现在位置:范文先生网>资料大全>说课稿>二次函数说课稿

二次函数说课稿

时间:2022-08-11 22:55:24 说课稿 我要投稿
  • 相关推荐

二次函数说课稿

  二次函数说课稿(一)

二次函数说课稿

  一。  教材分析

  1、教材的地位及作用

  函数是一种重要的数学思想,是实际生活中数学建模的重要工具,二次函数的教学在初中数学教学中有着重要的地位。本节内容的教学,在函数的教学中有着承上启下的作用。它既是对已学一次函数及反比例函数的复习,又是对二次函数知识的延续和深化,为将来二次函数一般情形的教学乃至高中阶段函数的教学打下基础,做好铺垫。

  2.教学目标

  (1) 掌握二此函数的概念并能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯。[知识与技能目标]

  (2)让学生经历观察、比较、归纳、应用,以及猜想、验证的学习过程,使学生掌握类比、转化等学习数学的方法,养成既能自主探索,又能合作探究的良好学习习惯。[过程与方法目标]

  (3) 让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦,[情感、态度、价值观目标]

  3、教学的重、难点

  重点:二次函数的概念和解析式

  难点:本节"合作学习"涉及的实际问题有的较为复杂,要求学生有较强的概括能力

  4、 学情分析

  ①学生已掌握一次函数,反比例函数的概念,图象的画法,以及它们图象的性质。 ②学生个性活泼,积极性高,初步具有对数学问题进行合作探究的意识与 能力。

  ③初三学生程度参差不齐,两极分化已形成。

  二、教法学法分析

  1` 教法(关键词:情境、探究、分层)

  基于本节课内容的特点和初三学生的年龄特征,我以"探究式"体验教学法和"启发式"教学法 为主进行教学。让学生在开放的情境中,在教师的 引导启发下,同学的合作帮助下,通过探究发现,让学生经历数学知识的形成和应用过程,加深对数学知识的理解。教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教。

  2、学法(关键词:类比、自主、合作)

  根据学生的思维特点、认知水平,遵循"教必须以学为立足点"的教育理念,让每一个学生自主参与整堂课的知识构建。在各个环节中引导学生类比迁移,对照学习。以自主探索为主,学会合作交流,在师生互动、生生互动中让每个学生动口,动手,动脑,培养学生学习的主动性和积极性,使学生由"学会"变"会学"和"乐学".

  3、教学手段

  采用多媒体教学,直观呈现抛物线和谐、对称的美,激发学生的学习 兴趣,参与热情,增大教学容量,提高教学效率。

  三、教学过程

  完整的数学学习过程是一个不断探索、发现、验证的过程,根据新课标要求,根据"以人为本,以学定教"的教学理念,结合学生实际,制订以下教学流程:

  (一)。创设情境  温故引新

  以提问的形式复习一元二次方程的一般形式,一次函数,反比例函数的定义,然后让学生欣赏一组优美的有关抛物线的图案,创设情境:

  (1)你们喜欢打篮球吗?

  (2)你们知道:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?

  从而引出课题〈〈二次函数〉〉,导入新课

  (二)。合作学习,探索新知

  为了更贴近生活,我先设计了两个和实际生活有关的练习题。鼓励学生积极发言,充分调动学生的主动性。然后出示课本上的两个问题,在这个环节中,我让学生在教师的引导下,先独立思考,再以小组为单位交流成果,以培养学生自主探索、合作探究的能力。四个解析式都列出来后。让学生通过观察与思考,这些解析式有什么共同特征,启发学生用自己的语言总结,从而得出二次函数的概念,并且提高了学生的语言表达能力。

  学生在学习二次函数的概念时要求学生既要知道表示二次函数的解析式中字母的意义,还要能根据给出的函数解析式判断一个函数是不是二次函数

  (三)当堂训练 巩固提高

  由于学生层次不一,练习的设计充分考虑到学生的个体差异,满足不同层次学生的学习需求,实现有"差异的"发展。让每一个学生都感受成功的喜悦。我设计了3道练习题,其难易程度逐步提高,第一道题面对所有的学生,学生可以根据二次函数的概念直接判断,但需要强调该化简的必须化简后才可以判断。第二道题让学生逆向思维,根据条件自己写二次函数,从而加深了对二次函数概念的理解。最后一道题综合性较强,可以提高他们的综合素质。

