现在位置:范文先生网>心得体会>教学反思>《平行四边形的面积》教学反思

《平行四边形的面积》教学反思

时间:2023-04-14 15:05:59 教学反思 我要投稿

《平行四边形的面积》教学反思(集锦15篇)

  身为一名优秀的人民教师,我们的工作之一就是课堂教学,写教学反思可以很好的把我们的教学记录下来,写教学反思需要注意哪些格式呢?以下是小编收集整理的《平行四边形的面积》教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。

《平行四边形的面积》教学反思(集锦15篇)

《平行四边形的面积》教学反思1

  《平行四边形面积的计算》这一内容是在学生学习了长方形、正方形面积计算以及平行四边形的特征,并会画出平行四边形的底和对应的高的基础上进行教学的,是学习三角形、梯形面积计算的基础。现将本节课的教学反思如下:

  1.重视操作体验,发展学生空间观念

  《数学课程标准》指出“有效的数学活动不能单纯地依赖模仿与记忆,教师要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”

  教学中,我关注学生已有的知识经验,充分放手,先让学生大胆猜想,积极地为自己的猜想寻找验证的方法,这样学生主动地参与到学习中。接着我引导学生利用手中的学具,让学生动手实践,学生在实践过程中想到了数方格和剪拼的方法,自主探究出平行四边形沿着高剪下来能转化为长方形的方法。小组交流、集体汇报找到平行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长×宽,得到平行四边形面积计算公式是底×高,再利用讨论交流等形式要求学生把自己操作——转化——推导的过程叙述出来,以发展学生思维和表达能力。这样教学对于培养学生的空间观念,发展解决生活中实际问题的能力都有重要作用。

  2.注重思想方法渗透,引导探究

  “转化”是数学学习和研究的一种重要思想方法。学生虽然想到了把平行四边形变成长方形,但并不知道这就是“转化”,我对学生的这一方法进行了提升。在具体操作过程中,我努力让学生通过“猜想——验证——结论”的过程,帮助学生掌握探索问题的一般方法,为后面探究三角形、梯形的面积计算方法提供方法迁移。

  运用现代化教学手段,对几种剪拼的方法进行总结,为学生架起由具体到抽象的桥梁,使学生清楚的看到平行四边形长方形的转化过程,以及他们之间的关系,突出了重点,化解了难点。

  3.注重优化练习,拓展思维

  练习设计的优化是优化教学过程的一个重要方面。本课教学过程中,注重学练结合,既有坡度又注重变式。

  第一题告诉学生底和高,直接求平行四边形面积,规范格式,检验学生是否达到运用公式,解决实际问题。

  第二题4道判断题,包含了学生的一些常见错误。第一道是强调面积单位,第二道强调计算时单位名称的统一,第三道强调平行四边形的面积是底乘高而不是底乘邻边,第4道强调底和高必须对应,强化学生的`认知。

  第三题比较平行四边表的面积,认识等底等高的平行四边形的面积相等。本课练习能促使学生牢固的掌握新知。

  值得反思的的是:

  1.平行四边形转化成长方形课本上给出了两种方法,一种是沿着平行四边形的左上角的顶点剪开,另一种是沿着任意一条高剪开。其实并不是只沿着高剪开能拼成长方形,我能想到的还有将两个角剪下来平移到相对的部分。在教学过程中并没有展示这种方法,一是在学生探究过程中学生没出现这种方法(也许放的不够的原因);二是考虑到学生的实际水平,不敢讲得太深。

  2.沿着平行四边形的高剪下来平移到相对的部分,一定会拼成长方形吗?这也是需要验证的。也是考虑到实际情况,把这一部省去了,不知道是否会给学生造成错误的思维方式,是不是扼杀了学生数学的天赋。

  3.预设不充分,学生的主体地位体现不够。展示数方格这种方法的时候,学生是沿着平行四边形的高剪下来,移到另一边去拼成长方形,把半格的拼成整格来数,这是一种多么好的方法,但老师不但没有预设到,而且没有及时领会到学生的意图,急于走预设,把正确答案给出,导致这一环节不完整,教师思路不那么清晰了,这是我今后最应该注意并改正的。

