现在位置:范文先生网>教案大全>数学教案>八年级数学教案>八年级数学教案

八年级数学教案

时间:2022-07-08 12:09:21 八年级数学教案 我要投稿

八年级数学教案(通用10篇)

  作为一名默默奉献的教育工作者,很有必要精心设计一份教案,教案有助于学生理解并掌握系统的知识。我们应该怎么写教案呢?下面是小编为大家整理的八年级数学教案(通用10篇),仅供参考,大家一起来看看吧。

八年级数学教案(通用10篇)

  八年级数学教案 篇1

  教学目标:

  1、经历数据离散程度的探索过程

  2、了解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数值。

  教学重点:

  会计算某些数据的极差、标准差和方差。

  教学难点:

  理解数据离散程度与三个差之间的关系。

  教学准备:

  计算器,投影片等

  教学过程:

  一、创设情境

  1、投影课本P138引例。

  (通过对问题串的解决,使学生直观地估计从甲、乙两厂抽取的20只鸡腿的平均质量,同时让学生初步体会平均水平相近时,两者的离散程度未必相同,从而顺理成章地引入刻画数据离散程度的'一个量度极差)

  2、极差:是指一组数据中最大数据与最小数据的差,极差是用来刻画数据离散程度的一个统计量。

  二、活动与探究

  如果丙厂也参加了竞争,从该厂抽样调查了20只鸡腿,数据如图(投影课本159页图)

  问题:1、丙厂这20只鸡腿质量的平均数和极差是多少?

  2、如何刻画丙厂这20只鸡腿质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与对应平均数的差距。

  3、在甲、丙两厂中,你认为哪个厂鸡腿质量更符合要求?为什么?

  (在上面的情境中,学生很容易比较甲、乙两厂被抽取鸡腿质量的极差,即可得出结论。这里增加一个丙厂,其平均质量和极差与甲厂相同,此时导致学生思想认识上的矛盾,为引出另两个刻画数据离散程度的量度标准差和方差作铺垫。

  三、讲解概念:

  方差:各个数据与平均数之差的平方的平均数,记作s2

  设有一组数据:x1, x2, x3,,xn,其平均数为

  则s2= ,

  而s= 称为该数据的标准差(既方差的算术平方根)

  从上面计算公式可以看出:一组数据的极差,方差或标准差越小,这组数据就越稳定。

  四、做一做

  你能用计算器计算上述甲、丙两厂分别抽取的20只鸡腿质量的方差和标准差吗?你认为选哪个厂的鸡腿规格更好一些?说说你是怎样算的?

  (通过对此问题的解决,使学生回顾了用计算器求平均数的步骤,并自由探索求方差的详细步骤)

  五、巩固练习:课本第172页随堂练习

  六、课堂小结:

  1、怎样刻画一组数据的离散程度?

  2、怎样求方差和标准差?

  七、布置作业:习题5.5第1、2题。

  八年级数学教案 篇2

  教学目标:

  1.知道负整数指数幂=(a≠0,n是正整数).

  2.掌握整数指数幂的运算性质.

  3.会用科学计数法表示小于1的数.

  教学重点:

  掌握整数指数幂的运算性质.

  难点:

  会用科学计数法表示小于1的数.

  情感态度与价值观:

  通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践.能利用事物之间的类比性解决问题.

  教学过程:

  一、课堂引入

  1.回忆正整数指数幂的运算性质:

  (1)同底数的幂的乘法:am?an = am+n (m,n是正整数);

  (2)幂的乘方:(am)n = amn (m,n是正整数);

  (3)积的乘方:(ab)n = anbn (n是正整数);

  (4)同底数的幂的除法:am÷an = am?n ( a≠0,m,n是正整数,m>n);

  (5)商的乘方:()n = (n是正整数);

  2.回忆0指数幂的规定,即当a≠0时,a0 = 1.

  3.你还记得1纳米=10?9米,即1纳米=米吗?

  4.计算当a≠0时,a3÷a5 ===,另一方面,如果把正整数指数幂的运算性质am÷an = am?n (a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0)。

  二、总结: 一般地,数学中规定: 当n是正整数时,=(a≠0)(注意:适用于m、n可以是全体整数) 教师启发学生由特殊情形入手,来看这条性质是否成立. 事实上,随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质都可推广到整数指数幂;am?an = am+n (m,n是整数)这条性质也是成立的.

