每一个学生都有收获,都得到成功的体验,充分体现了全面育人的新课标精神。建议新塘二中老师尽量少讲,让学生多思,多想,多做。 ...... 【八年级数学的教案】相关文章: 八年级数学教案(精选10篇)10-29 八年级数学教案五篇07-27 精选八年级数学教案(通用15篇)05-17 八年级数学教案(通用10篇)12-24 【精华】八年级数学教案4篇07-26 八年级数学教案模板9篇08-02 八年级数学教案范文八篇07-25 八年级数学教案范文九篇07-28 八年级数学教案汇总九篇07-28 八年级数学教案合集六篇07-29八年级数学的教案2
八年级数学的教案3
八年级数学的教案4
八年级数学的教案5
八年级数学的教案6
八年级数学的教案7
八年级数学的教案8
八年级数学的教案9
八年级数学的教案10
八年级数学的教案11
八年级数学的教案12
八年级数学的教案13
八年级数学的教案14
八年级数学的教案15