  4.透过这一节课的教学可以看到,很多学生不敢动手,有想法不会表达,所以我们一线教师应该清醒地认识到加强常态课研究的必要性,在日积月累中提升学生的数学素养。

  教学是一门有着缺憾的艺术。做为教师,往往在执教后留下或多或少的遗憾,只要我们思考了,改进了,我们的课堂就会更加精彩。

《平行四边形的面积》教学反思2

  《平行四边形的面积》是北师大版五年级上册第四单元第三课时的内容。这在学生已经会在格子图中求出图形的面积,已经认识了平行四边形的底和高,并会找、会画相对应的底和高的基础上进行教学的,基于学生的知识起点和学生的学情分析,我有了本课的教学设计。我追求的是让教学贴着学生的思维前行,让学生在直观操作中学习数学。今天,我有幸将这课的设计在早毓小学展示。现静下心来反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:

  一、创设贴近学生生活的学习情境,激发学生探究的欲望。

  首先,我对教科书中的主情境加以修改,以贴近学生的生活情景导入,利用课件出现学校操场旁有一块长方形的空地要绿化,请同学们算出绿化的面积,随即从这个长方形中出现一块没有任何数据的平行四边形地,再引导学生将这个平行四边形与长方形比一比,再估测这个平行四边形的面积大约有多少?以培养学生估测意识。

  继而询问学生“有什么办法能比较准确地算出这个平行四边形的面积”。学生根据已有的学习经验马上想到用数格子和计算的的方法。然后围绕“有什么办法能比较准确算出这个平行四边形的面积?”组织学生动手探究。这样既复习了旧有知识,又为学习新知识做铺垫,同时也比较自然地引入新内容。

  二、注重“以生为主,教师为辅”,让学生真正成为学习的主人。

  1.《新课程标准》明确指出:“有效地数学学习活动不能单纯依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”动手实践是学生学习数学的主要方式之一。它有利于让学生参与知识的形成过程,促进学生对抽象数学知识的理解,而且培养了学生的思维能力、创新能力和合作精神。因此,在本课的教学设计中,我利用学生好动、好奇的心理,将这块平行四边形做成卡片模型,并提供了一些探究的材料和工具。让学生根据自己的学习经验,自主选用喜欢的方法来验证自己的猜想。为学生创造了一个观察、操作的机会,以充分发挥学生的学习主动性,学生在兴趣盎然的操作中,把抽象的数学知识变为活生生的的`动作,自然而然的让学生从“要我学”变成“我要学”。有的学生根据自己的学习经验想到了数格子的方法;能力较好的学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。

  2.“学生是学习的主人,把课堂的时间交还给学习的主人”这是新课标在提倡的重点。是的,学生学习,教师是不能替代的,只有让学生在动手操作和交流地碰撞中。学生才能真正理解和掌握这种抽象的公式。因此,在展示学生的活动方法时,我有意识地先展示数格子的方法,当学生介绍完数法后,有的学生马上发现,先移后数的方法更快的得到这个平行四边形的面积,其实,在这里,学生已初步体验的“剪”和“拼”方法了。所以我紧接着展示学生的剪拼法。在学生的汇报中,我大胆放手,让学生根据自己的学习经验进行汇报,充分发挥学生的想象力,同时培养学生的创新意识。

  三、注重数学思想方法的渗透,让所积累的经验为新知服务。

  “授人以鱼,不如授人以渔”,这句话不错,教给他们知识,不如教给他们学习的方法。所以,在“平行四边形的面积”这一课的教学中,我不仅仅是让学生掌握平行四边形面积的计算公式,更重要的是让学生在活动中积累基本的活动经验,让他们在经验的积累中感受、理解、掌握数学中“转化”的思想方法,为今后学习其他图形的面积奠定基础。如在学生上台汇报:将平行四边形转变成长方形时,我适时讲解“像他们这样,把没学过的知识变成已学过的知识,从而解决问题,这就是数学中的“转化”思想。并提醒学生,在今后的学习中,我们也可以像他们这样,利用转化的的思想,将没学过的知识转化为已学过的知识来解决。

  四、巧设课堂练习,培养学生数学思考的能力。

  学生的思考能力是有差异的,所以我在整体把握教学内容的基础上,设计了梯度练习。首先是基础性的练习,让学生利用所探究出来的公式求平行四边形的面积;接着是提高性的练习,既设计多余信息的练习,让学生的思考力得以生长。当学生看懂了平行四边形可以转化为长方形来思考,真正理解了“底乘高的原理时,我又创设一个反例练习,既在黑板上将一个活动的长方形框架拉成平行四边形,然后问学生:“长方形的面积和平行四边形的面积相等吗?”这时,学生受思维定势的影响,都一致认为“相等”。当我利用课件展示两个图形的平面图时,一部分学生根据已有的学习经验(即将平行四边形右边斜出的部分剪下,平移到左边拼成长方形,)而改变了意见。此时,我质疑学生:“为什么刚才把平行四边形转化成长方形,它们的面积相等。而现在把长方形的框架拉成平行四边形时,它们的面积却不相等呢?”然后再利用活动框架让学生直观地了解到:当我们把长方形框架拉成拉成平行四边形时,它的面积会越来越小,是因为平行四边形的高越来越短的关系。从而让学生理解“等积变形”的转化与“变与不变”之间的区别。最后我再通过两题判断题让学生充分理解,平行四边形的面积不仅与它的高有着密切关系,同时也与它的底有着密切的关系。

