高一数学教案

时间:2022-11-09 15:27:46 高一数学教案 我要投稿

高一数学教案集锦15篇

  作为一名教师,时常要开展教案准备工作,教案有利于教学水平的提高,有助于教研活动的开展。来参考自己需要的教案吧!以下是小编整理的高一数学教案,欢迎大家分享。

高一数学教案集锦15篇

高一数学教案1

  教学目标

  1.使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性.

  2.通过函数单调性概念的教学,培养学生分析问题、认识问题的能力.通过例题培养学生利用定义进行推理的逻辑思维能力.

  3.通过本节课的教学,渗透数形结合的数学思想,对学生进行辩证唯物主义的教育.

  教学重点与难点

  教学重点:函数单调性的概念.

  教学难点:函数单调性的判定.

  教学过程设计

  一、引入新课

  师:请同学们观察下面两组在相应区间上的函数,然后指出这两组函数之间在性质上的主要区别是什么?

  (用投影幻灯给出两组函数的图象.)

  第一组:

  第二组:

  生:第一组函数,函数值y随x的增大而增大;第二组函数,函数值y随x的增大而减小.

  师:(手执投影棒使之沿曲线移动)对.他(她)答得很好,这正是两组函数的主要区别.当x变大时,第一组函数的函数值都变大,而第二组函数的函数值都变小.虽然在每一组函数中,函数值变大或变小的方式并不相同,但每一组函数却具有一种共同的性质.我们在学习一次函数、二次函数、反比例函数以及幂函数时,就曾经根据函数的图象研究过函数的函数值随自变量的变大而变大或变小的性质.而这些研究结论是直观地由图象得到的.在函数的集合中,有很多函数具有这种性质,因此我们有必要对函数这种性质作更进一步的一般性的讨论和研究,这就是我们今天这一节课的内容.

  (点明本节课的内容,既是曾经有所认识的,又是新的知识,引起学生的注意.)

  二、对概念的分析

  (板书课题:)

  师:请同学们打开课本第51页,请××同学把增函数、减函数、单调区间的定义朗读一遍.

  (学生朗读.)

  师:好,请坐.通过刚才阅读增函数和减函数的定义,请同学们思考一个问题:这种定义方法和我们刚才所讨论的函数值y随自变量x的增大而增大或减小是否一致?如果一致,定义中是怎样描述的?

  生:我认为是一致的.定义中的“当x1<x2时,都有f(x1)<f(x2)”描述了y随x的增大而增大;“当x1<x2时,都有f(x1)>f(x2)”描述了y随x的增大而减少.

  师:说得非常正确.定义中用了两个简单的不等关系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻划了函数的单调递增或单调递减的性质.这就是数学的魅力!

  (通过教师的情绪感染学生,激发学生学习数学的兴趣.)

  师:现在请同学们和我一起来看刚才的两组图中的第一个函数y=f1(x)和y=f2(x)的图象,体会这种魅力.

  (指图说明.)

  师:图中y=f1(x)对于区间[a,b]上的任意x1,x2,当x1<x2时,都有f1(x1)<f1(x),因此y=f1(x)在区间[a,b]上是单调递增的,区间[a,b]是函数y=f1(x)的单调增区间;而图中y=f2(x)对于区间[a,b]上的任意x1,x2,当x1<x2时,都有f2(x1)>f2(x2),因此y=f2(x)在区间[a,b]上是单调递减的,区间[a,b]是函数y=f2(x)的单调减区间.

  (教师指图说明分析定义,使学生把函数单调性的定义与直观图象结合起来,使新旧知识融为一体,加深对概念的理解.渗透数形结合分析问题的数学思想方法.)

  师:因此我们可以说,增函数就其本质而言是在相应区间上较大的自变量对应……

  (不把话说完,指一名学生接着说完,让学生的思维始终跟着老师.)

  生:较大的'函数值的函数.

  师:那么减函数呢?

  生:减函数就其本质而言是在相应区间上较大的自变量对应较小的函数值的函数.

  (学生可能回答得不完整,教师应指导他说完整.)

  师:好.我们刚刚以增函数和减函数的定义作了初步的分析,通过阅读和分析你认为在定义中我们应该抓住哪些关键词语,才能更透彻地认识定义?

  (学生思索.)

  学生在高中阶段以至在以后的学习中经常会遇到一些概念(或定义),能否抓住定义中的关键词语,是能否正确地、深入地理解和掌握概念的重要条件,更是学好数学及其他各学科的重要一环.因此教师应该教会学生如何深入理解一个概念,以培养学生分析问题,认识问题的能力.

  (教师在学生思索过程中,再一次有感情地朗读定义,并注意在关键词语处适当加重语气.在学生感到无从下手时,给以适当的提示.)

  生:我认为在定义中,有一个词“给定区间”是定义中的关键词语.

  师:很好,我们在学习任何一个概念的时候,都要善于抓住定义中的关键词语,在学习几个相近的概念时还要注意区别它们之间的不同.增函数和减函数都是对相应的区间而言的,离开了相应的区间就根本谈不上函数的增减性.请大家思考一个问题,我们能否说一个函数在x=5时是递增或递减的?为什么?

  生:不能.因为此时函数值是一个数.

  师:对.函数在某一点,由于它的函数值是唯一确定的常数(注意这四个字“唯一确定”),因而没有增减的变化.那么,我们能不能脱离区间泛泛谈论某一个函数是增函数或是减函数呢?你能否举一个我们学过的例子?

  生:不能.比如二次函数y=x2,在y轴左侧它是减函数,在y轴右侧它是增函数.因而我们不能说y=x2是增函数或是减函数.

  (在学生回答问题时,教师板演函数y=x2的图像,从“形”上感知.)

  师:好.他(她)举了一个例子来帮助我们理解定义中的词语“给定区间”.这说明是函数在某一个区间上的性质,但这不排斥有些函数在其定义域内都是增函数或减函数.因此,今后我们在谈论函数的增减性时必须指明相应的区间.

  师:还有没有其他的关键词语?

  生:还有定义中的“属于这个区间的任意两个”和“都有”也是关键词语.

  师:你答的很对.能解释一下为什么吗?

  (学生不一定能答全,教师应给予必要的提示.)

  师:“属于”是什么意思?

  生:就是说两个自变量x1,x2必须取自给定的区间,不能从其他区间上取.

  师:如果是闭区间的话,能否取自区间端点?

  生:可以.

  师:那么“任意”和“都有”又如何理解?

