数列
§3.1.1数列、数列的通项公式
目的:要求学生理解数列的概念及其几何表示,理解什么叫数列的通项公式,给出一些数列能够写出其通项公式,已知通项公式能够求数列的项。
重点:1数列的概念。按一定次序排列的一列数叫做数列。数列中的每一个数叫做数列的项,数列的第n项an叫做数列的通项(或一般项)。
由数列定义知:数列中的数是有序的,数列中的数可以重复出现,这与数集中的数的无序性、互异性是不同的。
2.数列的通项公式,如果数列{an}的通项an可以用一个关于n的公式来表示,这个公式就叫做数列的通项公式。
从映射、函数的观点看,数列可以看成是定义域为正整数集N*(或宽的有限子集)的函数。当自变量顺次从小到大依次取值时对自学成才的一列函数值,而数列的通项公式则是相应的解析式。由于数列的项是函数值,序号是自变量,所以以序号为横坐标,相应的项为纵坐标画出的图像是一些孤立的点。
难点:根据数列前几项的特点,以现规律后写出数列的通项公式。
给出数列的前若干项求数列的通项公式,一般比较困难,且有的数列不一定有通项公式,如果有通项公式也不一定唯一。给出数列的前若干项要确定其一个通项公式,解决这个问题的关键是找出已知的每一项与其序号之间的对应关系,然后抽象成一般形式。
过程:
一、从实例引入(P110)
1. 堆放的钢管 4,5,6,7,8,9,10
2. 正整数的倒数
3.
4. -1的正整数次幂:-1,1,-1,1,…
5. 无穷多个数排成一列数:1,1,1,1,…
二、提出课题:数列
1. 数列的定义:按一定次序排列的一列数(数列的有序性)
2. 名称:项,序号,一般公式 ,表示法
3. 通项公式: 与 之间的函数关系式
如 数列1: 数列2: 数列4:
4. 分类:递增数列、递减数列;常数列;摆动数列;
有穷数列、无穷数列。
5. 实质:从映射、函数的观点看,数列可以看作是一个定义域为正整数集
N*(或它的有限子集{1,2,…,n})的函数,当自变量从小到大依次取值时对应的一列函数值,通项公式即相应的函数解析式。
6. 用图象表示:— 是一群孤立的点
例一 (P111 例一 略)
三、关于数列的通项公式
1. 不是每一个数列都能写出其通项公式 (如数列3)
2. 数列的通项公式不唯一 如: 数列4可写成 和
3. 已知通项公式可写出数列的任一项,因此通项公式十分重要
例二 (P111 例二)略
四、补充例题:写出下面数列的一个通项公式,使它的前 项分别是下列各数:
1.1,0,1,0.
2. , , , ,
3.7,77,777,7777
4.-1,7,-13,19,-25,31
5. , , ,
五、小结:
1.数列的有关概念
2.观察法求数列的通项公式
六、作业: 练习 P112 习题 3.1(P114)1、2
七、练习:
1.观察下面数列的特点,用适当的数填空,关写出每个数列的一个通项公式;
(1) , , ,( ), , …
(2) ,( ), , , …
2.写出下面数列的一个通项公式,使它的前4项分别是下列各数:
(1)1、 、 、 ; (2) 、 、 、 ;
(3) 、 、 、 ; (4) 、 、 、 。
3.求数列1,2,2,4,3,8,4,16,5,…的一个通项公式
4.已知数列an的前4项为0, ,0, ,则下列各式
①an= ②an= ③an=
其中可作为数列{an}通项公式的是
A ① B ①② C ②③ D ①②③
5.已知数列1, , , ,3, …, ,…,则 是这个数列的( )
A. 第10项 B.第11项 C.第12项 D.第21项
6.在数列{an}中a1=2,a17=66,通项公式或序号n的一次函数,求通项公式。
7.设函数 ( ),数列{an}满足
(1)求数列{an}的通项公式;(2)判断数列{an}的单调性。
8.在数列{an}中,an=
(1)求证:数列{an}先递增后递减;
(2)求数列{an}的最大项。
答案:1. (1) ,an= (2) ,an=
2.(1)an= (2)an=
(3)an= (4)an=
3.an= 或an=
这里借助了数列1,0,1,0,1,0…的通项公式an= 。
4.D 5.B 6. an=4n-2
7.(1)an= (2) <1又an<0, ∴ 是递增数列
【数列】相关文章:
数列教学反思08-25
浅析数列求和法08-25
《数列的求和》教学反思02-23
数列求和教学反思04-14
数列的求和教学反思11-25
高三数学数列教案01-17
等差数列教学反思08-24
数学等差数列教案02-25
数列求和教学反思6篇04-14
等差数列教学反思04-14