  五、遗憾与心得

  教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾。

  (1)由于是送课下乡的活动,我对该班学生的学习情况了解不够。因而在学生的动手探究时,多数学生对学习记录卡的填写不熟悉。由此在这个环节花掉的时间超过我预设时间近十分钟。然而让我欣喜的是在学生交流汇报的环节,一部分学生的思维活跃,语言表达能力非常好,从而凸显出本课设计的精彩之处,以致于让听课老师不会因超时而不耐烦。同时也让我意识到,在今后的教学中,应对学习卡的设计慎之又慎。

  (2)阶段性小结的重要性。适当的课堂小结可以帮助学生理清知识结构,掌握内在联系,对促进学生构建自己的知识体系,有很大的帮助。因此,在学生获取一个新的知识点后,教师应及时做个阶段性的小结。

  幸运的我,相信在陈宏瑜名师的指导下,在我们团队的磨课中,会不断地改进,不断地进步,不断地创新,我们的课堂也将会更加精彩。

《平行四边形的面积》教学反思3

  《平行四边形面积》是五年级上册的内容。教材设计的思路是:先通过数方格的方法数出平行四边形的底、高、面积。再通过对数据的观察,提出大胆的猜想。通过操作验证的方法推导出平行四边形面积的计算方法。再利用所学的公式解决问题。我认为让学生简单记忆公式并不难,难的是让学生理解公式,因此,必须让每个学生亲历知识的形成过程。在独立思索的基础上亲自动手剪一剪、拼一拼,并带着自己的操作经历进行小组内的讨论和交流。课堂是充满未知的,在课后我认真总结了这节课。

  (1)数方格中的得与失。

  教材中所设计的数方格的过程是紧跟上图中的花坛来的'。把两个花坛按比例缩小后画在了方格纸上,让学生把方格纸上的1格看作1平方米来数。这与学生以前的数法有了细微的差别。再加平行四边形中有不满1格的情况,怎样才能把面积准确的数出来是学生需要认真思考的问题。

  当时我让邱泽昊同学到前面数的方格,结果在数的时候也不是很顺利。如果这个时候我引导学生把左侧沿着方格线剪开移到另一侧,把所有的方格变完整再去数。并且告诉学生这种割下来补到图形另一侧的方法叫割补法。这样教学就可以为学生以后把平行四边形转化成已学过的图形面积计算做好方法上的准备了,所以说这个地方我处理的不是很好。

  (2)数学课堂上一定要让学生经历知识形成的过程。

  在课之前,我让每个学生都准备了一个平行四边形的学具,而且要求小组每个成员剪的平行四边形要不一样。课堂的操作是:先量出平行四边形的底和高,把平行四边形的数据记录在自己的本子上,通过剪拼,把平行四边形转化成长方形,量出它的长和宽,计算出它的面积。

  再思考转化后什么变了,什么没有变,然后通过思考,汇报,发现平行四边形与长方形的关系。得出平行四边形的面积计算公式。在这个过程中,学生通过自己的操作,思考,总结出了平行四边形的面积计算公式,不但使他们知道知识的形成过程,而且也提高了动手,动脑的能力。这对于以后学习图形的知识提供了一种方法和方向。在课堂上,我还觉得练习的密度及处理的方式不够巧妙,在今后的练习中还要注意练习的设计和处理。

《平行四边形的面积》教学反思4

  1.先让学生回忆学过了哪些平面图形,想一想长方形的面积是怎样求的,做到用“旧知”引“新知”,把“旧知”迁移到“新知”中,渗透了转化的思想方法。

  2.注重学生数学思维的发展,设计了剪一剪、拼一拼等学习活动,让学生在活动中探索出平行四边形的面积公式。

  3.注重了师生互动、生生互动,这节课始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的`共鸣。师生之间应该互有问答,学生与学生之间也要互有问答。

