现在位置:范文先生网>资料大全>说课稿>高中数学说课稿

高中数学说课稿

时间:2022-08-12 06:29:32 说课稿 我要投稿

高中数学说课稿模板

  高中数学说课稿模板(一)

高中数学说课稿模板

  一、教材分析:

  1、教材的地位与作用。

  本节内容是在学生学习了"事件的可能性的基础上来学习如何预测不确定事件(随机事件)发生的可能性的大小。"用概率预测随机发生的可能性大小,在日常生活、自然、科技领域有着广泛的应用,学习本单元知识,无论是今后继续深造(高中学习概率的乘法定理)还是参加社会实践活动都是十分必要的。概率的概念比较抽象,概率的定义学生较难理解。

  在教材的处理上,采取小单元教学,本节课安排让学生了解求随机事件概率的两种方法,目的是让学生能够比较系统地理解概率的意义及求概率的方法,为下面学习求比较复杂的情况的概率打下基础。

  2、重点与难点。

  重点:对概率意义的理解,通过多次重复实验,用频率预测概率的方法,以及用列举法求概率的方法。

  难点:对概率意义的理解和用列举法求概率过程中在各种可能性相同条件下某一事件可能发生的总数及总的结果数的分析。

  二、目的分析:

  知识与技能:掌握用频率预测概率和用列举法求概率方法。

  过程与方法:组织学生自主探究,合作交流,引导学生观察试验和统计的结果,进而进行分析、归纳、总结,了解并感受概率的定义的过程,引导学生从数学的视角观察客观世界,用数学的思维思考客观世界,以数学的语言描述客观世界。

  情感态度价值观:学生经历观察、分析、归纳、确认等数学活动,感受数学活动充满了探索性与创造性,感受量变与质变的对立统一规律,同时为概率的精准、新颖、独特的思维方法所震撼,激发学生学习数学的热情,增强对数学价值观的认识。

  三、教法、学法分析:

  引导学生自主探究、合作交流、观察分析、归纳总结,让学生经历知识(概率定义计算公式)的产生和发展过程,让学生在数学活动中学习数学、掌握数学,并能应用数学解决现实生活中的实际问题,教师是学生学习的组织者、合作者和指导者,精心设计教学情境,有序组织学生活动,让课堂充满生机活力,体现"教"为"学"服务这一宗旨。

  [page]

  四、教学过程分析:

  1、引导学生探究

  精心设计问题一,学生通过对问题一的探究,一方面复习前面学过的"确定事件和不确定事件"的知识,为学好本节内容理清知识障碍,二是让学生明确为什么要学习概率(如何预测随机事件可能性发生大小)。引导学生对问题二的探究与观察实验数据,使学生了解概率这一重要概念的实际背景,感受并相信随机事件的发生中存在着统计规律性,感受数学规律的真实的发现过程。

  2、归纳概括

  学生从试验中得到的统计数字及概率呈现稳定在某一数值附近这一规律,让学生明确概率定义的由来。

  引导学生重新对问题一和问题二的探究,分析某事件发生的各种可能性在全部可能发生结果中所占比例,得到用列举法求概率的公式,引导学生进行理性思维,逻辑分析,既培养学生的分析问题能力,又让学生明确用列举法求概率这一简便快捷方法的合理性。

  3、举例应用

  ⑴引导学生对教材书例题、问题一、问题二中问题的进一步分析与探究,让学生掌握用列举法求概率的方法。

  ⑵引导学生对练习中的问题思考与探究,巩固对概率公式的应用及加深对概率意义的理解。

  深化发展

  ⑴设置3个小题目,引导学生归纳、分析、总结,加深对知识与方法的理解,并学会灵活运用。

  ⑵让学生设计活动内容,对知识进行升华和拓展,引导学生创造性地运用知识思考问题和解决问题,从而培养学生的创新意识和创新能力。

  高中数学说课稿模板(二)

  一、教材分析:

  "数列"是中学数学的重要内容之一。不仅在历年的高考中占有一定的比重,而且在实际生活中也经常要用到数列的一些知识。例如:储蓄、分期付款中的有关计算就要用到数列知识。

  就本节课而言,在给出数列的基本概念之后,结合例题,指出数列可以看作定义域为正整数集(或它的有限子集)的函数。因此,本节课的内容,一方面是前面函数知识的延伸及应用,可以使学生加深对函数概念的理解;另一方面也可以为后面学习等差数列、等比数列的通项、求和等知识打下铺垫。所以本节课在教材中起到了"承上启下"的作用,必须讲清、讲透。

  二、教学目标:

  根据上面对教材的分析,并结合学生的认知水平和思维特点,确定本节课的教学目标。

  1、知识目标:

  (1)形成并掌握数列及其有关概念,识记数列的表示和分类,了解数列通项公式的意义。

  (2)理解数列的通项公式,能根据数列的通项公式写出数列的任意一项。对比较简单的数列,使学生能根据数列的前几项观察归纳出数列的通项公式,并通过数列与函数的比较加深对数列的认识。

  2、能力目标:

  培养学生观察、归纳、类比、联想等分析问题的能力,同时加深理解数学知识之间相互渗透性的思想。

  3、情感目标:

  通过渗透函数、方程思想,培养学生的思维能力,使学生在民主、和谐的活动中感受学习的乐趣。通过介绍数列与函数间存在的特殊到一般关系,向学生进行辩证唯物主义思想教育。

  三、重点、难点:

  1、教学重点

  理解数列的概念及其通项公式,加强与函数的联系,并能根据通项公式写出数列中的任意一项。

  2、教学难点

  根据数列前几项的特点,通过多角度、多层次的观察和分析,归纳出数列的通项公式。

  四、教法学法

  本节课以"问题情境——归纳抽象——巩固训练"的模式展开,引导学生从知识和生活经验出发,提出问题并与学生共同探索、讨论解决问题的方法,让学生经历知识的形成过程,从而理解更加透彻。

  现代教学观明确指出:教师是主导,学生是主体,学生应成为学习的主人。根据本节内容及学生的认知规律,针对不同内容应选择不同的方法。对于国际象棋棋盘麦粒采用电脑动画演示,增强感性认识;所举的引例及数列的函数定义,可采用探索发现法;对通项公式及数列的分类等概念采用指导阅读法;对于难题(根据数列的前几项写出一个通项公式)采用讲练结合法。

  "授人以鱼,不如授人以渔",平时在教学中教师应不断指导学生学会学习。本节课从学生实际出发,创设情境,引导学生观察、分析,探索发现,归纳总结,培养学生积极思维的品质,加强主动学习的能力。

  为了有效地突出重点,突破难点,增大课堂容量,提高课堂效率,本节课将常规教学手段与现代教学手段相结合,将引例、例题、练习等实物投影。

  五、教学过程

  1、创设情景,激发兴趣,引入新课

  (1)电脑动画演示:国际象棋棋盘格子中放有麦粒的示意图,从而得到一组数:1,2,22,23……263

  叙述故事:给你一张报纸,你可以用它登上月球,你相信吗?只要不断地将报纸对折42次以后,报纸的厚度就可以达到月球和地球的距离。

  设计意图:以实例引入概念,再配以电脑动画,叙述小故事,增强了感性认识,调动学生学习新知识的积极性。

  (2)投影演示,再观察以下几列数:

  ①某班学生的学号:1,2,3,4……,50

  ②从1984年到2004年,中国体育健儿参加奥运会每届所得的金牌数:

  15,5,16,16,28,32

  ③某次活动,在1km长的路段,从起点开始,每隔10m放置一个垃圾筒,由近及远各筒与起点的距离排成一列数:0.10.20.30,……1000

  ④放射性物质衰变,设原质量为1,则各年的剩留量依次为:1,0.84,0.842,0.843,……

  2、归纳抽象,形成概念

  (1)学生尝试叙述数列的定义:启发学生观察上述几组数据后,进行归纳总结定义:按一定次序排成的一列数,叫数列,便于培养学生的抽象概括能力。

  举例1:1,3,5,7与7,5,3,1 这两个数列有何区别?

  举例2:-1,1,-1,1,……是不是一个数列?

  设计意图:使学生注意把数列中的数和集合中的元素区分开来:

  ①数列中的数是有顺序的,而集合中的元素是无序的。

  ②数列中的数可以重复出现,而集中的元素不能重复出现。

  进一步加深学生对数列定义的理解。

  (2)数列的项及项的表示方法: an

  (3)数列的表示方法:可写成:a1,a2,a3,……,an……

  或简记为:{an},注意an与{an}的区别

  上述(2)(3)采用指导阅读法(书P106页第7节~第8节第一句话),对an与{an}的区别进行集体讨论归纳。

  3、通项公式的探索

  (1)观察归纳定义

  由学生观察引例中数列的项与它在数列中的位置(即项的序号)间的关系:

  实物投影:

  序号      1        2      3           ……  64

  ↓      ↓      ↓             ↓

  项       1= 21-1   2=22-1  22 = 23-1    ……  263

  从而可看出项与项的序号之间可用一个公式:an =2n-1表示,该公式叫数列的通项公式,然后归纳抽象出数列的通项公式的定义(略)。

  (2)用函数观点看待数列:这是一个难点,讲解必须清楚、透彻。数列可看作是以自然数集或它的有限子集为定义域的函数,当自变量由小到大依次取值时对应的一列函数值(这是数列的本质),其图象是一群孤立的点,画图(棋盘麦粒这个数列)