  生:“任意”就是指不能取特定的值来判断函数的增减性,而“都有”则是说只要x1<x2,f(x1)就必须都小于f(x2),或f(x1)都大于f(x2).

  师:能不能构造一个反例来说明“任意”呢?

  (让学生思考片刻.)

  生:可以构造一个反例.考察函数y=x2,在区间[-2,2]上,如果取两个特定的值x1=-2,x2=1,显然x1<x2,而f(x1)=4,f(x2)=1,有f(x1)>f(x2),若由此判定y=x2是[-2,2]上的减函数,那就错了.

  师:那么如何来说明“都有”呢?

  生:y=x2在[-2,2]上,当x1=-2,x2=-1时,有f(x1)>f(x2);当x1=1,x2=2时,有f(x1)<f(x2),这时就不能说y=x2,在[-2,2]上是增函数或减函数.

  师:好极了!通过分析定义和举反例,我们知道要判断函数y=f(x)在某个区间内是增函数或减函数,不能由特定的两个点的情况来判断,而必须严格依照定义在给定区间内任取两个自变量x1,x2,根据它们的函数值f(x1)和f(x2)的大小来判定函数的增减性.

  (教师通过一系列的设问,使学生处于积极的思维状态,从抽象到具体,并通过反例的反衬,使学生加深对定义的理解.在概念教学中,反例常常帮助学生更深刻地理解概念,锻炼学生的发散思维能力.)

  师:反过来,如果我们已知f(x)在某个区间上是增函数或是减函数,那么,我们就可以通过自变量的大小去判定函数值的大小,也可以由函数值的大小去判定自变量的大小.即一般成立则特殊成立,反之,特殊成立,一般不一定成立.这恰是辩证法中一般和特殊的关系.

  (用辩证法的原理来解释数学知识,同时用数学知识去理解辩证法的原理,这样的分析,有助于深入地理解和掌握概念,分清概念的内涵和外延,培养学生学习的能力.)

  三、概念的应用

  例1 图4所示的是定义在闭区间[-5,5]上的函数f(x)的图象,根据图象说出f(x)的单调区间,并回答:在每一个单调区间上,f(x)是增函数还是减函数?

  (用投影幻灯给出图象.)

  生甲:函数y=f(x)在区间[-5,-2],[1,3]上是减函数,因此[-5,-2],[1,3]是函数y=f(x)的单调减区间;在区间[-2,1],[3,5]上是增函数,因此[-2,1],[3,5]是函数y=f(x)的单调增区间.

  生乙:我有一个问题,[-5,-2]是函数f(x)的单调减区间,那么,是否可认为(-5,-2)也是f(x)的单调减区间呢?

  师:问得好.这说明你想的很仔细,思考问题很严谨.容易证明:若f(x)在[a,b]上单调(增或减),则f(x)在(a,b)上单调(增或减).反之不然,你能举出反例吗?一般来说.若f(x)在[a,(增或减).反之不然.

  例2 证明函数f(x)=3x+2在(-∞,+∞)上是增函数.

  师:从函数图象上观察固然形象,但在理论上不够严格,尤其是有些函数不易画出图象,因此必须学会根据解析式和定义从数量上分析辨认,这才是我们研究函数单调性的基本途径.

  (指出用定义证明的必要性.)

  师:怎样用定义证明呢?请同学们思考后在笔记本上写出证明过程.

  (教师巡视,并指定一名中等水平的学生在黑板上板演.学生可能会对如何比较f(x1)和f(x2)的大小关系感到无从入手,教师应给以启发.)

  师:对于f(x1)和f(x2)我们如何比较它们的大小呢?我们知道对两个实数a,b,如果a>b,那么它们的差a-b就大于零;如果a=b,那么它们的差a—b就等于零;如果a<b,那么它们的差a-b就小于零,反之也成立.因此我们可由差的符号来决定两个数的大小关系.

  生:(板演)设x1,x2是(-∞,+∞)上任意两个自变量,当x1<x2时,

  f(x1)-f(x2)=(3x1+2)-(3x2+2)=3x1-3x2=3(x1-x2)<0,

  所以f(x)是增函数.

  师:他的证明思路是清楚的.一开始设x1,x2是(-∞,+∞)内任意两个自变量,并设x1<x2(边说边用彩色粉笔在相应的语句下划线,并标注“①→设”),然后看f(x1)-f(x2),这一步是证明的关键,再对式子进行变形,一般方法是分解因式或配成完全平方的形式,这一步可概括为“作差,变形”(同上,划线并标注”②→作差,变形”).但美中不足的是他没能说明为什么f(x1)-f(x2)<0,没有用到开始的假设“x1<x2”,不要以为其显而易见,在这里一定要对变形后的式子说明其符号.应写明“因为x1<x2,所以x1-x2<0,从而f(x1)-f(x2)<0,即f(x1)<f(x2).”这一步可概括为“定符号”(在黑板上板演,并注明“③→定符号”).最后,作为证明题一定要有结论,我们把它称之为第四步“下结论”(在相应位置标注“④→下结论”).

  这就是我们用定义证明函数增减性的四个步骤,请同学们记住.需要指出的是第二步,如果函数y=f(x)在给定区间上恒大于零,也可以小.

  (对学生的做法进行分析,把证明过程步骤化,可以形成思维的定势.在学生刚刚接触一个新的知识时,思维定势对理解知识本身是有益的,同时对学生养成一定的思维习惯,形成一定的解题思路也是有帮助的.)

  调函数吗?并用定义证明你的结论.

  师:你的结论是什么呢?

  上都是减函数,因此我觉得它在定义域(-∞,0)∪(0,+∞)上是减函数.

  生乙:我有不同的意见,我认为这个函数不是整个定义域内的减函数,因为它不符合减函数的定义.比如取x1∈(-∞,0),取x2∈(0,+∞),x1<x2显然成立,而f(x1)<0,f(x2)>0,显然有f(x1)<f(x2),而不是f(x1)>f(x2),因此它不是定义域内的减函数.

  生:也不能这样认为,因为由图象可知,它分别在(-∞,0)和(0,+∞)上都是减函数.

  域内的增函数,也不是定义域内的减函数,它在(-∞,0)和(0,+∞)每一个单调区间内都是减函数.因此在函数的几个单调增(减)区间之间不要用符号“∪”连接.另外,x=0不是定义域中的元素,此时不要写成闭区间.

  上是减函数.

