现在位置:范文先生网>教案大全>数学教案>高一数学教案>高一数学教案数列

高一数学教案数列

时间:2022-12-29 15:26:54 高一数学教案 我要投稿
  • 相关推荐

高一数学教案数列

  作为一无名无私奉献的教育工作者,可能需要进行教案编写工作,教案是教学活动的依据,有着重要的地位。那么应当如何写教案呢?以下是小编收集整理的高一数学教案数列,仅供参考,欢迎大家阅读。

高一数学教案数列

高一数学教案数列1

  教学目标

  1.理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题.

  (1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念;

  (2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项;

  (3)通过通项公式认识等比数列的性质,能解决某些实际问题.

  2.通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质.

  3.通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度.

  教学建议

  教材分析

  (1)知识结构

  等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用.

  (2)重点、难点分析

  教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用.

  ①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点.

  ②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点.

  ③对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点.

  教学建议

  (1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用.

  (2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义.也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义.

  (3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解.

  (4)对比等差数列的表示法,由学生归纳等比数列的各种表示法. 启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象.

  (5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现.

  (6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用.

  教学设计示例

  课题:等比数列的概念

  教学目标

  1.通过教学使学生理解等比数列的概念,推导并掌握通项公式.

  2.使学生进一步体会类比、归纳的思想,培养学生的`观察、概括能力.

  3.培养学生勤于思考,实事求是的精神,及严谨的科学态度.

  教学重点,难点

  重点、难点是等比数列的定义的归纳及通项公式的推导.

  教学用具

  投影仪,多媒体软件,电脑.

  教学方法

  讨论、谈话法.

  教学过程

  一、提出问题

  给出以下几组数列,将它们分类,说出分类标准.(幻灯片)

  ①-2,1,4,7,10,13,16,19,…

  ②8,16,32,64,128,256,…

  ③1,1,1,1,1,1,1,…

  ④243,81,27,9,3,1, , ,…

  ⑤31,29,27,25,23,21,19,…

  ⑥1,-1,1,-1,1,-1,1,-1,…

  ⑦1,-10,100,-1000,10000,-100000,…

  ⑧0,0,0,0,0,0,0,…

  由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列).

  二、讲解新课

  请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题.假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数 这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列——等比数列. (这里播放变形虫分裂的多媒体软件的第一步)

  等比数列(板书)

  1.等比数列的定义(板书)

  根据等比数列与等差数列的名字的区别与联系,尝试给等比数列下定义.学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的.教师写出等比数列的定义,标注出重点词语.

  请学生指出等比数列②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是等比数列.学生通过观察可以发现③是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例.而后请学生概括这类数列的一般形式,学生可能说形如 的数列都满足既是等差又是等比数列,让学生讨论后得出结论:当 时,数列 既是等差又是等比数列,当 时,它只是等差数列,而不是等比数列.教师追问理由,引出对等比数列的认识:

  2.对定义的认识(板书)

  (1)等比数列的首项不为0;

  (2)等比数列的每一项都不为0,即 ;

  问题:一个数列各项均不为0是这个数列为等比数列的什么条件?

  (3)公比不为0.

  用数学式子表示等比数列的定义.

  是等比数列 ①.在这个式子的写法上可能会有一些争议,如写成 ,可让学生研究行不行,好不好;接下来再问,能否改写为 是等比数列 ?为什么不能?

  式子 给出了数列第 项与第 项的数量关系,但能否确定一个等比数列?(不能)确定一个等比数列需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式.

  3.等比数列的通项公式(板书)

  问题:用 和 表示第 项 .

  ①不完全归纳法

  ②叠乘法

  ,… , ,这 个式子相乘得 ,所以 .

  (板书)(1)等比数列的通项公式

  得出通项公式后,让学生思考如何认识通项公式.

  (板书)(2)对公式的认识

  由学生来说,最后归结:

  ①函数观点;

  ②方程思想(因在等差数列中已有认识,此处再复习巩固而已).

  这里强调方程思想解决问题.方程中有四个量,知三求一,这是公式最简单的应用,请学生举例(应能编出四类问题).解题格式是什么?(不仅要会解题,还要注意规范表述的训练)

  如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究.同学可以试着编几道题.

  三、小结

  1.本节课研究了等比数列的概念,得到了通项公式;

  2.注意在研究内容与方法上要与等差数列相类比;

  3.用方程的思想认识通项公式,并加以应用.