  (四)。小结归纳  拓展转化

  让学生用自己的语言谈谈自己的收获,可以将这一节的知识条理化,进一步掌握二次函数的概念。

  (五)布置作业 学以致用

  作业分必做题、选做题,体现分层思想,通过作业,内化知识,检验学生掌握知识的情况,发现和弥补教与学中遗漏与不足。同时,选做题具有总结性,可引导学生研究二次函数,一次函数,正比例函数的联系。

  四。评价分析

  本节课的教学从学生已有的认知基础出发,以学生自主探索、合作交流为主线,让学生经历数学知识的形成与应用过程,加深对所学知识的理解,从而突破重难点。整节课注重学生能力的培养和习惯的养成。由于学生的层次不一,我全程关注每一个学生的学习状态,进行分层施教,因势利导,随机应变,适时调整教学环节,实现评价主体和形式的多样化,把握评价的时机与尺度,激发学生的学习兴趣,激活课堂气氛,使课堂教学达到最佳状态。

  五。教学反思

  1.本节课通过学生合作交流,自己列出不同问题中的解析式,并通过观察他们的共同特征,成功得出了二次函数的概念。

  2.本节课设计的以问题为主线,培养学生有条理思考问题的习惯和归纳概括能力,并重视培养学生的语言表达能力。同时不断激发学生的探索精神,提高了学生分析和解决问题的能力。使学生有成功体验。

  以上是我对二次函数这节课的教学内容的设计,请大家多提宝贵意见,谢谢大家!

  二次函数说课稿(二)

  一、说课内容:

  苏教版九年级数学下册第六章第一节的二次函数的概念及相关习题

  二、教材分析:

  1、教材的地位和作用

  这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解"数形结合"的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。

  2、教学目标和要求:

  (1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。

  (2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力。

  (3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心。

  3、教学重点:对二次函数概念的理解。

  4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。

  三、教法学法设计:

  1、从创设情境入手,通过知识再现,孕伏教学过程

  2、从学生活动出发,通过以旧引新,顺势教学过程

  3、利用探索、研究手段,通过思维深入,领悟教学过程

  四、教学过程:

  (一)复习提问

  1.什么叫函数?我们之前学过了那些函数?

  (一次函数,正比例函数,反比例函数)

  2.它们的形式是怎样的?

  (y=kx+b,k≠0;y=kx ,k≠0;y= , k≠0)

  3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k≠0的条件? k值对函数性质有什么影响?

  【设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解。强调k≠0的条件,以备与二次函数中的a进行比较。

  (二)引入新课

  函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。(电脑演示)

  例1、(1)圆的半径是r(px)时,面积s (px?)与半径之间的关系是什么?

  解:s=πr?(r>0)

  例2、用周长为20m的篱笆围成矩形场地,场地面积y(m?)与矩形一边长x(m)之间的关系是什么?

  解: y=x(20/2-x)=x(10-x)=-x?+10x  (0

  例3、设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?

  教师提问:以上三个例子所列出的函数与一次函数有何相同点与不同点?

  【设计意图】通过具体事例,让学生列出关系式,启发学生观察,思考,归纳出二次函数与一次函数的联系: (1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。(2)自变量的最高次数是2(这与一次函数不同)。

  (三)讲解新课

  以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。

  二次函数的定义:形如y=ax2+bx+c (a≠0,a, b, c为常数) 的函数叫做二次函数。

  巩固对二次函数概念的理解:

  1、强调"形如",即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。

  2、在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)

  3、为什么二次函数定义中要求a≠0  ?

  若a=0,ax2+bx+c就不是关于x的二次多项式了)

  4、在例3中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.

  5、b和c是否可以为零?