  三、科学记数法:

  我们已经知道,一些较大的数适合用科学记数法表示,有了负整数指数幂后,小于1的.正数也可以用科学记数法来表示,例如:0.000012 = 1.2×10?5. 即小于1的正数可以用科学记数法表示为a×10?n的形式,其中a是整数位数只有1位的正数,n是正整数. 启发学生由特殊情形入手,比如0.012 = 1.2×10?2,0.0012 = 1.2×10?3,0.00012 = 1.2×10?4,以此发现其中的规律,从而有0.0000000012 = 1.2×10?9,即对于一个小于1的正数,如果小数点后到第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是?9,如果有m个0,则10的指数应该是?m?1.

  八年级数学教案 篇3

  教学目标:

  1. 掌握三角形内角和定理及其推论;

  2. 弄清三角形按角的分类, 会按角的大小对三角形进行分类;

  3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。

  4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态

  5. 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。

  教学重点:

  三角形内角和定理及其推论。

  教学难点:

  三角形内角和定理的证明

  教学用具:

  直尺、微机

  教学方法:

  互动式,谈话法

  教学过程:

  1、创设情境,自然引入

  把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。

  问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?

  问题2 你能用几何推理来论证得到的关系吗?

  对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线 ”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)

  新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。

  2、设问质疑,探究尝试

  (1)求证:三角形三个内角的和等于

  让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。

  问题1 观察:三个内角拼成了一个

  什么角?问题2 此实验给我们一个什么启示?

  (把三角形的'三个内角之和转化为一个平角)

  问题3 由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?

  其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。

  (2)通过类比“三角形按边分类”,三角形按角怎样分类呢?

  学生回答后,电脑显示图表。

  (3)三角形中三个内角之和为定值,那么对三角形的其它角还有哪些特殊的关系呢?问题1 直角三角形中,直角与其它两个锐角有何关系?

  问题2 三角形一个外角与它不相邻的两个内角有何关系?

  问题3 三角形一个外角与其中的一个不相邻内角有何关系?

  其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。

  这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。

  3、三角形三个内角关系的定理及推论

  引导学生分析并严格书写解题过程

  八年级数学教案 篇4

  一、教学目标

  1、理解极差的定义,知道极差是用来反映数据波动范围的一个量。

  2、会求一组数据的极差.

  二、重点、难点和难点的突破方法

  1、重点:会求一组数据的极差.

  2、难点:本节课内容较容易接受,不存在难点.

  三、课堂引入

  下表显示的`是上海20xx年2月下旬和20xx年同期的每日最高气温,如何对这两段时间的气温进行比较呢?

  从表中你能得到哪些信息?

  比较两段时间气温的高低,求平均气温是一种常用的方法.

  经计算可以看出,对于2月下旬的这段时间而言,20xx年和20xx年上海地区的平均气温相等,都是12度。

  这是不是说,两个时段的气温情况没有什么差异呢?

  根据两段时间的气温情况可绘成的折线图.

  观察一下,它们有区别吗?说说你观察得到的结果.

  用一组数据中的最大值减去最小值所得到的差来反映这组数据的变化范围.用这种方法得到的差称为极差(range)。

  四、例习题分析

  本节课在教材中没有相应的例题,教材P152习题分析

  问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大.问题2涉及前一个学期统计知识首先应回忆复习已学知识.问题3答案并不唯一,合理即可。

  八年级数学教案 篇5

  一、学习目标及重、难点:

  1、了解方差的定义和计算公式。

  2、理解方差概念的产生和形成的过程。

  3、会用方差计算公式来比较两组数据的波动大小。

  重点:方差产生的必要性和应用方差公式解决实际问题。

  难点:理解方差公式

  二、自主学习:

  (一)知识我先懂:

  方差:设有n个数据 ,各数据与它们的平均数的差的平方分别是

  我们用它们的平均数,表示这组数据的方差:即用

  来表示。

  给力小贴士:方差越小说明这组数据越 。波动性越 。

  (二)自主检测小练习:

  1、已知一组数据为2、0、-1、3、-4,则这组数据的方差为 。

  2、甲、乙两组数据如下:

  甲组:10 9 11 8 12 13 10 7;

  乙组:7 8 9 10 11 12 11 12.