  (教师巡视.对学生证明中出现的问题给予点拔.可依据学生的问题,给出下面的提示:

  (1)分式问题化简方法一般是通分.

  (2)要说明三个代数式的符号:k,x1·x2,x2-x1.

  要注意在不等式两边同乘以一个负数的时候,不等号方向要改变.

  对学生的解答进行简单的分析小结,点出学生在证明过程中所出现的问题,引起全体学生的重视.)

  四、课堂小结

  师:请同学小结一下这节课的主要内容,有哪些是应该特别注意的?

  (请一个思路清晰,善于表达的学生口述,教师可从中给予提示.)

  生:这节课我们学习了函数单调性的定义,要特别注意定义中“给定区间”、“属于”、“任意”、“都有”这几个关键词语;在写单调区间时不要轻易用并集的符号连接;最后在用定义证明时,应该注意证明的四个步骤.

  五、作业

  1.课本P53练习第1,2,3,4题.

  数.

  =a(x1-x2)(x1+x2)+b(x1-x2)

  =(x1-x2)[a(x1+x2)+b].(*)

  +b>0.由此可知(*)式小于0,即f(x1)<f(x2).

  课堂教学设计说明

  是函数的一个重要性质,是研究函数时经常要注意的一个性质.并且在比较几个数的大小、对函数作定性分析、以及与其他知识的综合应用上都有广泛的应用.对学生来说,早已有所知,然而没有给出过定义,只是从直观上接触过这一性质.学生对此有一定的感性认识,对概念的理解有一定好处,但另一方面学生也会觉得是已经学过的知识,感觉乏味.因此,在设计教案时,加强了对概念的分析,希望能够使学生认识到看似简单的定义中有不少值得去推敲、去琢磨的东西,其中甚至包含着辩证法的原理.

  另外,对概念的分析是在引进一个新概念时必须要做的,对概念的深入的正确的理解往往是学生认知过程中的难点.因此在本教案的设计过程中突出对概念的分析不仅仅是为了分析函数单调性的定义,而且想让学生对如何学会、弄懂一个概念有初步的认识,并且在以后的学习中学有所用.

  还有,使用函数单调性定义证明是一个难点,学生刚刚接触这种证明方法,给出一定的步骤是必要的,有利于学生理解概念,也可以对学生掌握证明方法、形成证明思路有所帮助.另外,这也是以后要学习的不等式证明方法中的比较化的基本思路,现在提出要求,对今后的教学作一定的铺垫.

高一数学教案2

  1.1 集合含义及其表示

  教学目标:理解集合的概念;掌握集合的三种表示方法,理解集合中元素的三性及元素与集合的关系;掌握有关符号及术语。

  教学过程:

  一、阅读下列语句:

  1) 全体自然数0,1,2,3,4,5,

  2) 代数式 .

  3) 抛物线 上所有的点

  4) 今年本校高一(1)(或(2))班的全体学生

  5) 本校实验室的所有天平

  6) 本班级全体高个子同学

  7) 著名的科学家

  上述每组语句所描述的对象是否是确定的?

  二、1)集合:

  2)集合的元素:

  3)集合按元素的个数分,可分为1)__________2)_________

  三、集合中元素的.三个性质:

  1)___________2)___________3)_____________

  四、元素与集合的关系:1)____________2)____________

  五、特殊数集专用记号:

  1)非负整数集(或自然数集)______2)正整数集_____3)整数集_______

  4)有理数集______5)实数集_____ 6)空集____

  六、集合的表示方法:

  1)

  2)

  3)

  七、例题讲解:

  例1、 中三个元素可构成某一个三角形的三边长,那么此三角形一定不是 ( )

  A,直角三角形 B,锐角三角形 C,钝角三角形 D,等腰三角形

  例2、用适当的方法表示下列集合,然后说出它们是有限集还是无限集?

  1)地球上的四大洋构成的集合;

  2)函数 的全体 值的集合;

  3)函数 的全体自变量 的集合;

  4)方程组 解的集合;

  5)方程 解的集合;

  6)不等式 的解的集合;

  7)所有大于0且小于10的奇数组成的集合;

  8)所有正偶数组成的集合;

  例3、用符号 或 填空:

  1) ______Q ,0_____N, _____Z,0_____

  2) ______ , _____

  3)3_____ ,

  4)设 , , 则

  例4、用列举法表示下列集合;

  1.

  2.

  3.

  4.

  例5、用描述法表示下列集合

  1.所有被3整除的数

  2.图中阴影部分点(含边界)的坐标的集合

  课堂练习:

  例6、设含有三个实数的集合既可以表示为 ,也可以表示为 ,则 的值等于___________

  例7、已知: ,若 中元素至多只有一个,求 的取值范围。

  思考题:数集A满足:若 ,则 ,证明1):若2 ,则集合中还有另外两个元素;2)若 则集合A不可能是单元素集合。

  小结:

  作业 班级 姓名 学号

  1. 下列集合中,表示同一个集合的是 ( )

  A . M= ,N= B. M= ,N=

  C. M= ,N= D. M= ,N=

  2. M= ,X= ,Y= , , .则 ( )

  A . B. C. D.

  3. 方程组 的解集是____________________.

  4. 在(1)难解的题目,(2)方程 在实数集内的解,(3)直角坐标平面内第四象限的一些点,(4)很多多项式。能够组成集合的序号是________________.

  5. 设集合 A= , B= ,

  C= , D= ,E= 。

  其中有限集的个数是____________.

  6. 设 ,则集合 中所有元素的和为

  7. 设x,y,z都是非零实数,则用列举法将 所有可能的值组成的集合表示为

  8. 已知f(x)=x2-ax+b,(a,b R),A= ,B= ,

  若A= ,试用列举法表示集合B=

  9. 把下列集合用另一种方法表示出来:

  (1) (2)

  (3) (4)

  10. 设a,b为整数,把形如a+b 的一切数构成的集合记为M,设 ,试判断x+y,x-y,xy是否属于M,说明理由。

  11. 已知集合A=

  (1) 若A中只有一个元素,求a的值,并求出这个元素;

  (2) 若A中至多只有一个元素,求a的取值集合。

  12.若-3 ,求实数a的值。

  【总结】20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文高一数学教案:集合含义及其表示能给您带来帮助!