高一数学教案数列2

  教学 目标

  1、使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项、

  (1)理解数列是按一定顺序排成的一列数,其每一项是由其项数唯一确定的、

  (2)了解数列的各种表示方法,理解通项公式是数列第 项 与项数 的关系式,能根据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式、

  (3)已知一个数列的递推公式及前若干项,便确定了数列,能用代入法写出数列的前几项、

  2、通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力、

  3、通过由 求 的过程,培养学生严谨的科学态度及良好的思维习惯、

  教学 建议

  (1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的计算等、

  (2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系、在 教学 中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列、函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法、由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法??递推公式法、

  (3)由数列的通项公式写出数列的前几项是简单的代入法, 教师 应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助、

  (4)由数列的前几项写出数列的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用 来调整等、如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系、

  (5)对每个数列都有求和问题,所以在本节课应补充数列前 项和的概念,用 表示 的问题是重点问题,可先提出一个具体问题让学生分析 与 的关系,再由特殊到一般,研究其一般规律,并给出严格的推理证明(强调 的表达式是分段的);之后再到特殊问题的解决,举例时要兼顾结果可合并及不可合并的情况、

  (6)给出一些简单数列的通项公式,可以求其最大项或最小项,又是函数思想与方法的体现,对程度好的学生应提出这一问题,学生运用函数知识是可以解决的、

  教学 设计示例

  数列的概念

  教学 目标

  1、通过 教学 使学生理解数列的概念,了解数列的表示法,能够根据通项公式写出数列的项、

  2、通过数列定义的归纳概括,初步培养学生的观察、抽象概括能力;渗透函数思想、

  3、通过有关数列实际应用的介绍,激发学生学习研究数列的积极性、

  教学 重点,难点

  教学 重点是数列的定义的归纳与认识; 教学 难点是数列与函数的联系与区别、

  教学 用具: 电脑,课件(媒体资料),投影仪,幻灯片

  教学 方法: 讲授法为主

  教学 过程

  一、揭示课题

  今天开始我们研究一个新课题、

  先举一个生活中的例子:场地上堆放了一些圆钢,最底下的一层有100根,在其上一层(称作第二层)码放了99根,第三层码放了98根,依此类推,问:最多可放多少层?第57层有多少根?从第1层到第57层一共有多少根?我们不能满足于一层层的去数,而是要但求如何去研究,找出一般规律、实际上我们要研究的是这样的一列数

  ( 板书 ) 象这样排好队的数就是我们的研究对象??数列、

  ( 板书 )第三章 数列

  (一)数列的概念

  二、讲解新课

  要研究数列先要知道何为数列,即先要给数列下定义,为帮助同学概括出数列的定义,再给出几列数:

  (幻灯片)

  ①

  自然数排成一列数:

  ②

  3个1排成一列:

  ③

  无数个1排成一列:

  ④

  的不足近似值,分别近似到 排列起来:

  ⑤

  正整数 的倒数排成一列数:

  ⑥

  函数 当 依次取 时得到一列数:

  ⑦

  函数 当 依次取 时得到一列数:

  ⑧

  请学生观察8列数,说明每列数就是一个数列,数列中的每个数都有自己的特定的位置,这样数列就是按一定顺序排成的一列数、

  ( 板书 )1、数列的定义:按一定次序排成的一列数叫做数列、

  为表述方便给出几个名称:项,项数,首项(以幻灯片的形式给出)、以上述八个数列为例,让学生练习了指出某一个数列的.首项是多少,第二项是多少,指出某一个数列的一些项的项数、

  由此可以看出,给定一个数列,应能够指明第一项是多少,第二项是多少,……,每一项都是确定的,即指明项数,对应的项就确定、所以数列中的每一项与其项数有着对应关系,这与我们学过的函数有密切关系、

  ( 板书 )2、数列与函数的关系

  数列可以看作特殊的函数,项数是其自变量,项是项数所对应的函数值,数列的定义域是正整数集 ,或是正整数集 的有限子集 、

  于是我们研究数列就可借用函数的研究方法,用函数的观点看待数列、

  遇到数学概念不单要下定义,还要给其数学表示,以便研究与交流,下面探讨数列的表示法、

  ( 板书 )3、数列的表示法

  数列可看作特殊的函数,其表示也应与函数的表示法有联系,首先请学生回忆函数的表示法:列表法,图象法,解析式法、相对于列表法表示一个函数,数列有这样的表示法:用 表示第一项,用 表示第一项,……,用 表示第 项,依次写出成为

  ( 板书 )(1)列举法

  (如幻灯片上的例子)简记为

  一个函数的直观形式是其图象,我们也可用图形表示一个数列,把它称作图示法、

  ( 板书 )(2)图示法

  启发学生仿照函数图象的画法画数列的图形、具体方法是以项数 为横坐标,相应的项 为纵坐标,即以 为坐标在平面直角坐标系中做出点(以前面提到的数列 为例,做出一个数列的图象),所得的数列的图形是一群孤立的点,因为横坐标为正整数,所以这些点都在 轴的右侧,而点的个数取决于数列的项数、从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势、