  分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小.

  三、新课讲解:

  引例:问题: 从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下:(单位:cm)

  甲:9、10、 10、13、7、13、10、8、11、8;

  乙:8、13、12、11、10、12、7、7、10、10;

  问:(1)哪种农作物的苗长的比较高(我们可以计算它们的平均数: = )

  (2)哪种农作物的苗长得比较整齐?(我们可以计算它们的极差,你发现了 )

  归纳: 方差:设有n个数据 ,各数据与它们的平均数的差的平方分别是

  我们用它们的`平均数,表示这组数据的方差:即用 来表示。

  (一)例题讲解:

  例1、 段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?、

  测试次数 第1次 第2次 第3次 第4次 第5次

  段巍 13 14 13 12 13

  金志强 10 13 16 14 12

  给力提示:先求平均数,在利用公式求解方差。

  (二)小试身手

  1、甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:

  甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7

  经过计算,两人射击环数的平均数是 ,但S = ,S = ,则S S ,所以确定去参加比赛。

  1、求下列数据的众数:

  (1)3, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 2

  2、8年级一班46个同学中,13岁的有5人,14岁的有20人,15岁的15人,16岁的6人。8年级一班学生年龄的平均数,中位数,众数分别是多少?

  四、课堂小结

  方差公式:

  给力提示:方差越小说明这组数据越 。波动性越 。

  每课一首诗:求方差,有公式;先平均,再求差;

  求平方,再平均;所得数,是方差。

  五、课堂检测

  1、小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒)

  小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

  小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

  如果根据这几次成绩选拔一人参加比赛,你会选谁呢?

  六、课后作业

  必做题:教材141页 练习1、2 选做题:练习册对应部分习题

  七、学习小札记

  写下你的收获,交流你的经验,分享你的成果,你会感到无比的快乐!

  八年级数学教案 篇6

  教学目标:

  1、经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯;

  2、索并掌握平行四边形的性质,并能简单应用;

  3、在探索活动过程中发展学生的探究意识。

  教学重点:

  平行四边形性质的探索。

  教学难点:

  平行四边形性质的理解。

  教学准备:

  多媒体课件

  教学过程:

  第一环节:实践探索,直观感知(5分钟,动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。)

  1、小组活动一

  内容:

  问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。

  (1)你拼出了怎样的四边形?与同桌交流一下;

  (2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的`理由,请用简捷的语言刻画这个图形的特征。

  2、小组活动二

  内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗?

  第二环节 探索归纳、合作交流(5分钟,学生动手、动嘴,全班交流)

  小组活动3:

  用 一张半透明的纸复制你刚才画的平行四边形,并将复制 后的四边形绕一个顶点旋转180,你能平移该纸片,使它与你画的平行四边形重合吗?由此你能得到哪些结论?四边形的对边、对角分别有什么关系?能用别的方法验证你的结论吗?

  (1)让学生动手操作、复制、旋转 、观察、分析;

  (2)学生交流、议论;

  (3)教师利用多媒体展示实践的过程。

  第三环节 推理论证、感悟升华(10分钟,学生通过说理,由直观感受上升到理性分析,在操作层面感知的基础上提升,并了解图形具有的数学本质。)

  实践 探索内容

  (1)通过剪纸,拼纸片,及旋转,可以观察到平行四边行的对角线把它分成的两个三角形全等。

  (2)可以通过推理来证明这个结论,如图连结AC。

  ∵ 四边形ABCD是平行四边形

  AD // BC, AB // CD

  2,4

  △AB C和△CDA中

  1

  AC=C A

  4

  △ABC≌△CDA(ASA)

  AB=DC, AD=CB,B

  又∵2

  4

  3=4

  即BAD=DCB

  第四环节 应用巩固 深化提高(10分钟,通过议一议,练一练,学生进一步理解平行四边形的性质,并进行简单合情推理,体现性质的应用,同时从不同角度平移、旋转等再一次认识平行四边形的本质特征。)

  1。活动内容:

  (1)议一议:如果已知平行四边形的一个内角度数,能确定其它三个内角的度数吗?