  由例1可知,b和c均可为零。

  若b=0,则y=ax2+c;

  若c=0,则y=ax2+bx;

  若b=c=0,则y=ax2.

  注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式。

  【设计意图】这里强调对二次函数概念的理解,有助于学生更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。

  判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.

  (1)y=3(x-1)?+1          (2)s=3-2t?                (3)y=(x+3)?- x?

  (4)  s=10πr?             (5) y=2?+2x

  【设计意图】理论学习完二次函数的概念后,让学生在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。

  (四)巩固练习

  1.已知一个直角三角形的两条直角边长的和是10px.

  (1)当它的一条直角边的长为4.5px时,求这个直角三角形的面积;

  (2)设这个直角三角形的面积为Spx2,其中一条直角边为xpx,求S关

  于x的函数关系式。

  【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让学生经历由具体到抽象的过程,从而降低学生学习的难度。

  2.已知正方体的棱长为xpx,它的表面积为Spx2,体积为Vpx3.

  (1)分别写出S与x,V与x之间的函数关系式子;

  (2)这两个函数中,那个是x的二次函数?

  【设计意图】简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让学生体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。

  3.设圆柱的高为h(px)是常量,底面半径为rpx,底面周长为Cpx,圆柱的体积为Vpx3

  (1)分别写出C关于r;V关于r的函数关系式;

  (2)两个函数中,都是二次函数吗?

  【设计意图】此题要求学生熟记圆柱体积和底面周长公式,在这儿相当于做了一次复习,并与今天所学知识联系起来。

  4. 篱笆墙长30m,靠墙围成一个矩形花坛,写出花坛面积y(m2)与长x之间的函数关系式,并指出自变量的取值范围。

  【设计意图】此题较前面几题稍微复杂些,旨在让学生能够开动脑筋,积极思考,让学生能够"跳一跳,够得到".

  (五)拓展延伸

  1. 已知二次函数y=ax2+bx+c,当 x=0时,y=0;x=1时,y=2;x= -1时,y=1.求a、b、c,并写出函数解析式。

  【设计意图】在此稍微渗透简单的用待定系数法求二次函数解析式的问题,为下节课的教学做个铺垫。

  (六) 小结思考:

  本节课你有哪些收获?还有什么不清楚的地方?

  【设计意图】让学生来谈本节课的收获,培养学生自我检查、自我小结的良好习惯,将知识进行整理并系统化。而且由此可了解到学生还有哪些不清楚的地方,以便在今后的教学中补充。

  (七) 作业布置:

  必做题:

  1. 正方形的边长为4,如果边长增加x,则面积增加y,求y关于x 的函数关系式。这个函数是二次函数吗?

  2. 在长20px,宽15px的矩形木板的四角上各锯掉一个边长为xpx的正方形,写出余下木板的面积y(px2)与正方形边长x(px)之间的函数关系,并注明自变量的取值范围。

  选做题:

  1.已知函数 是二次函数,求m的值。

  2.试在平面直角坐标系画出二次函数y=x2和y=-x2图象

  【设计意图】作业中分为必做题与选做题,实施分层教学,体现新课标人人学有价值的数学,不同的人得到不同的发展。另外补充第4题,旨在激发学生继续学习二次函数图象的兴趣。

  五、教学设计思考

  以实现教学目标为前提

  以现代教育理论为依据

  以现代信息技术为手段

  贯穿一个原则——以学生为主体的原则

  突出一个特色——充分鼓励表扬的特色

  二次函数说课稿(三)

  一、教材分析

  1.地位和作用

  (1)函数是初等数学中最基本的概念之一,贯穿于整个初等数学体系之中,也是实际生活中数学建模的重要工具之一。二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,也是初中数学教学的重点和难点之一,更为高中学习一元二次不等式和圆锥曲线奠定基础。在历届淮安市中考试题中,二次函数都是不可缺少的内容。

  (2)二次函数的图像和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起推动作用。

  (3)二次函数与一元二次方程、不等式等知识的联系,使学生能更好地将所学知识融会贯通。

  2.课标要求:

  ①通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。

  ②会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。

  ③会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题。

  ④会利用二次函数的图象求一元二次方程的近似解。

  3.学情分析

  (1)初三学生在新课的学习中已掌握二次函数的定义、图像及性质等基本知识。

  (2)学生的分析、理解能力较学习新课时有明显提高。

  (3)学生学习数学的热情很高,思维敏捷,具有一定的自主探究和合作学习的能力。

  (4)学生能力差异较大,两极分化明显。

  4.教学目标

  ◆认知目标

  (1)掌握二次函数 y=ax2+bx+c图像与系数符号之间的关系。

  通过复习,掌握各类形式的二次函数解析式求解方法和思路,能够一题多解,发散提高学生的创造思维能力。

  ◆能力目标

  提高学生对知识的整合能力和分析能力。

  ◆ 情感目标

  制作动画增加直观效果,激发学生兴趣,感受数学之美。在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。

  5.教学重点与难点:

  重点:(!)掌握二次函数y=ax2+bx+c图像与系数符号之间的关系。

  (2) 各类形式的二次函数解析式的求解方法和思路。

  难点:(1)已知二次函数的解析式说出函数性质

  (2)运用数形结合思想,选用恰当的数学关系式解决几何问题。

  二、教学方法:

  1.师生互动探究式教学,以课标为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初三学生的求知心理和已有的认知水平开展教学。(fanwen.weiyujianbao.cn)形成学生自动、生生助动、师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。

  2.将知识点分类,让学生通过这个框架结构很容易看出不同解析式表示的二次函数的内在联系,让学生形成一个清晰、系统、完整的知识网络。

  三、学法指导:

  1.学法引导

  "授人之鱼,不如授人之渔"在教学过程中,不但要传授学生基本知识,还要培育学生主动思考,亲自动手,自我发现等能力,增强学生的综合素质,.

  2.学法分析:新课标明确提出要培养"可持续发展的学生",因此教师有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主学习,合作交流的研讨式学习方式,培养学生"动手"、"动脑"、"动口"的习惯与能力,使学生真正成为学习的主人。

  四、教学过程:

  1、教学环节设计:

  根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点。

  本节课的教学设计环节:

  ◆创设情境,引入新知:复习旧知识的目的是对学生新课应具备的"认知前提能力"和"情感前提特征进行检测判断".学生自主完成,不仅体现学生的自主学习意识,调动学生学习积极性,也能为课堂教学扫清障碍。为了更好地理解、掌握二次函数图像与系数之间的关系,根据不同学生的学习需要,按照分层递进的教学原则,设计安排了6个由浅入深的例题。让每一个学生都能为下一步的探究做好准备。

  ◆自主探究,合作交流:本环节通过开放性题的设置,发散学生思维,学生对二次函数的性质作出全面分析。让学生在教师的引导下,独立思考,相互交流,培养学生自主探索,合作探究的能力。通过学生观察、思考、交流,经历发现过程,加深对重点知识的理解。

  ◆运用知识,体验成功:根据不同层次的学生,同时配有两个由低到高、层次不同的巩固性习题,体现渐进性原则,希望学生能将知识转化为技能。让每一个学生获得成功,感受成功的喜悦。

  安排三个层次的练习。

  (一)课前预习

  (二)典型例题分析

  通过反馈使学生掌握重点内容。

  (三)综合应用能力提高

  既培养学生运用知识的能力,又培养学生的创新意识。引导学生对学习内容进行梳理,将知识系统化,条理化,网络化,对在获取新知识中体现出来的数学思想、方法、策略进行反思,从而加深对知识的理解。并增强学生分析问题,运用知识的能力。

【二次函数说课稿】相关文章:

《二次函数》教学反思08-14

二次函数教学反思03-02

二次函数的教学反思04-22

对数函数中与二次函数有关的问题08-17

数学教案-二次函数08-17

二次函数概念教学反思08-22

初三二次函数教学反思04-08

第六册二次函数08-17

二次函数数学教案02-07

《二次函数复习课》教学反思11-05