《平行四边形的面积》教学反思5

  新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师是要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。” 《平行四边形的面积》一课的教学中,通过让学生动手实践,自主探究,让学生经历了知识的形成过程。使学生通过探索、理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积;通过操作,观察和比较的活动初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。具体概括为以下几点:

  一、注重数学思想方法的渗透

  在教学设计方面,教师先是让学生计算不规则图形的面积,引导学生把不规则图形转化为学过的图形,进而计算出它的面积。这样就为这节课运用转化的思想学  数学教学的核心是促进学生思维的发展。教学中,通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。在这节课中,教师设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?充分利用多媒体课件演示,形象、直观,使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。

  在此,教师特别注意强调底与高应该是相对应的,通过观察、交流、讨论、练习等形式,让学生在理解公式推导的.过程中学会解决问题。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。

  三、注重了师生互动、生生互动

  新课程标准提倡学生的自主学习,在课堂教学中主张以学生为主体,注重师生互动和生生互动。师生应该互有问答,学生与学生之间要互有问答。在这节课中,我能始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。

《平行四边形的面积》教学反思6

  平行四边形的面积是五年级上册几何图形计算的内容,本节课的教学,我可以看到学生兴趣盎然,始终以积极的态度、主人翁的姿态投入到每一个环节的学习中。我认为本节课成功的关键在于教师大胆放手,学生通过自主探究得到了知识,获得了发展。主要体现在以下几个方面:

  (一)创设生活情境,激发探究欲望

  小学数学内容来源于生活实际,它应当是现实的,有意义的、富有挑战性的。创设与学生的生活环境和知识背景密切相关的又是学生感兴趣的学习情境有利于让学生积极主动地投入到数学活动中去。回归生活,让课堂与生活紧密相联,是新课程教学的基本特征。因为我们知道,只有植根于生活世界并为生活世界服务的课堂,才是具有强盛生命力的课堂。所以新课程强调突破学科本位,砍掉学科内容的繁、难、偏、旧,把课堂变成学生探索世界的窗口,学生活中的数学,获得合作的乐趣,生活融入甚至成为课堂教学,课堂教学本身就是生活,经历、体验、探究、感悟,构成了教学目标最为重要的行为动词。

  本节教学中,我带领学生进行实地考察,看到了平行四边形来源于生活实际,也体会到了计算它的面积的用处,这就使学生对学习的内容产生了浓厚的兴趣和亲切感,激发起他们强烈的求知欲望,使学生能以饱满的热情投身于新知识的探究之中。

  (二)重视学生的自主探索和合作学习

  动手实践,自主探索与合作交流是学生学习数学的重要方式。苏霍姆林斯基说过:"在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。"上述这个教学片断中,对传统的平行四边形面积的教学方法作了大胆改进,教学中我有意设计了曹冲称象这个同学们都熟悉的故事引入,其用意一方面是激发学生的学习兴趣,另一方面是孕伏了转化的数学思想。为学生解决关键性问题-把平行四边形转化为长方形奠定了数学思想方法的基础。

  这一设计意图在教学中得到了较好的体现,课后调查发现全班有近一半的同学想到了把平行四边形转化成已经学过的图形这一方法。接着教师鼓励学生用自已的思维方式大胆地提出猜想,由于受长方形面积公式的干扰,有的同学认为:平行四边形面积等于两条相邻边的乘积。对于学生的猜想,教师均给予鼓励。因为虽然第一个猜想的结果是错误的,但就猜想本身而言却是合理的,而创新思维的火花往往在猜想的瞬间被点燃,不同的猜想结果又激发起学生进行验证的需要,需要同学们作进一步的探索。

  因为老师为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的思考问题的时间与空间,在这样的课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,在这样的课堂学习中学生乐想、善思、敢说,他们可以自由地思考、猜想、实践、验证……

  才得到"灵感"的,而平行四边形转化成长方形的各种方法正是集体智慧的结晶。学生只有在相互讨论,各种不同观点相互碰撞的过程中才能迸发出创造性思维的'火花,发现问题、提出问题、解决问题的能力才能不断得到增强。海纳百川,有容乃大。

  (三)培养学生的问题意识

  问题是数学的心脏,能给学生的思维以方向和动力,不善于发现、提出和解决问题的学生是不可能具有创新精神的。要培养学生的问题意识,首先教师要精心设计具有探索性的问题,教师的提问切忌太多、太小、太直,那种答案显而易见的一问一答式的问题要尽量减少。

