现在位置:范文先生网>教案大全>数学教案>九年级数学教案>§12.2 一元二次方程的解法1——直接开平方法

§12.2 一元二次方程的解法1——直接开平方法

时间:2022-08-17 03:26:11 九年级数学教案 我要投稿
  • 相关推荐

§12.2 一元二次方程的解法(1)——直接开平方法


[课    题]  §12.2  一元二次方程的解法(1)——直接开平方法 [教学目的]  使学生掌握直接开平方法,并会解某些一元二次方程;使学生会解(x-a)2=b(b≥0)型的方程,为进一步学习公式法作好准备。 [教学重点]  掌握直接开平方法,并会解某些一元二次方程。 [教学难点]  会解(x-a)2=b(b≥0)型的方程。 [教学关键]  会解(x-a)2=b(b≥0)型的方程,为进一步学习公式法作好准备。 [教学用具]  [教学形式]  讲练结合法。 [教学用时]  45′×1  [教学过程] [复习提问 1、什么叫做整式方程?(方程两边都是关于未知数的整式,叫做整式方程。) 2、什么样的方程叫做一元一次方程?什么样的方程叫做一元二次方程?(在整式方程中,只含一个未知数,并且未知数的最高次数是1,这样的方程叫做一元一次方程;在整式方程中,只含一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程。) 3、说明一元一次方程与一元二次方程的相同点和不同点?(都是整式方程,并且都含有一个未知数,这是它们的相同点;它们的不同点是未知数的次数,一个是一次,一个是二次。) 4、一元二次方程的一般形式是什么?其中a应具备什么条件?(一元二次方程的一般形式是:ax2+bx+c=0,其中a应不等于零。因为a=0,则方程ax2+bx+c=0就不是一元二次方程了。) 5、x2-4=0是一元二次方程吗?其中二次项的系数、一次项的系数、常数项各是什么?(是。二次项系数是1、一次项系数是0、常数项是-4。) [讲解新课] 我们来解方程:x2-4=0。 先移项,得:x2=4。 (这里,一个数x的平方等于4,这个数x叫做4的什么?——这个数x叫做4的平方根或二次方根;一个正数有几个平方根?——一个正数有两个平方根,它们互为相反数;求一个数的平方根的运算叫做什么?——叫做开平方。) 上面的x2=4,实际上就是求4的平方根。 因此,x=± 即,x1=2,x2=-2。 讲(或提问)到此,指出 :这种解某些一元二次方程的方法叫做直接开平方法。 提问:用直接开平方法解下列方程: 1、x2-144=0;           2、x2-3=0; 3、x2+16=0;             4、x2=0。 (1、x1=12,x2=-12;2、x1= ,x2=- ;3、无解——负数没有平方根;4、x=0——0有一个平方根,它是0本身)。 2  解方程:(x+3)2=2。 说明与分析:此例要求解出方程的根,同时通过此例的学习也为进一步解公式法作准备。实际上,我们将用此例以及类似的题目推导出一元二次方程的另一解法——配方法。 可以看出,原方程中x+3是2的平方根, 解:x+3=± 即:x1=-3+ ,或x2=-3- 。 ∴  x1=-3+ ,x2=-3- 。 提问:解下列方程: 1、(x+4)2=3;        2、(3x+1)2=-3。 (1、x1=-4+ ,x2=-4- 。2、无解。) [课堂练习] 教科书第7页练习1,2题。 [课堂小结] 直接开平方法可解下列类型的一元二次方程: x2=b(b≥0); (x-a)2=b(b≥0)。 根据平方根的定义,要特别注意:由于负数没有平方根,所以,上列两式中的b≥0,当b<0时,方程无解。 [课外作业] 教科书第15习题12.1A组第1,2题。 对学有余力的学生可做B组第1题。   [板书设计] 课题:             例题: 辅助板书:   [课后记]

通过本节课的学习,学生已掌握了一元二次方程的解法之一——直接开平方法,并能熟练地求出能应用直接开平方法解的一元二次方程的两个根,同时掌握了一元二次方程的解题步骤及书写格式。




【§12.2 一元二次方程的解法1——直接开平方法】相关文章:

一元二次方程的解法教学反思04-04

《一元二次方程》教学反思08-22

一元二次方程教学反思04-04

《一元二次方程》教学反思11-10

《一元二次方程》数学教学反思06-07

《一元二次方程》数学教案02-12

解一元二次方程教学反思04-01

一元二次方程的概念教学反思04-07

一元二次方程的教学反思(通用19篇)09-23

实际问题与一元二次方程教学反思04-02