  A(学生思考、议论)

  B总结归纳:可以确定其它三个内角的度数。

  由平行四边形对 边分边平行 得到邻角互补;又由于平行四边形对角相等,由此已知平行四边形的一个内角的度数,可以确定其它三个角度数。

  (2)练一练(P99随堂练习)

  练1 如图:四边形ABCD是平行四边形。

  (1)求ADC、BCD度数

  (2)边AB、BC的度数、长度。

  练2 四边形ABCD是平行四边形

  (1)它的四条边中哪些 线段可以通过平移相到得到?

  (2)设对角线AC、BD交于O;AO与OC、BO与OD有何关系?说说理由。

  归 纳:平行四边形的性质:平行四边形的对角线互相平分。

  第五环节 评价反思 概括总结(8分钟,学生踊跃谈感受和收获)

  活动内容

  师生相互交流、反思、总结。

  (1)经历了对平行四边形的特征探索,你有什么感受和收获?给自己一个评价。

  (2)在与同伴合作交流中练表现,优秀方面有哪些?你看到同伴哪些优点?

  (3)本节学习到了什么?(知识上、方法上)

  考一考:

  1、ABCD中,B=60,则A= ,C= ,D= 。

  2、ABCD中,A比B大20,则C= 。

  3、ABCD中,AB=3,BC=5,则AD= CD= 。

  4、ABCD中,周长为40cm,△ABC周长为25,则对角线AC=( )cm。

  布置作业

  课本习题4。1

  A组(学优生)1 、2

  B组(中等生)1、2

  C组(后三分之一生)1、2

  八年级数学教案 篇7

  教学目标

  ①经历探索整式除法运算法则的过程,会进行简单的整式除法运算(只要求单项式除以单项式,并且结果都是整式),培养学生独立思考、集体协作的能力。

  ②理解整式除法的算理,发展有条理的思考及表达能力。

  教学重点与难点

  重点:整式除法的运算法则及其运用。

  难点:整式除法的运算法则的推导和理解,尤其是单项式除以单项式的运算法则。

  教学准备

  卡片及多媒体课件。

  教学设计

  情境引入

  教科书第161页问题:木星的质量约为1。90×1024吨,地球的质量约为5。98×1021吨,你知道木星的质量约为地球质量的多少倍吗?

  重点研究算式(1。90×1024)÷(5。98×1021)怎样进行计算,目的是给出下面两个单项式相除的模型。

  注:教科书从实际问题引入单项式的除法运算,学生在探索这个问题的过程中,将自然地体会到学习单项式的除法运算的必要性,了解数学与现实世界的联系,同时再次经历感受较大数据的过程。

  探究新知

  (1)计算(1。90×1024)÷(5。98×1021),说说你计算的根据是什么?

  (2)你能利用(1)中的方法计算下列各式吗?

  8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。

  (3)你能根据(2)说说单项式除以单项式的运算法则吗?

  注:教师可以鼓励学生自己发现系数、同底数幂的底数和指数发生的变化,并运用自己的语言进行描述。

  单项式的除法法则的推导,应按从具体到一般的步骤进行。探究活动的安排,是使学生通过对具体的特例的计算,归纳出单项式的除法运算性质,并能运用乘除互逆的关系加以说明,也可类比分数的约分进行。在这些活动过程中,学生的化归、符号演算等代数推理能力和有条理的表达能力得到进一步发展。重视算理算法的渗透是新课标所强调的。

  归纳法则

  单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的.一个因式。

  注:通过总结法则,培养学生的概括能力,养成用数学语言表达自己想法的数学学习习惯。

  应用新知

  例2计算:

  (1)28x4y2÷7x3y;

  (2)—5a5b3c÷15a4b。

  首先指明28x4y2与7x3y分别是被除式与除式,在这儿省去了括号。对本例可以采用学生口述,教师板书的形式完成。口述和板书都应注意展示法则的应用,计算过程要详尽,使学生尽快熟悉法则。

  注:单项式除以单项式,既要对系数进行运算,又要对相同字母进行指数运算,同时对只在一个单项式里含有的幂要加以注意,这些对刚刚接触整式除法的学生来讲,难免会出现照看不全的情况,所以更应督促学生细心解答问题。