  有些函数可以用解析式来表示,解析式反映了一个函数的函数值与自变量之间的数量关系,类似地有一些数列的项能用其项数的函数式表示出来,即 ,这个函数式叫做数列的通项公式、

  ( 板书 )(3)通项公式法

  如数列 的通项公式为 ;

  的通项公式为 ;

  的通项公式为 ;

  数列的通项公式具有双重身份,它表示了数列的第 项,又是这个数列中所有各项的一般表示、通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项、

  例如,数列 的通项公式 ,则 、

  值得注意的是,正如一个函数未必能用解析式表示一样,不是所有的数列都有通项公式,即便有通项公式,通项公式也未必唯一、

  除了以上三种表示法,某些数列相邻的两项(或几项)有关系,这个关系用一个公式来表示,叫做递推公式、

  ( 板书 )(4)递推公式法

  如前面所举的钢管的例子,第 层钢管数 与第 层钢管数 的关系是 ,再给定 ,便可依次求出各项、再如数列 中, ,这个数列就是 、

  像这样,如果已知数列的第1项(或前几项),且任一项与它的前一项(或前几项)间的关系用一个公式来表示,这个公式叫做这个数列的递推公式、递推公式是数列所特有的表示法,它包含两个部分,一是递推关系,一是初始条件,二者缺一不可、

  可由学生举例,以检验学生是否理解、

  三、小结

  1、数列的概念

  2、数列的四种表示

  四、作业? 略

  五、 板书 设计

  数列

  (一)数列的概念 涉及的数列及表示

  1、数列的定义

  2、数列与函数的关系

  3、数列的表示法

  (1)列举法

  (2)图示法

  (3)通项公式法

  (4)递推公式法

  探究活动

  将边长为 厘米的正方形分成 个边长为1厘米的正方形,数出其中所有正方形的个数、

  解:当 时,共有正方形 个;当 时,共有正方形 个;当 时,共有正方形 个;当 时,共有正方形 个;当 时,共有正方形 个;归纳猜想边长为 厘米的正方形中的正方形共有 个、

高一数学教案数列3

  教学准备

  教学目标

  熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。

  教学重难点

  熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。

  教学过程

  【复习要求】熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。

  【方法规律】应用数列知识界实际应用问题的关键是通过对实际问题的综合分析,确定其数学模型是等差数列,还是等比数列,并确定其首项,公差或公比等基本元素,然后设计合理的计算方案,即数学建模是解答数列应用题的关键。

  一、基础训练

  1、某种细菌在培养过程中,每20分钟*一次一个*为两个,经过3小时,这种细菌由1个可繁殖成

  A、511B、512C、1023D、1024

  2、若一工厂的生产总值的月平均增长率为p,则年平均增长率为

  A、B、

  C、D、

  二、典型例题

  例1:某人每期期初到银行存入一定金额A,每期利率为p,到第n期共有本金nA,第一期的.利息是nAp,第二期的利息是n—1Ap……,第n期即最后一期的利息是Ap,问到第n期期末的本金和是多少?

  评析:此例来自一种常见的存款叫做零存整取。存款的方式为每月的某日存入一定的金额,这是零存,一定时期到期,可以提出全部本金及利息,这是整取。计算本利和就是本例所用的有穷等差数列求和的方法。用实际问题列出就是:本利和=每期存入的金额[存期+1/2存期存期+1利率]

  例2:某人从1999到20xx年间,每年6月1日都到银行存入m元的一年定期储蓄,若每年利率q保持不变,且每年到期的存款本息均自动转为新的一年定期,到20xx年6月1日,此人到银行不再存款,而是将所有存款的本息全部取回,则取回的金额是多少元?

  例3、某地区位于沙漠边缘,人与自然进行长期顽强的斗争,到1999年底全地区的绿化率已达到30%,从20xx年开始,每年将出现以下的变化:原有沙漠面积的16%将栽上树,改造为绿洲,同时,原有绿洲面积的4%又被侵蚀,变为沙漠。问经过多少年的努力才能使全县的绿洲面积超过60%。lg2=0.3

  例4、流行性感冒简称流感是由流感病毒引起的急性呼吸道传染病。某市去年11月分曾发生流感,据资料记载,11月1日,该市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染着减少30人,到11月30日止,该市在这30天内感染该病毒的患者共有8670人,问11月几日,该市感染此病毒的新的患者人数最多?并求这一天的新患者人数。

【高一数学教案数列】相关文章:

数学教案:等差数列02-22

高一数学等差数列教案11-03

高一数学等差数列教案4篇11-04

数列的求和教学反思11-25

《数列的求和》教学反思02-23

数列求和教学反思04-14

高一数学教案11-05

高一优秀数学教案09-28

高三数学数列教案01-17