高一数学教案3

  一、教材

  首先谈谈我对教材的理解,《两条直线平行与垂直的判定》是人教A版高中数学必修2第三章3.1.2的内容,本节课的内容是两条直线平行与垂直的判定的推导及其应用,学生对于直线平行和垂直的概念已经十分熟悉,并且在上节课学习了直线的倾斜角与斜率,为本节课的学习打下了基础。

  二、学情

  教材是我们教学的工具,是载体。但我们的教学是要面向学生的,高中学生本身身心已经趋于成熟,管理与教学难度较大,那么为了能够成为一个合格的高中教师,深入了解所面对的学生可以说是必修课。本阶段的学生思维能力已经非常成熟,能够有自己独立的思考,所以应该积极发挥这种优势,让学生独立思考探索。

  三、教学目标

  根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

  (一)知识与技能

  掌握两条直线平行与垂直的.判定,能够根据其判定两条直线的位置关系。

  (二)过程与方法

  在经历两条直线平行与垂直的判定过程中,提升逻辑推理能力。

  (三)情感态度价值观

  在猜想论证的过程中,体会数学的严谨性。

  四、教学重难点

  我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:两条直线平行与垂直的判定。本节课的教学难点是:两条直线平行与垂直的判定的推导。

  五、教法和学法

  现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。

  六、教学过程

  下面我将重点谈谈我对教学过程的设计。

  (一)新课导入

  首先是导入环节,那么我采用复习导入,回顾上节课所学的直线的倾斜角与斜率并顺势提问:能否通过直线的斜率,来判断两条直线的位置关系呢?

  利用上节课所学的知识进行导入,很好的克服学生的畏难情绪。

  (二)新知探索

  接下来是教学中最重要的新知探索环节,我主要采用讲解法、小组合作、启发法等。

高一数学教案4

  教学目标:

  1、掌握平面向量的数量积及其几何意义;

  2、掌握平面向量数量积的重要性质及运算律;

  3、了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;

  4、掌握向量垂直的条件、

  教学重难点:

  教学重点:平面向量的数量积定义

  教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用

  教学工具:

  投影仪

  教学过程:

  一、复习引入:

  1、向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ

  五,课堂小结

  (1)请学生回顾本节课所学过的.知识内容有哪些?所涉及到的主要数学思想方法有那些?

  (2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

  (3)你在这节课中的表现怎样?你的体会是什么?

  六、课后作业

  P107习题2、4A组2、7题

  课后小结

  (1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?

  (2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

  (3)你在这节课中的表现怎样?你的体会是什么?

  课后习题

高一数学教案5

  教材:逻辑联结词

  目的:要求学生了解复合命题的意义,并能指出一个复合命题是有哪些简单命题与逻辑联结词,并能由简单命题构成含有逻辑联结词的复合命题。

  过程

  一、提出课题:简单逻辑、逻辑联结词

  二、命题的概念:

  例:125 ① 3是12的约数 ② 0.5是整数 ③

  定义:可以判断真假的语句叫命题。正确的叫真命题,错误的叫假命题。

  如:①②是真命题,③是假命题

  反例:3是12的约数吗? x5 都不是命题

  不涉及真假(问题) 无法判断真假

  上述①②③是简单命题。 这种含有变量的语句叫开语句(条件命题)。

  三、复合命题:

  1.定义:由简单命题再加上一些逻辑联结词构成的命题叫复合命题。

  2.例:

  (1)10可以被2或5整除④ 10可以被2整除或10可以被5整除

  (2)菱形的对角线互相 菱形的对角线互相垂直且菱形的

  垂直且平分⑤ 对角线互相平分

  (3)0.5非整数⑥ 非0.5是整数

  观察:形成概念:简单命题在加上或且非这些逻辑联结词成复合命题。

  3.其实,有些概念前面已遇到过

  如:或:不等式 x2x60的`解集 { x | x2或x3 }

  且:不等式 x2x60的解集 { x | 23 } 即 { x | x2且x3 }

  四、复合命题的构成形式

  如果用 p, q, r, s表示命题,则复合命题的形式接触过的有以下三种:

  即: p或q (如 ④) 记作 pq

  p且q (如 ⑤) 记作 pq

  非p (命题的否定) (如 ⑥) 记作 p

  小结:1.命题 2.复合命题 3.复合命题的构成形式

高一数学教案6

  一、教学目标

  1、理解一次函数和正比例函数的概念,以及它们之间的关系。

  2、能根据所给条件写出简单的一次函数表达式。

  二、能力目标

  1、经历一般规律的探索过程、发展学生的抽象思维能力。

  2、通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力。

  三、情感目标

  1、通过函数与变量之间的关系的联系,一次函数与一次方程的联系,发展学生的数学思维。

  2、经历利用一次函数解决实际问题的过程,发展学生的数学应用能力。

  四、教学重难点

  1、一次函数、正比例函数的概念及关系。

  2、会根据已知信息写出一次函数的表达式。

  五、教学过程

  1、新课导入

  有关函数问题在我们日常生活中随处可见,如弹簧秤有自然长度,在弹性限度内,随着所挂物体的`重量的'增加,弹簧的长度相应的会拉长,那么所挂物体的重量与弹簧的长度之间就存在某种关系,究竟是什么样的关系,

  请看:某弹簧的自然长度为3厘米,在弹性限度内,所挂物体的质量x每增加1千克、弹簧长度y增加0.5厘米。

  (1)计算所挂物体的质量分别为1千克、 2千克、 3千克、 4千克、 5千克时弹簧的长度,

  (2)你能写出x与y之间的关系式吗?

  分析:当不挂物体时,弹簧长度为3厘米,当挂1千克物体时,增加0.5厘米,总长度为3.5厘米,当增加1千克物体,即所挂物体为2千克时,弹簧又增加0.5厘米,总共增加1厘米,由此可见,所挂物体每增加1千克,弹簧就伸长0.5厘米,所挂物体为x千克,弹簧就伸长0.5x厘米,则弹簧总长为原长加伸长的长度,即y=3+0.5x。

  2、做一做

  某辆汽车油箱中原有汽油 100升,汽车每行驶 50千克耗油 9升。你能写出x与y之间的关系吗?(y=1000。18x或y=100 x)

  接着看下面这些函数,你能说出这些函数有什么共同的特点吗?上面的几个函数关系式,都是左边是因变量,右边是含自变量的代数式,并且自变量和因变量的指数都是一次。

  3、一次函数,正比例函数的概念

  若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。

  4、例题讲解

  例1:下列函数中,y是x的一次函数的是( )