  巩固新知教科书第162页练习1及练习2。

  学生自己尝试完成计算题,同桌交流。

  注:在独立解题和同伴的相互交流过程中让学生自己去体会法则、掌握法则,印象更为深刻,也有助于培养学生良好的思维习惯和主动参与学习的习惯。

  作业

  1。必做题:教科书第164页习题15。3第1题;第2题。

  2。选做题:教科书第164页习题15。3第8题

  八年级数学教案 篇8

  教材分析

  本章属于“数与代数”领域,整式的乘除运算和因式分解是基本而重要的代数初步知识,在后续的数学学习中具有重要的意义。本章内容建立在已经学习了有理数的运算,列简单的代数式、一次方程及不等式、整式的加减运算等知识的基础上,而本节课的知识是学习本章的基础,为后续章节的学习作铺垫,因此,学得好坏直接关乎到后续章节的学习效果。

  学情分析

  本节课知识是学习整章的基础,因此,教学的好坏直接影响了后续章节的学习。学生在学习本章前,已经掌握了用字母表示数,列简单的代数式,掌握了乘方的意义及相关概念,并且本节课的知识相对较简单,学生比较容易理解和掌握,但是教师在教学中要注意引导学生导出同底数幂的乘法的运算性质的过程是一个由特殊到一般的认识过程,并且注意导出这一性质的每一步的根据。

  从学生做练习和作业来看,大部分学生都已经掌握本节课的知识,并且掌握的很好,但是还是存在一些问题,那就是符号问题,这方面还有待加强。

  教学目标

  1、知识与技能:

  掌握同底数幂乘法的运算性质,能熟练运用性质进行同底数幂乘法运算。

  2、过程与方法:

  (1)通过同底数幂乘法性质的推导过程,体会不完全归纳法的`运用,进一步发展演绎推理能力;

  (2)通过性质运用帮助学生理解字母表达式所代表的数量关系,进一步积累选择适当的程序和算法解决用符号所表达问题的经验。

  3、情感态度与价值观:

  (1)通过引例问题情境的创设,诱发学生的求知欲,进一步认识数学与生活的密切联系;

  (2)通过性质的推导体会“特殊”。

  八年级数学教案 篇9

  一、学习目标

  1.使学生了解运用公式法分解因式的意义;

  2.使学生掌握用平方差公式分解因式

  二、重点难点

  重点:掌握运用平方差公式分解因式。

  难点:将单项式化为平方形式,再用平方差公式分解因式。

  学习方法:归纳、概括、总结。

  三、合作学习

  创设问题情境,引入新课

  在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式。

  如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的.相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法。

  1.请看乘法公式

  左边是整式乘法,右边是一个多项式,把这个等式反过来就是左边是一个多项式,右边是整式的乘积。大家判断一下,第二个式子从左边到右边是否是因式分解?

  利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式。

  a2—b2=(a+b)(a—b)

  2.公式讲解

  如x2—16

  =(x)2—42

  =(x+4)(x—4)。

  9m2—4n2

  =(3m)2—(2n)2

  =(3m+2n)(3m—2n)。

  四、精讲精练

  例1、把下列各式分解因式:

  (1)25—16x2;(2)9a2—b2。

  例2、把下列各式分解因式:

  (1)9(m+n)2—(m—n)2;(2)2x3—8x。

  补充例题:判断下列分解因式是否正确。

  (1)(a+b)2—c2=a2+2ab+b2—c2。

  (2)a4—1=(a2)2—1=(a2+1)?(a2—1)。

  五、课堂练习

  教科书练习。

  六、作业

  1、教科书习题。

  2、分解因式:x4—16x3—4x4x2—(y—z)2。

  3、若x2—y2=30,x—y=—5求x+y。

  八年级数学教案 篇10

  一、教材分析

  1、特点与地位:重点中的重点。

  本课是教材求两结点之间的最短路径问题是图最常见的应用的之一,在交通运输、通讯网络等方面具有一定的实用意义。

  2、重点与难点:结合学生现有抽象思维能力水平,已掌握基本概念等学情,以及求解最短路径问题的自身特点,确立本课的重点和难点如下:

  (1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。

  (2)难点:求解最短路径算法的程序实现。

  3、教学安排:最短路径问题包含两种情况:一种是求从某个源点到其他各结点的最短路径,另一种是求每一对结点之间的最短路径。根据教学大纲安排,重点讲解第一种情况问题的解决。安排一个课时讲授。教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决与算法分析相结合,逐步推动教学过程。