  上述教学片断中,为了引导学生进行自主探究,我设计了这样一个问题:“你能想什么办法自己去发现平行四边形面积的计算公式呢?"这一问题的指向不在于公式本身,而在于发现公式的方法,这样学生的思维方向自然聚焦在探究的方法上,于是学生就开始思索、实践、猜想,并积极探求猜想的依据。当学生初步用数方格的方法验证自己的猜想后,我又提出了这样一个问题:“这种方法行的通吗?"这个问题把学生引向了深入,这不仅使学生再次激发起探究的欲望,使学生对知识理解得更深刻,同时更是一种科学态度的教育。

  其次,要积极鼓励学生敢于提出问题。教师对学生产生的问题意识要倍加呵护与尊重,师生之间应保持平等、和谐、民主的人际关系,消除学生的紧张感,让学生充分披露灵性,展示个性。在上述教学片断中,我积极的鼓励学生进行大胆的猜想,提出自己的问题。于是,“平行四边形面积该怎样求?是等于两条邻边乘积还是等于底乘高?”“该怎样来验证自己的猜想呢?”“怎样用数方格来数出平行四边形的面积?”“怎样用转化的方法把平行四边形转化成长方形呢?”……这些问题在学生的头脑中自然产生,学生在独立思考、相互交流、相互评价的过程中感受到自己是学习的主人,满足了学生自尊、交流和成功的心理需求,从而以积极的姿态投入到数学学习之中。

《平行四边形的面积》教学反思7

  新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师是要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”《平行四边形的面积》一课的教学中,通过让学生动手实践,自主探究,让学生经历了知识的形成过程。我设立的教学目标是(1)使学生通过探索、理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积;(2)通过操作,观察和比较的活动初步认识转化的方法,培养学生的观察、分析、概括、推导能力生的空间观念。

  反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:

  一、注重数学思想方法的渗透

  在教学设计方面,我先是让学生大胆猜测两块香蕉地(等底等高的长方形与平行四边形)的面积哪一个大,再让学生通过动手操作、验证平行四边形的面积,其实它们的面积是一样大的。

  二、注重学生数学思维的发展

  数学教学的核心是促进学生思维的发展。教学中,通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?充分利用多媒体课件演示,形象、直观,使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。在此,我特别注意强调底与高应该是相对应的,通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。

  三、注重了师生互动、生生互动

  新课程标准提倡学生的自主学习,在课堂教学中主张以学生为主体,注重师生互动和生生互动。师生应该互有问答,学生与学生之间要互有问答。在这节课中,我能始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。

  四、我的遗憾

  课前预设学生把平行四边形转化成长方形的方法有三种,第一种是沿着平行四边形的`顶点做的高剪开,通过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开,第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。这节课学生大部分都拼出第一种,后两种学生没拼出来,如果在下一次试教中,我想尝试着通过我的引导让学生动手实践,剪出第二、三种剪法。教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。

《平行四边形的面积》教学反思8

  本节课是平行四边形面积计算的第一课时,重点是探索并掌握平行四边形的面积计算公式,会用公式计算平等四边形的面积(须找准平行四边形底与对应的高)。难点是探索平等四边形的'面积计算公式(用割补法把平等四边形变成长方形,根据长方形面积公式推导出平行四边形的面积公式),这也是我们以后探索三角形、梯形面积公式的一种基本方法。

  因此,作为第一课时,我设计的重点就在推导平行四边形面积计算公式的自然引导及探索过程和找准平行四边形的底和高计算面积底和高。一节课教学下来,反思有以下不足:

  (1)从教师自身来说,有点紧张,导致关注学生不够,学生的积极性调动不理想。

  (2)从设计来说,旧知导入(出示生活中的情景图找学过的图形并抽象出长方形,平行四边形。比在教室里找图形节省时间得多);例2可作为一个基本练习,不作为例题,这样练习题型可丰富些。

  (3)从现场教学效果来说,本节课设计了一个思考题可以培养学生的思维能力及空间想象能力,但因为断电和时间关系未展示;另一个最为遗憾的是学生反思与小结,应将推导平行四边形面积计算公式的过程提升到一个理性的高度,师适当用一两句话小结,以便为今后图形面积计算公式的探索打下基。

《平行四边形的面积》教学反思9

  本节课我主要采用自主探究、合作交流的方式进行,根据学生的预习,先说一说自己有质疑的、不会的问题,以及自己不同的见解、看法和重点等。接着让学生在展示台上演示自己的操作过程。教师追问,引发学生思考,学生评价,当堂检测,充分尊重了学生的主体地位,突破难点,解决了关键,发展了学生能力,很好地完成了学习目标。