  ①y=x6;②y= ;③y= ;④y=7x

  A、①②③ B、①③④ C、①②③④ D、②③④

  分析:这道题考查的是一次函数的概念,特别要强调一次函数自变量与因变量的指数都是1,因而②不是一次函数,答案为B

高一数学教案7

  第二十四教时

  教材:倍角公式,推导和差化积及积化和差公式

  目的:继续复习巩固倍角公式,加强对公式灵活运用的训练;同时,让学生推导出和差化积和积化和差公式,并对此有所了解。

  过程:

  一、 复习倍角公式、半角公式和万能公式的推导过程:

  例一、 已知 , ,tan = ,tan = ,求2 +

  (《教学与测试》P115 例三)

  解:

  又∵tan2 0,tan 0 ,

  2 + =

  例二、 已知sin cos = , ,求 和tan的值

  解:∵sin cos =

  化简得:

  ∵ 即

  二、 积化和差公式的'推导

  sin( + ) + sin( ) = 2sincos sincos = [sin( + ) + sin( )]

  sin( + ) sin( ) = 2cossin cossin = [sin( + ) sin( )]

  cos( + ) + cos( ) = 2coscos coscos = [cos( + ) + cos( )]

  cos( + ) cos( ) = 2sinsin sinsin = [cos( + ) cos( )]

  这套公式称为三角函数积化和差公式,熟悉结构,不要求记忆,它的优点在于将积式化为和差,有利于简化计算。(在告知公式前提下)

  例三、 求证:sin3sin3 + cos3cos3 = cos32

  证:左边 = (sin3sin)sin2 + (cos3cos)cos2

  = (cos4 cos2)sin2 + (cos4 + cos2)cos2

  = cos4sin2 + cos2sin2 + cos4cos2 + cos2cos2

  = cos4cos2 + cos2 = cos2(cos4 + 1)

  = cos22cos22 = cos32 = 右边

  原式得证

  三、 和差化积公式的推导

  若令 + = , = ,则 , 代入得:

  这套公式称为和差化积公式,其特点是同名的正(余)弦才能使用,它与积化和差公式相辅相成,配合使用。

  例四、 已知cos cos = ,sin sin = ,求sin( + )的值

  解:∵cos cos = , ①

  sin sin = , ②

  四、 小结:和差化积,积化和差

  五、 作业:《课课练》P3637 例题推荐 13

  P3839 例题推荐 13

  P40 例题推荐 13

高一数学教案8

  一、学习目标:

  知识与技能:理解直线与平面、平面与平面平行的性质定理的含义, 并会应用性质解决问题

  过程与方法:能应用文字语言、符号语言、图形语言准确地描述直线与平面、平面与平面的性质定理

  情感态度与价值观:通过自主学习、主动参与、积极探究的学习过程,激发学生学习数学的自信心和积极性,培养学生良好的思维习惯,渗透化归与转化的数学思想,体会事物之间相互转化和理论联系实际的辩证唯物主义思想方法

  二、学习重、难点

  学习重点: 直线与平面、平面与平面平行的性质及其应用

  学习难点: 将空间问题转化为平面问题的方法,

  三、学法指导及要求:

  1、限定45分钟完成,注意逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。

  2、把学案中自己易忘、易出错的知识点和疑难问题以及解题方法规律,及时整理在解题本,多复习记忆。3、A:自主学习;B:合作探究;C:能力提升4、小班、重点班完成全部,平行班完成A.B类题

  四、知识链接:

  1.空间直线与直线的位置关系

  2.直线与平面的位置关系

  3.平面与平面的位置关系

  4.直线与平面平行的判定定理的符号表示

  5.平面与平面平行的判定定理的符号表示

  五、学习过程:

  A问题1:

  1)如果一条直线与一个平面平行,那么这条直线与这个平面内的直线有哪些位置关系?

  (观察长方体)

  2)如果一条直线和一个平面平行,如何在这个平面内做一条直线与已知直线平行?

  (可观察教室内灯管和地面)

  A问题2: 一条直线与平面平行,这条直线和这个平面内直线的位置关系有几种可能?

  A问题3:如果一条直线 与平面平行,在什么条件下直线 与平面内的直线平行呢?

  由于直线 与平面内的任何直线无公共点,所以过直线 的某一平面,若与平面相交,则直线 就平行于这条交线

  B自主探究1:已知: ∥, ,=b。求证: ∥b。

  直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的.任一平面与此平面的交线与该直线平行

  符号语言:

  线面平行性质定理作用:证明两直线平行

  思想:线面平行 线线平行

  例1:有一块木料如图,已知棱BC平行于面AC(1)要经过木料表面ABCD 内的一点P和棱BC将木料锯开,应怎样画线?(2)所画的线和面AC有什么关系?

  例2:已知平面外的两条平行直线中的一条平行于这个平面,求证:另一条也平行于这个平面。

  问题5:两个平面平行,那么其中一个平面内的直线与另一平面有什么样的关系?两个平面平行,那么其中一个平面内的直线与另一平面内的直线有何关系?

  自主探究2:如图,平面,,满足∥,=a,=b,求证:a∥b

  平面与平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行

  符号语言:

  面面平行性质定理作用:证明两直线平行

  思想:面面平行 线线平行

  例3 求证:夹在两个平行平面间的平行线段相等

  六、达标检测:

  A1.61页练习

  A2.下列判断正确的是( )

  A. ∥, ,则 ∥b B. =P,b ,则 与b不平行

  C. ,则a∥ D. ∥,b∥,则 ∥b

  B3.直线 ∥平面,P,过点P平行于 的直线( )

  A.只有一条,不在平面内 B.有无数条,不一定在内

  C.只有一条,且在平面内 D.有无数条,一定在内

  B4.下列命题错误的是 ( )

  A. 平行于同一条直线的两个平面平行或相交

  B. 平行于同一个平面的两个平面平行

  C. 平行于同一条直线的两条直线平行

  D. 平行于同一个平面的两条直线平行或相交

  B5. 平行四边形EFGH的四个顶点E、F、G、H、分别在空间四边形ABCD的四条边AB、BC、CD、AD、上,又EF∥BD,则 ( )

  A. EH∥BD,BD不平行与FG

  B. FG∥BD,EH不平行于BD

  C. EH∥BD,FG∥BD

  D. 以上都不对

  B6.若直线 ∥b, ∥平面,则直线b与平面的位置关系是

  B7一个平面上有两点到另一个平面的距离相等,则这两个平面

  七、小结与反思:

高一数学教案9

  1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用。

  (1) 能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象。

  (2) 能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题。

  2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力。

  3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性。

  高一数学对数函数教案:教材分析

  (1) 对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的。故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸。它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础。

  (2) 本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质。难点是利用指数函数的.图象和性质得到对数函数的图象和性质。由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点。

  (3) 本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开。而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点。

  高一数学对数函数教案:教法建议

  (1) 对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数 的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质。

  (2) 在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这条主线引导学生思考的方向。这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣。

高一数学教案10

  知识结构

  重难点分析

  本节的重点是二次根式的化简.本章自始至终围绕着二次根式的化简与计算进行,而二次根式的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中常常需要对字母进行分类讨论.