  设计意图:加深对函数概念的理解。

  (3)数列的分类,并口答引例及数列①②③④分别归于哪类数列。

  4、讲解例题

  设计例题:①根据通项公式写出前几项并会判断某个数是否为该数列中的项;②根据数列的前几项写出一个通项公式。

  例1,根据下列数列{an}的通项公式,写出它的前5项

  (1) an= n/(n+1)  (2)an=(-1)n · n

  设计意图:使学生正确掌握通项与序号的关系。

  变式训练:问 2589/2590是否为数列(1)中的项

  设计意图:使学生明确方程思想是解决数列问题的重要方法。

  例2,写出下列数列的一个通项公式,使它的前4项分别是下列各数:

  (1)1,3,5,7

  (2)2, -2,2 ,-2

  (3)1 ,11 ,111 ,

  设计意图:引导学生进行解题后反思,对完善学生的认知结构是十分必要。写通项公式时,就是要去发现an与n的关系,对各项进行多角度、多层次观察,找出这些项与相应的项数(即序号)之间的对应关系。(注:遇到分数,可分别观察分子组的数列特征与分母组成的数列特征;若为正负相间的项,则可用-1的奇次幂或偶次幂进行符号交换,有时也可根据相邻的项,适当调整有关的表达式。)

  5、练习巩固

  投影演示:

  (1)写出数列1,-1,1,-1,……的一个通项公式

  (2)是否所有数列都有通项公式?

  上述(1)的设计意图:an=(-1)n+1也可写成  (分段函数的形式)(当n为奇数时,n为偶数时),说明根据数列的前几项写出的通项公式可能不唯一。(2):引例②就没有通项公式。通过这些练习,使学生能及时消化,及时巩固所学内容。

  6、归纳小结

  由学生试着总结本节课所学内容,老师适当补充,可以训练学生的收敛思维,有助于完善学生的思维结构。

  (1) 数列及有关概念。

  (2) 根据数列的通项公式求任意一项,并能判断某数是否为该数列中的项。

  (3) 根据数列的前几项写出数列的一个通项公式。

  (4) 数列与函数的关系

  7、课后作业:

  (1)课本P110/习题3.1/1(3)(4)(5);2、书P108/4(1)(3)(4)

  (2)复习看书P106-107

  六、评价与分析

  本节课,教师可通过创设情景,适时引导的方式来激发学生积极思考的欲望,有时直接讲解,有时组织掌握学生集体讨论、探索发现,课堂上除反复强调注意点外,还应通过课堂练习和课后作业来强化它们。

  通过本节课的学习,学生不仅掌握了数列及有关概念,而且可体会到数学概念形成过程中蕴含的基本数学思想:"函数思想、数形结合思想、特殊化思想",使之获得内心感受,提高了基本技能和解决问题的能力,也可以逐渐学会辩证地看待问题。

  高中数学说课稿模板(三)

  今天我说课的题目是《抛物线及标准方程》,我将从教材分析,教法与学法,教学过程,板书设计几个方面来阐述。

  一、        教材分析

  1、            教材的地位和作用

  本节课是新教材人教版选修2-1第二章第四节第一课,学生已经学习了椭圆,双曲线的定义,方程和几何性质,对坐标法已有了初步的认识,这些为学习抛物线奠定了基础,同时,对抛物线的定义,方程的学习能让学生进一步深化对坐标法的认识,也为下一节用代数方法研究抛物线的几何性质做好铺垫。

  2、            教学目标

  根据课程标准和学生发展的需要,我确定本节课的教学目标如下:

  知识与技能:掌握抛物线的定义,掌握抛物线的四种标准方程形式,及其对应的焦点、准线。

  过程与方法:掌握对抛物线标准方程的推导,进一步理解求曲线方程的方法——坐标法。通过本节课的学习,提高学生观察,类比,分析和概括的能力。

  情感与态度价值观:

  (1)强化学生的注意力及新旧知识的联系,树立学生求真的勇气和自信心;

  (2)通过定义和标准方程的学习,培养实事求是、勇于探索、严密细致的科学态度;通过提问、探究、思考解答等教学活动,培养坚强的意志和锲而不舍的精神。

  3、教学重点与难点

  根据教学目标的确定,并结合学生的认知水平,我确定本节课的重点和难点如下:

  重点:(1)抛物线的定义及焦点、准线;

  (2)抛物线的四种标准方程和p的几何意义。

  难点:(1)抛物线的标准方程的推导,如何选择适当的坐标系;

  (2)抛物线定义及焦点、准线等知识的灵活运用;

  二、教法与学法分析

  1、教法分析:

  本节课主要采用启发引导法。在整个教学过程中,引导学生观察,分析,归纳,使学生思维紧紧围绕"问题"层层展开,培养学生学习的兴趣,也充分体现了以教师为主导,学生为主体的教学理念。同时,采用多媒体辅助教学,借助多媒体快捷,形象,生动的辅助作用,突出知识的形成过程,符合学生的认识规律,也可以增加趣味。

  2、学法分析:

  本节课从引入课题开始,尽可能让学生参与知识的产生及形成过程,充分发挥学生的主体作用,使学生全方位地参与问题结论的得出,教师只起到点拨作用。这样做增加了学生的参与机会,提高了参与意识,教给了学生获取知识的途径,思考问题的方法,使学生真正成了教学的主体。

  三、教学过程设计

  1、生活中的抛物线

  通过真实性情境让学生体会到抛物线的美及其在现实生活中的应用,从而产生研究抛物线的动力。让学生欣赏现实生活中的一些抛物线图片,(fanwen.weiyujianbao.cn)并把它们纳入到学生"生活世界"中,使本堂课学习成为一种回归"生活世界"的"真实性学习".数学中学习过的二次函数y=ax2+bx+c(a≠0)的图象也是一条抛物线!

  2、探索新知

  (1)用几何画板画图,如图2.4—1,点F是定点, 是定直线。H是 上的任意一点,过点H作 ,线段FH的垂直平分线m交MH于点M.拖动点H,观察点M的轨迹,你能发现点M满足的几何条件吗?

  学生经过观察可以发现,点M随H运动的过程中,始终有 ,即点M与定点F和定直线l的距离相等

  设计意图:探索性问题可以提高学生的求知欲,鼓励学生积极参与,积极思考,发挥学生的学习主体作用

  (2)请学生们讨论给出抛物线的定义

  先由学生口述定义,如不完整,教师进行补充。并让学生注意到:直线l不经过点F,使学生加深对定义的理解

  设计意图:使学生了经历知识的形成过程,对抛物线的认识由感性认识上升到理性认识。

  3、            抛物线的标准方程

  问题 1.求曲线方程的一般步骤是什么?(为推导抛物线的方程做准备)

  问题2.你认为应如何选择坐标系,使所建立的抛物线的方程更简单?

  (由学生讨论建系方法,教师巡视,引导学生联系二次函数,建立适当的坐标系。从而突破本节课的难点——建立适当的坐标系来推导抛物线的方程。)

  问题3.请你推导出抛物线的方程。

  (引导学生结合抛物线的定义,利用坐标法推导抛物线的标准方程。)

  问题4.标准方程 中P的几何意义是什么?

  (突出了本节课的重点)

  问题5、如果抛物线的开口方向向左,或向上,或向下时,又如何建立坐标系,使推导出来的方程最简单呢?

  (让学生通过观察,类比,推导抛物线的其他形式的标准方程,深化对坐标法的认识。使本节的知识系统化。)

  图形

  标准方程

  焦点

  准线

  【注意】将图形的位置特征和方程的形式应结合起来记忆,通过四种标准方程对比,总结出

  ①方程的一次项决定焦点的位置。

  ②一次项系数的符号决定开口方向。

  4、            应用

  例1.(1)已知抛物线的标准方程是 ,求它的焦点坐标和准线方程。

  (2)已知抛物线的焦点坐标是 ,求它的标准方程。

  反馈练习

  求下列抛物线的焦点坐标和准线方程

  学生在黑板上板演后,教师点评。通过练习及时了解学生的学习情况。

  思考:二次函数  (a ≠0)的图象为一条抛物线,试指出它的开口方向、焦点坐标和准线方程。

  (与二次函数联系起来,使学生有一种"顿悟"的感觉,把新知识化归到原有的知识结构中。)

  例2.一种卫星接收天线的轴截面。卫星波束呈近似平行状态射入轴截面为抛物线的接收天线,经反射聚集到焦点处。已知接收天线的口径为4.8m,深度为0.5m,试建立适当的坐标系,求抛物线的标准方程和焦点坐标。

  (体会抛物线在生活中的应用,数学是起源于生活又服务于生活的)

  5、作业布置

  课本P73 A组1,3,4

  (作业的安排是为了巩固所学知识,提高学生对知识的运用能力的。)

  6、板书设计

  2.4.1抛物线及其标准方程

  一。定义                 

  二。四种标准方程的形式

  三。 应用

【高中数学说课稿】相关文章:

高中数学说课稿12-10

高中数学优秀说课稿(通用12篇)05-26

有关高中数学说课稿模板集合九篇03-21

高中数学教学论文:影响高中数学成绩的原因08-22

高中数学培训心得03-18

高中数学教学心得11-20

高中数学数列教案12-30

高中数学教案12-30

高中数学并集教案12-30

高中数学听课心得12-28