  在创设情境,设疑引入环节中,学生现有知识水平中无法通过计算来比较两个花坛面积的大小,从而激发学生探究知识的欲望,感受数学与生活的密切联系。

  在操作探索,获取新知环节,我主要让学生亲身经历用数、移、拼等操作方法在自主、合作的积极学习氛围中推导出平行四边形的面积公式,学会“转化”的方法。同时使学生明白学会一种解题方法比做十道题都重要,教会学生不仅要“学会”,而且要“会学”。充分尊重了学生的主题地位,突破了难点,解决了关键,发展了学生能力。

  在练习环节,练习题量虽然不大,但内涵盖了本节课要讲的所有知识点,具有一定的弹性,使不同的学生得到了不同程度的发展,从而进一步内化了新知。同时,在成功的喜悦中,使他们体会到,数学就存在于我们身边,只要细心观察,认真思考,都可以找到数学方面问题。

  回顾本节教学,我也感到了不足之处,比如:

  应该让学生更多的表达,更清楚的表述,教师应该是一个快乐的倾听者。而我在课堂上虽想到了这一点,还是急于归纳概括学生的'结论,应让学生再说的充分些,让每个学生有更深刻的理解的基础上,站在更高的角度去归纳,更深更全面的去概括。

  学生明白但表述不清楚,就是因为被圈在了教师给的固定模式里,因此我觉得今后在常态教学中更应注重学生个体表达,并且不必一定按照教师给的固定模式,应该允许学生用自己的方式、用自己的语言来述说解题思路帮助分析问题。不仅要求学生在课堂上大胆地说,而且还要求学生与同学互相交流着述说,这样让学生充分展示自己的思考过程,并用流利的语言来叙述给同学听,在这样的过程中才能不仅能及时发现问题,及时查漏补差。

《平行四边形的面积》教学反思10

  《平形四边形的面积》是学生第一次用转化的思想方法探索面积计算公式,在探究过程中获得的数学思想、活动经验对学生下一步探索三角形、梯形和圆面积公式具有很强的借鉴作用,因此转化的方法和转化思想的渗透无疑是本课教学的重要目标。

  一、注重数学专业思想方法的渗透。

  我在这节课中,先让学生回忆学过了哪些平面图形,想一想长方形的面积是怎样求的?引出你能求平行四边形的'面积吗?做到用“旧知”引“新知”,把“旧知”迁移到“新知”中,有利于有能力的同学向转化的方法靠拢。

  二、注重学生数学思维的发展。

  在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。

  三、注重了师生互动、生生互动。

  在这节课中,我能始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。例如:当学生展示完自己的方法后,教师引导:你认为他的方法怎么样?好在哪儿?你还有什么问题?通过教师设计的这些问题,不断地把课堂引上了师生互动,生生互动的高潮。

  四、练习的设计,由浅入深,环环相扣。

  1、让学生进行两个平行四边形面积的计算,是对平行四边形面积公式的应用。

  2、让学生对平行四边形面积公式逆向思考,给了面积和底或高求高或底。

  3、辨析同底等高的平行四边形面积是否相等。

  五、我的遗憾

  虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着不敢放手现象。课堂上有效的评价语言在本节课中也体现不够完善。自己觉得在引导和组织学生上欠缺一些,在引导学生把平行四边形“转化”成长方形的操作活动中,没有把学生的积极性调动起来,有些学生的操作活动没有很有效进行,导致那里的教学时间过于长。

  教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。

《平行四边形的面积》教学反思11

  一、借助游戏,使学生感知转化。

  转化在数学学习中是一种非常重要的学习方法和思想,对学习三角形、梯形面积的学习又非常重要的作用。课前游戏环节先用口令形式,进而改为用数字代替口令,让学生在游戏中感知转化、认识转化。既为新知的学习做准备,又调动了学生的积极性,学生乐于参与。

  二、联系学生生活,创设情境

  结合学生原有的认知水平,通过猜五年(2)班和五年(4)班清洁区的面积创设情境,把生活问题转化为数学问题,通过猜一猜,激发学生的学习兴趣,让学生感受知识来源于生活。

  三、运用转化,推导平行四边形面积公式

  在学生理解了转化的基础上,提出“能不能把平行四边形转化成我们学过的图形呢?”同时让学生互相讨论,通过剪一剪,拼一拼,转化成自己会算面积的图形。学生通过实际操作,用不同方法把平行四边形转化成了长方形,并通过平行四边形和长方形的内在联系,共同推导出其面积计算公式。