  本节的难点是正确理解与应用公式.这个公式的表达形式对学生来说,比较生疏,而实际运用时,则要牵涉到对字母取值范围的讨论,学生往往容易出现错误.

  教法建议

  1.性质的引入方法很多,以下2种比较常用:

  (1)设计问题引导启发:由设计的问题

  1)、、各等于什么?

  2)、、各等于什么?

  启发、引导学生猜想出

  (2)从算术平方根的意义引入.

  2.性质的巩固有两个方面需要注意:

  (1)注意与性质进行对比,可出几道类型不同的题进行比较;

  (2)学生初次接触这种形式的表示方式,在教学时要注意细分层次加以巩固,如单个数字,单个字母,单项式,可进行因式分解的多项式,等等.

  (第1课时)

  一、教学目标

  1.掌握二次根式的性质

  2.能够利用二次根式的性质化简二次根式

  3.通过本节的学习渗透分类讨论的数学思想和方法

  二、教学设计

  对比、归纳、总结

  三、重点和难点

  1.重点:理解并掌握二次根式的性质

  2.难点:理解式子中的可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.

  四、课时安排

  1课时

  五、教B具学具准备

  投影仪、胶片、多媒体

  六、师生互动活动设计

  复习对比,归纳整理,应用提高,以学生活动为主

  七、教学过程

  一、导入新课

  我们知道,式子()表示非负数的算术平方根.

  问:式子的'意义是什么?被开方数中的表示的是什么数?

  答:式子表示非负数的算术平方根,即,且,从而可以取任意实数.

  二、新课

  计算下列各题,并回答以下问题:

  (1);(2);(3);

  1.各小题中被开方数的幂的底数都是什么数?

  2.各小题的结果和相应的被开方数的幂的底数有什么关系?

  3.用字母表示被开方数的幂的底数,将有怎样的结论?并用语言叙述你的结论.

高一数学教案11

  目标:

  1.让学生熟练掌握二次函数的图象,并会判断一元二次方程根的存在性及根的个数 ;

  2.让学生了解函数的零点与方程根的联系 ;

  3.让学生认识到函数的图象及基本性质(特别是单调性)在确定函数零点中的作用 ;

  4。培养学生动手操作的能力 。

  二、教学重点、难点

  重点:零点的概念及存在性的判定;

  难点:零点的确定。

  三、复习引入

  例1:判断方程 x2-x-6=0 解的'存在。

  分析:考察函数f(x)= x2-x-6, 其

  图像为抛物线容易看出,f(0)=-60,

  f(4)0,f(-4)0

  由于函数f(x)的图像是连续曲线,因此,

  点B (0,-6)与点C(4,6)之间的那部分曲线

  必然穿过x轴,即在区间(0,4)内至少有点

  X1 使f(X1)=0;同样,在区间(-4,0) 内也至

  少有点X2,使得f( X2)=0,而方程至多有两

  个解,所以在(-4,0),(0,4)内各有一解

  定义:对于函数y=f(x),我们把使f(x)=0的实数 x叫函数y=f(x)的零点

  抽象概括

  y=f(x)的图像与x轴的交点的横坐标叫做该函数的零点,即f(x)=0的解。

  若y=f(x)的图像在[a,b]上是连续曲线,且f(a)f(b)0,则在(a,b)内至少有一个零点,即f(x)=0在 (a,b)内至少有一个实数解。

  f(x)=0有实根(等价与y=f(x))与x轴有交点(等价与)y=f(x)有零点

  所以求方程f(x)=0的根实际上也是求函数y=f(x)的零点

  注意:1、这里所说若f(a)f(b)0,则在区间(a,b)内方程f(x)=0至少有一个实数解指出了方程f(x)=0的实数解的存在性,并不能判断具体有多少个解;

  2、若f(a)f(b)0,且y=f(x)在(a,b)内是单调的,那么,方程f(x)=0在(a,b)内有唯一实数解;

  3、我们所研究的大部分函数,其图像都是连续的曲线;

  4、但此结论反过来不成立,如:在[-2,4]中有根,但f(-2)0, f(4) 0,f(-2) f(4)

  5、缺少条件在[a,b]上是连续曲线则不成立,如:f(x)=1/ x,有f(-1)xf(1)0但没有零点。

  四、知识应用

  例2:已知f(x)=3x-x2 ,问方程f(x)=0在区间[-1,0]内没有实数解?为什么?

  解:f(x)=3x-x2的图像是连续曲线, 因为

  f(-1)=3-1-(-1)2 =-2/30, f(0)=30-(0)2 =-10,

  所以f(-1) f(0) 0,在区间[-1,0]内有零点,即f(x)=0在区间[-1,0]内有实数解

  练习:求函数f(x)=lnx+2x-6 有没有零点?

  例3 判定(x-2)(x-5)=1有两个相异的实数解,且有一个大于5,一个小于2。

  解:考虑函数f(x)=(x-2)(x-5)-1,有

  f(5)=(5-2)(5-5)-1=-1

  f(2)=(2-2)(2-5)-1=-1

  又因为f(x)的图像是开口向上的抛物线,所以抛物线与横轴在(5,+)内有一个交点,在( -,2)内也有一个交点,所以方程式(x-2)(x-5)=1有两个相异数解,且一个大于5,一个小于2。

  练习:关于x的方程2x2-3x+2m=0有两个实根均在[-1,1]内,求m的取值范围。

  五、课后作业

  p133第2,3题

高一数学教案12

  重点

  理解角与角的相关概念;掌握角的度量单位以及单位之间的换算.

  难点

  理解角与角的相关概念;掌握角的度量单位以及单位之间的换算.

  一、创设情境,导入新知

  展示实物:时钟,圆规,折扇等.

  (1)观察实物与图片,你发现其中有什么相同图形吗?学生回答,教师点评,注意鼓励学生.

