逻辑联结词

时间:2022-08-17 03:38:40 高一数学教案 我要投稿
  • 相关推荐

逻辑联结词


一、教学目标

  (1)了解含有“或”、“且”、“非”复合命题的概念及其构成形式;
  (2)理解逻辑联结词“或”“且”“非”的含义;
  (3)能用逻辑联结词和简单命题构成不同形式的复合命题;
  (4)能识别复合命题中所用的逻辑联结词及其联结的简单命题;
  (5)会用真值表判断相应的复合命题的真假;
  (6)在知识学习的基础上,培养学生简单推理的技能.

二、教学重点难点:
  重点是判断复合命题真假的方法;难点是对“或”的含义的理解.
三、教学过程
1.新课导入
  在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的教学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.
  初一平面几何中曾学过命题,请同学们举一个命题的例子.(板书:命题.)
  (从初中接触过的“命题”入手,提出问题,进而学习逻辑的有关知识.)
学生举例:平行四边形的对角线互相平.  ……(1)
两直线平行,同位角相等.…………(2)
教师提问:“……相等的角是对顶角”是不是命题?……(3)
(同学议论结果,答案是肯定的.)
教师提问:什么是命题?
(学生进行回忆、思考.)
概念总结:对一件事情作出了判断的语句叫做命题.
(教师肯定了同学的回答,并作板书.)
由于判断有正确与错误之分,所以命题有真假之分,命题(1)、(2)是真命题,而(3)是假命题.
(教师利用投影片,和学生讨论以下问题.)

例1 判断以下各语句是不是命题,若是,判断其真假:

  

命题一定要对一件事情作出判断,(3)、(4)没有对一件事情作出判断,所以它们不是命题.

初中所学的命题概念涉及逻辑知识,我们今天开始要在初中学习的基础上,介绍简易逻辑的知识.

2.讲授新课

  大家看课本(人教版,试验修订本,第一册(上))从第25页至26页例1前,并归纳一下这段内容主要讲了哪些问题?
  (片刻后请同学举手回答,一共讲了四个问题.师生一道归纳如下.)
  (1)什么叫做命题?
  可以判断真假的语句叫做命题.
  判断一个语句是不是命题,关键看这语句有没有对一件事情作出了判断,疑问句、祈使句都不是命题.有些语句中含有变量,如 中含有变量 ,在不给定变量的值之前,我们无法确定这语句的真假(这种含有变量的语句叫做“开语句”).
  (2)介绍逻辑联结词“或”、“且”、“非”.
  “或”、“且”、“非”这些词叫做逻辑联结词.逻辑联结词除这三种形式外,还有“若…则…”和“当且仅当”两种形式.
  对“或”的理解,可联想到集合中“并集”的概念. 中的“或”,它是指“ ”、“ ”中至少一个是成立的,即 ;也可以 ;也可以 .这与生活中“或”的含义不同,例如“你去或我去”,理解上是排斥你我都去这种可能.
  对“且”的理解,可联想到集合中“交集”的概念. 中的“且”,是指“ ”、“ 这两个条件都要满足的意思.
  对“非”的理解,可联想到集合中的“补集”概念,若命题 对应于集合 ,则命题非 就对应着集合 在全集 中的补集 .
  

  命题可分为简单命题和复合命题.
  不含逻辑联结词的命题叫做简单命题.简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题.
  由简单命题和逻辑联结词构成的命题叫做复合命题,如“6是自然数且是偶数”就是由简单命题“6是自然数”和“6是偶数”由逻辑联结词“且”构成的复合命题.
  (4)命题的表示:用 ,……来表示.
  (教师根据学生回答的情况作补充和强调,特别是对复合命题的概念作出分析和展开.)
  我们接触的复合命题一般有“ ”、“ ”、“非 ”、“若 ”等形式.
  给出一个含有“或”、“且”、“非”的复合命题,应能说出构成它的简单命题和弄清它所用的逻辑联结词;应能根据所给出的两个简单命题,写出含有逻辑联结词“或”、“且”、“非”的复合命题.
  对于给出“若 ”形式的复合命题,应能找到条件 和结论
  在判断一个命题是简单命题还是复合命题时,不能只从字面上来看有没有“或”、“且”、“非”.例如命题“等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合”,此命题字面上无“且”;命题“5的倍数的末位数字不是0就是5”的字面上无“或”,但它们都是复合命题.
3.巩固新课
  例2  判断下列命题,哪些是简单命题,哪些是复合命题.如果是复合命题,指出它的构成形式以及构成它的简单命题.
  (1)
  (2)0.5非整数;
  (3)内错角相等,两直线平行;
  (4)菱形的对角线互相垂直且平分;
  (5)平行线不相交;
  (6)若 ,则

  (让学生有充分的时间进行辨析.教材中对“若…则…”不作要求,教师可以根据学生的情况作些补充.)

  例3  写出下表中各给定语的否定语(用课件打出来).

若给定语为

等于

大于

都是

至多有一个

至少有一个

至多有

其否定语分别为

             

  分析:“等于”的否定语是“不等于”;
        “大于”的否定语是“小于或者等于”;
        “是”的否定语是“不是”;
        “都是”的否定语是“不都是”;
        “至多有一个”的否定语是“至少有两个”;
        “至少有一个”的否定语是“一个都没有”;
        “至多有 个”的否定语是“至少有 个”.
(如果时间宽裕,可让学生讨论后得出结论.)
置疑:“或”、“且”的否定是什么?(视学生的情况、课堂时间作适当的辨析与展开.)
  4.课堂练习:第26页练习1,2.
  5.课外作业:第29页习题1.6  1,2.



【逻辑联结词】相关文章:

逻辑的尽头作文04-26

让生物课堂彰显逻辑魅力08-16

逻辑考题-中国求职指南网08-17

学会逻辑思考,提升写作技巧08-25

论文开题报告的逻辑结构怎么确定?08-24

“因果关系”与逻辑推理论文05-31

小班逻辑数学公开课教案(精选15篇)05-17

逻辑学毕业生自我鉴定06-28

20世纪前期现代逻辑在中国的译介补述08-18

初中数学教学逻辑思维能力培养对策09-05