  有待加强:

  一、整个教学过程我认为没有“放”。作为学生的引导者,教师的这个角色没有充当好。公式的推导过程可以让学生慢慢发现,适当引导即可。我怕完不成教

  学任务,就带着学生比较两个图形的特点,得出公式。其实在备课中,我还是准备让学生多讲,通过发现、比较得出公式。不敢放,学生的主体性没得到充分的发挥。

  其次,学生通过拼、剪后,示范拼剪过程时,应规范学生的.操作过程。如当学生说沿着高剪时,带着学生先作平行四边形的高,使学生明确平行四边形有无数条高,所以沿着平行四边形任意一条高剪开,都可以得到一个长方形。由于是赛讲课,怕出错,因此教程基本按备的课来上,这是由于应变能力较差,有待于多钻研教材,做到备课时也要备学生,对课堂有可能出现的各种情况有正确的估计。

《平行四边形的面积》教学反思12

  平行四边形面积的计算是在学生学习了长方形的面积和平行四边形认识的基础上教学的,平行四边形的面积公式推导方法的掌握,对学习后面三角形、梯形面积公式具有重要的作用,所以平行四边形面积公式的推导,是本节课的重点,整个教学过程由旧知导入新课,进行新课,巩固练习,课堂小结几个环节组成。

  一、注重了数学专业思想方法的渗透。

  我们在教学中一贯强调,“授人以鱼,不如授人以渔”,在数学教学中,就是要注重数学专业思想方法的渗透。数学专业思想方法即解决数学具体问题时所采用的方式、途径、手段,它是学习数学知识、运用数学知识解决实际问题的具体行为。因此,要求学生掌握基本概念、基本定律、基本运算、演算例题等一些基础知识固然重要,但更重要的是,要让学生了解或理解一些数学的.基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。

  在这节课中,一开始数格子就开始渗透割补的方法,不仅为学生接下来研究平行四边形的面积,提供了方法,还为学生的研究提供了思路。在推导平行四边形面积公式的时候学生马上能想到运用割补的方法把平行四边形的面积转化成已经学过的图形的面积。

  二、注重了学生数学思维的发展

  数学教学的核心是促进学生思维的发展。教学中,教师要千方百计地通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。课堂教学中充分有效地进行思维训练,是数学教学的核心,它不仅符合素质教育的要求,也符合知识的形成与发展以及人的认知过程,体现了数学教育的实质性价值。在这节课中,我设计了剪一剪、移一移、拼一拼等学习活动,逐步引导学生观察思考得出:长方形的面积与原平行四边形的面积相等,拼成的长方形的长和宽相当于平行四边形底和高,最后使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。

  三、练习设计注重层次性,体现了学生对公式的运用和实践的能力的培养

  在平行四边形面积的计算公式推导出来后,我设计了一些变式练习,强化巩固学生获得的知识,引导学生将获得的知识运用于实际生活,通过实际问题的解决,学生将书本知识转化为能力,练习第3题:解决生活问题。学校有一块近似平行四边形的花坛,底4米,高6米,每平方米花坛需要5元,问这个花坛种花大约需要多少钱?这环节让学生综合运用知识解决问题,培养学生的实践能力。

  另外,我还注意培养学生的发散性思维,设计了一题:一个平行四边形的面积为12平方米,它的底和高可能是几?这个颇具开放性的问题。体现了对平行四边形面积公式的运用和理解,既有层次性,又能让学生明白虽然平行四边形的形状不相同,但只要等底等高,这两个图形的面积也相等。

  这节课在老师们的帮助下,我的课有了明显的进步,可在上课时还存在着不少的缺憾:

  还有课堂语言不够简练,缺少与学生之间的沟通与交流,这几点都还是有待提高的,不过通过这次上课也让我锻炼了胆魄,让我对课堂艺术有了进一步的理解,非常感谢老师和学校领导给我这样一个机会。

《平行四边形的面积》教学反思13

  《平行四边形的面积》是人教版五年级上册第五单元《多边形的面积》第一课时的教学内容。本节课是学生掌握并运用“转化”思想的关键,更是学生进一步探究其它平面图形面积计算的基础。课前,我带着如何有效实践“图形与几何”领域的新课标理念,如何更好地让学生获得基本活动经验,形成基本数学思想等问题,反复研读课标,揣摩教材,力求让学生在学习中不仅能够获得平行四边形面积计算公式的知识,而且能够体会和运用数学思想和方法,不仅能够正确地应用公式,而且能更好地理解这一公式的来源,力争在教学中,展示探究平行四边形面积计算方法的真实思维过程,凸显“重知识更重方法,重结果更重过程”的价值追求。以下是我在设计与执教“平行四边形的面积”一课中获得的一些启示,可能还不够成熟,可能还存在这样那样的问题,真诚地希望您能够提出宝贵意见。