  (2)你能把观察得到的图形画在本子上或黑板上吗?这是一些什么图形?思考,动手画一画.

  (3)从黑板上这些不同的图形中,你能归纳出它们的共同特点吗?

  学生相互交流并回答,挖掘和利用现实生活中与角相关的背景,让学生在现实背景中认识角,培养学生的动手能力.引导学生观察并归纳角的共同点,进而引入课题.

  二、自主合作,感受新知

  回顾以前学的知识、阅读课文并结合生活实际,完成“预习导学”部分.

  三、师生互动,理解新知

  探究点一:角的概念及表示方法

  活动一:从生活中认识角

  我们看物体时,有视角,钟表的指针转动也形成角.请同学们看课本后回答下面问题.

  (1)角是一个几何图形,请大家说说,角是由什么图形构成的?(学生回答,教师点评,注意鼓励学生)

  (2)如果我们把角看作是一条射线绕它的端点旋转围成的图形,那么始边和终边又指什么?

  教师总结:角有两个定义,一个是静态的定义,把角看作由一点出发的两条射线组成的图形;另一个定义是动态的,把角看作一条射线绕端点旋转所形成的图形,把开始位置的射线叫做始边,把终止位置的射线叫做终边.

  (3)请同学们说一说,我们日常生活中,哪些地方有角.(学生举例)

  活动二:角的表示方法

  我们怎样表示角呢?请同学们看课本上说了几种表示方法?(学生先看书,后回答)

  教师总结:(1)用三个大写字母可以表示一个角,比如∠AOB.

  练习:谁能指出下列各角的顶点和两条边?

  注意:①三个字母的顺序有规定,顶点的字母必须写在中间.

  ②顶点的字母不一定用O,角的始边与终边的字母也可以随意.

  (2)当一个顶点只有一个角时,也可以用顶点的字母表示.比如,下面的角可以表示为∠O.

  练习:判断下列角可以用顶点的字母表示吗?

  (3)用数字或小写的希腊字母表示角.(注意:角中不能有角)

  练习:下面表示角的方法,哪个是正确的?哪个是错误的?

  探究点二:角的度量

  活动三:角的度量

  (1)请同学们借助量角器画出下列各角:

  ①30° ②45° ③60° ④90° ⑤120° ⑥150° ⑦62° ⑧105°

  学生画图,教师指导.(根据需要教师可先做示范)

  (2)任意画一个角,用量角器测量角的大小.提问:如果这个角的度数不是整数,应该怎样表示这个角的度数呢?引出角的度量单位是度、分、秒.

  教师总结:它们之间的关系是:1°=60′,1′=60″ (强调度、分、秒是60进制,不是十进制).

  (3)还有什么单位是60进制?

  (4)让学生画一个1°角,感受1°角有多大.

  四、应用迁移,运用新知

  1.角的定义

  例1 下列说法中,正确的是( )

  A.两条射线组成的图形叫做角

  B.有公共端点的两条线段组成的图形叫做角

  C.角可以看作是由一条射线绕着它的端点旋转而形成的图形

  D.角可以看作是由一条线段绕着它的端点旋转而形成的图形

  解析:A.有公共端点的两条射线组成的图形叫做角,故错误;B.根据A可得B错误;C.角可以看作是由一条射线绕着它的端点旋转而形成的图形,正确;D.据C可得D错误.

  方法总结:此题考查了角的定义,有公共端点的两条不重合的射线组成的图形叫做角.这个公共端点叫做角的顶点,这两条射线叫做角的两条边.

  2.角的表示方法

  例2 下列四个图形中,能用∠1、∠AOB、∠O三种方法表示同一个角的图形是( )

  A B C D

  解析:在角的顶点处有多个角时,用一个字母表示这个角,这种方法是错误的`.所以A、C、D错误.

  方法总结:角的两个基本元素中,边是两条射线,

  顶点是这两条射线的公共端点.

  3.判断角的数量

  例3 如图所示,在∠AOB的内部有3条射线,则图中角的个数为( )

  A.10 B.15 C.5 D.20

  解析:可以根据图形依次数出角的个数;或者根据公式求图中角的个数是12×5×(5-1)=10.

  方法总结:若从一点发出n条射线,则构成12n(n-1)个角.

  4.角的度量

  例4 见课本P144例1.

  方法总结:用度、分、秒表示的角度和用度表示的角度的相互转化的过程正好相反:大单位化小单位,乘以进率;而小单位化大单位要除以进率.

  五、尝试练习,掌握新知

  课本P144练习第1、2题、P145练习第1、2题.

  “随堂演练”部分.

  六、课堂小结,梳理新知

  通过本节课的学习,我们都学到了哪些数学知识和方法?

  本节课学习了角及角的有关概念,并会表示角;知道角的度量单位,并能进行单位的转换;会把角的知识与现实生活相联系,用角的知识解释生活中的一些现象.

  七、深化练习,巩固新知

  课本P145~146习题4.4第1~4题.

  “课时作业”部分.

高一数学教案13

  学习目标

  1.掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质

  2.掌握标准方程中的几何意义

  3.能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题

  一、预习检查

  1、焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方程为.

  2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为.

  3、双曲线的渐进线方程为.

  4、设分别是双曲线的半焦距和离心率,则双曲线的一个顶点到它的一条渐近线的距离是.

  二、问题探究

  探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同.

  探究2、双曲线与其渐近线具有怎样的关系.

  练习:已知双曲线经过,且与另一双曲线,有共同的渐近线,则此双曲线的标准方程是.

  例1根据以下条件,分别求出双曲线的标准方程.

  (1)过点,离心率.

  (2)、是双曲线的左、右焦点,是双曲线上一点,且,,离心率为.

  例2已知双曲线,直线过点,左焦点到直线的距离等于该双曲线的虚轴长的,求双曲线的离心率.

  例3(理)求离心率为,且过点的双曲线标准方程.

  三、思维训练

  1、已知双曲线方程为,经过它的右焦点,作一条直线,使直线与双曲线恰好有一个交点,则设直线的斜率是.

  2、椭圆的离心率为,则双曲线的离心率为.

  3、双曲线的渐进线方程是,则双曲线的离心率等于=.

  4、(理)设是双曲线上一点,双曲线的一条渐近线方程为、分别是双曲线的左、右焦点,若,则.

  四、知识巩固

  1、已知双曲线方程为,过一点(0,1),作一直线,使与双曲线无交点,则直线的斜率的集合是.