  二、教学目标分析

  1、知识目标:掌握最短路径概念、能够求解最短路径。

  2、能力目标:

  (1)通过将旅游景点线路选择问题抽象成求最短路径问题,培养学生的数据抽象能力。

  (2)通过旅游景点线路选择问题的解决,培养学生的独立思考、分析问题、解决问题的能力。

  3、素质目标:培养学生讲究工作方法、与他人合作,提高效率。

  三、教法分析

  课前充分准备,研读教材,查阅相关资料,制作多媒体课件。教学过程中除了使用传统的“讲授法”以外,主要采用“案例教学法”,同时辅以多媒体课件,以启发的方式展开教学。由于本节课的内容属于图这一章的难点,考虑学生的接受能力,注意与学生沟通,根据学生的反应控制好教学进度是本节课成功的'关键。

  四、学法指导

  1、课前上次课结课时给学生布置任务,使其有针对性的预习。

  2、课中指导学生讨论任务解决方法,引导学生分析本节课知识点。

  3、课后给学生布置同类型任务,加强练习。

  五、教学过程分析

  (一)课前复习(3~5分钟)回顾“路径”的概念,为引出“最短路径”做铺垫。

  教学方法及注意事项:

  (1)采用提问方式,注意及时小结,提问的目的是帮助学生回忆概念。

  (2)提示学生“温故而知新”,养成良好的学习习惯。

  (二)导入新课(3~5分钟)以城市公路网为例,基于求两个点间最短距离的实际需要,引出本课教学内容“求最短路径问题”。教学方法及注意事项:

  (1)先讲实例,再指出概念,既可以吸引学生注意力,激发学习兴趣,又可以实现教学内容的自然过渡。

  (2)此处使用案例教学法,不在于问题的求解过程,只是为了说明问题的存在,所以这里的例子只需要概述,能够说明问题即可。

  (三)讲授新课(25~30分钟)

  1、求某一结点到其他各结点的最短路径(重点)主要采用案例教学法,提出旅游景点选择的例子,解决如何选择代价小、景点多的路线。

  (1)将实际问题抽象成图中求任一结点到其他结点最短路径问题。(3~5分钟)教学方法及注意事项:

  ①主要采用讲授法,将实际问题用图形表示出来。语言描述转换的方法(用圆圈加标号表示某一景点,用箭头表示从某景点到其他景点是否存在旅游线路,并且将旅途费用写在箭头的旁边。)一边用语言描述,一边在黑上画图。

  ②注意示范画图只进行一部分,让学生独立思考、自主完成余下部分的转化。

  ③及时总结,原型抽象(景点作为图的结点,景点间的线路作为图的边,旅途费用作为边的权值),将案例求解问题抽象成求图中某一结点到其他各结点的最短路径问题。

  ④利用多媒体课件,向学生展示一张带权有向图,并略作解释,为后续教学做准备。

  教学方法及注意事项:

  ①启发式教学,如何实现按路径长度递增产生最短路径?

  ②结合案例分析求解最短路径过程中(重点)注意此处借助黑板,按照算法思想的步骤。同样,也是只示范一部分,余下部分由学生独立思考完成。

  (四)课堂小结(3~5分钟)

  1、明确本节课重点

  2、提示学生,这种方式形成的图又可以解决哪类实际问题呢?

  (五)布置作业

  1、书面作业:复习本次课内容,准备一道备用习题,灵活把握时间安排。

  六、教学特色

  以旅游路线选择为主线,灵活采用案例教学、示范教学、多媒体课件等多种手段辅助教学,使枯燥的理论讲解生动起来。在顺利开展教学的同时,体现所讲内容的实用性,提高学生的学习兴趣。

【八年级数学教案】相关文章:

八年级的数学教案12-14

八年级数学教案06-18

八年级数学教案【热】11-29

八年级数学教案【荐】12-06

【热】八年级数学教案12-07

【推荐】八年级数学教案12-05

八年级数学教案【推荐】12-04

【热门】八年级数学教案11-29

八年级数学教案【热门】12-03

【精】八年级数学教案12-04