  2、设双曲线的.一条准线与两条渐近线交于两点,相应的焦点为,若以为直径的圆恰好过点,则离心率为.

  3、已知双曲线的左,右焦点分别为,点在双曲线的右支上,且,则双曲线的离心率的值为.

  4、设双曲线的半焦距为,直线过、两点,且原点到直线的距离为,求双曲线的离心率.

  5、(理)双曲线的焦距为,直线过点和,且点(1,0)到直线的距离与点(-1,0)到直线的距离之和.求双曲线的离心率的取值范围.

高一数学教案14

  教学目标:①掌握对数函数的性质。

  ②应用对数函数的性质可以解决:对数的大小比较,求复

  合函数的定义域、值 域及单调性。

  ③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高

  解题能力。

  教学重点与难点:对数函数的'性质的应用。

  教学过程设计:

  ⒈复习提问:对数函数的概念及性质。

  ⒉开始正课

  1 比较数的大小

  例 1 比较下列各组数的大小。

  ⑴loga5.1 ,loga5.9 (a>0,a≠1)

  ⑵log0.50.6 ,logЛ0.5 ,lnЛ

  师:请同学们观察一下⑴中这两个对数有何特征?

  生:这两个对数底相等。

  师:那么对于两个底相等的对数如何比大小?

  生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。

  师:对,请叙述一下这道题的解题过程。

  生:对数函数的单调性取决于底的大小:当0

  调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递

  增,所以loga5.1

  板书:

  解:Ⅰ)当0

  ∵5.1<5.9 loga5.1="">loga5.9

  Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,

  ∵5.1<5.9 ∴loga5.1

  师:请同学们观察一下⑵中这三个对数有何特征?

  生:这三个对数底、真数都不相等。

  师:那么对于这三个对数如何比大小?

  生:找“中间量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnл>1,

  log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

  板书:略。

  师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函

  数 的单调性比大小,②借用“中间量”间接比大小,③利用对数

  函数图象的位置关系来比大小。

  2 函数的定义域, 值 域及单调性。

高一数学教案15

  一、教材分析

  本节课选自《普通高中课程标准数学教科书—必修1》(人教A版)《1。2。1函数的概念》共3课时,本节课是第1课时。生活中的许多现象如物体运动,气温升降,投资理财等都可以用函数的模型来刻画,是我们更好地了解自己、认识世界和预测未来的重要工具。函数是数学的重要的基础概念之一,是高等数学重多学科的基础概念和重要的研究对象。同时函数也是物理学等其他学科的重要基础知识和研究工具,教学内容中蕴涵着极其丰富的辩证思想。

  二、学生学习情况分析

  函数是中学数学的主体内容,学生在中学阶段对函数的认识分三个阶段:

  (一)初中从运动变化的角度来刻画函数,初步认识正比例、反比例、一次和二次函数;

  (二)高中用集合与对应的观点来刻画函数,研究函数的性质,学习典型的对、指、幂和三解函数;

  (三)高中用导数工具研究函数的单调性和最值。

  1、有利条件

  现代教育心理学的研究认为,有效的概念教学是建立在学生已有知识结构的基础上的,因此教师在设计教学的过程中必须注意在学生已有知识结构中寻找新概念的固着点,引导学生通过同化或顺应,掌握新概念,进而完善知识结构。

  初中用运动变化的观点对函数进行定义的,它反映了历人们对它的一种认识,而且这个定义较为直观,易于接受,因此按照由浅入深、力求符合学生认知规律的内容编排原则,函数概念在初中介绍到这个程度是合适的。也为我们用集合与对应的观点研究函数打下了一定的基础。

  2、不利条件

  用集合与对应的观点来定义函数,形式和内容上都是比较抽象的,这对学生的理解能力是一个挑战,是本节课教学的一个不利条件。

  三、教学目标分析

  课标要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域。

  1、知识与能力目标:

  ⑴能从集合与对应的角度理解函数的概念,更要理解函数的本质属性;

  ⑵理解函数的三要素的含义及其相互关系;

  ⑶会求简单函数的定义域和值域

  2、过程与方法目标:

  ⑴通过丰富实例,使学生建立起函数概念的背景,体会函数是描述变量之间依赖关系的数学模型;

  ⑵在函数实例中,通过对关键词的强调和引导使学发现它们的共同特征,在此基础上再用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。

  3、情感、态度与价值观目标:

  感受生活中的数学,感悟事物之间联系与变化的辩证唯物主义观点。

  四、教学重点、难点分析

  1、教学重点:对函数概念的理解,用集合与对应的语言来刻画函数;

  重点依据:初中是从变量的角度来定义函数,高中是用集合与对应的语言来刻画函数。二者反映的本质是一致的,即“函数是一种对应关系”。但是,初中定义并未完全揭示出函数概念的本质,对y?1这样的函数用运动变化的观点也很难解释。在以函数为重要内容的高中阶段,课本应将函数定义为两个数集之间的一种对应关系,按照这种观点,使我们对函数概念有了更深一层的认识,也很容易说明y?1这函数表达式。因此,分析两种函数概念的关系,让学生融会贯通地理解函数的概念应为本节课的重点。

  突出重点:重点的.突出依赖于对函数概念本质属性的把握,使学生通过表面的语言描述抓住概念的精髓。

  2、教学难点:

  第一:从实际问题中提炼出抽象的概念;

  第二:符号“y=f(x)”的含义的理解。

  难点依据:数学语言的抽象概括难度较大,对符号y=f(x)的理解会受到以前知识的负迁移。

  突破难点:难点的突破要依托丰富的实例,从集合与对应的角度恰当地引导,而对抽象符号的理解则要结合函数的三要素和小例子进行说明。

  五、教法与学法分析

  1、教法分析

  本节课我主要采用教师导学法、知识迁移法和知识对比法,从学生熟悉的丰富实例出发,关注学生的原有的知识基础,注重概念的形成过程,从初中的函数概念自然过度到函数的近代定我。

  2、学法分析

  在教学过程中我注意在教学中引导学生用模型法分析函数问题、通过自主学习法总结“区间”的知识。

【高一数学教案】相关文章:

高一优秀数学教案09-28

高一数学教案11-05

高一数学教案数列12-29

【荐】高一数学教案11-27

【热】高一数学教案12-05

【热门】高一数学教案11-26

高一数学教案【荐】12-02

高一数学教案【热门】11-28

高一数学教案【热】12-03

高一数学教案【推荐】11-30