  一、注重 “转化”思想的渗透。

  在数学教学中,要注重数学思想方法的渗透,要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。平行四边形的面积计算公式是几何图形面积计算第一次运用“转化”的思想方法推导得出的,这无疑增加了学生学习的难度。本节课的教学,长方形的面积计算是平行四边形面积计算的生长点,是认知前提,所以新课伊始,我首先复习长方形的面积计算公式,并通过计算不规则多边形的面积,引导学生初步体会运用剪、移、拼的方法把不熟悉的未知图形转化成我们熟悉的已知图形来计算它的面积,渗透“等积变形”,实现用“旧知”引“新知”,把“旧知”迁移到“新知”的教学预设,让学生对“转化”有所熟悉,不再陌生。同时,在潜移默化中,引导学生明确转化是一种很好的数学学习的方法,为学生进一步理解转化思想奠定基础。

  在探究平行四边形的面积计算公式的`教学环节中,我首先让学生通过数方格的方法分别求出平行四边形和长方形的面积,然后观察表格中的数据,感知平行四边形与长方形的内在联系,当发现用数方格的方法计算实际生活中图形的面积不太适宜时,引导学生大胆猜测平行四边形的面积计算公式,并运用“转化”的方法将平行四边形转化成长方形,从而验证猜测,推导出公式,也让学生更深刻地理解了转化的本质。

  二、注重学生数学思维的发展。

  数学教学的核心是促进学生思维的发展。在这节课中,我设计了求不规则多边形的面积、运用剪一剪、拼一拼的方法进行图形转化等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与原平行四边形底和高有什么关系?充分利用多种媒体形象、直观的教学辅助作用,使学生在动手操作,交流研讨中得出结论。同时引导学生发现底与高的一一对应关系。在一系列的教学活动中,学生通过观察、交流、讨论、练习等形式,在理解公式推导的过程中学会解决问题,在亲自尝试,亲身体验中掌握了平行四边形面积公式的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。

  三、注重培养学生的问题意识。

  问题是数学的心脏,能给学生的思维以方向和动力,不善于发现、提出和解决问题的学生是不可能具有创新精神的。要培养学生的问题意识,首先教师要精心设计具有探索性的问题,在教学中,为了引导学生进行自主探究,我设计了这样一系列问题:“请你猜测平行四边形面积的计算公式?为了验证猜测,你想把平行四边形转化成我们学过的哪个已知图形?怎样转化呢?”这些问题的指向不在于公式本身,而在于探究公式的来源,这样学生的思维方向自然聚焦在探究的方法上,于是学生就开始思索、猜想,并进行实践。当学生运用割补平移的方法将平行四边形成功地转化成长方形后,我又及时出示问题,引导学生在小组内讨论原平行四边形与转化后的长方形之间的关系,从而达到公式推导的目的。学生在独立思考、动手操作、相互交流、相互评价的过程中,增强发现问题、提出问题、分析问题和解决问题的意识和能力。

  四、注重学生学习方式的多样化。

  动手实践,自主探索与合作交流是学生学习数学的重要方式。教学中,我为学生创设了民主、宽松、和谐的学习氛围,给了学生充分的思考问题的时间与空间,充分地调动了学生的学习主动性。让每一个学生亲自动手操作,边操作边观察边思考,在自主探究与合作交流过程中,经历知识的形成。课堂上,学生们乐想、善思、敢说,他们自由地思考、猜想、实践、推理、验证……

  教学是一门有着缺憾的艺术。作为教者的我们,往往在执教后,都会留下或多或少的遗憾,但只要我们用心思考,不断改进,我们的课堂就会更加精彩。

《平行四边形的面积》教学反思14

  教学目标:

  1. 探索平行四边形面积的计算方法,会运用“转化”的数学思想方法推导平行四边形的面积计算公式,会计算平行四边形的面积。

  2. 让学生经历观察、操作、讨论、分析、比较、归纳等教学活动过程,获得积极的数学学习情感,从而发展学生的空间观念,提高学生的数学素养。

  教学重点:探究平行四边形的面积计算公式。

  教学难点:充分理解剪拼成的充分理解剪拼成的'长方形与原平行四边形之间和关系。

  教学具准备:平行四边形纸片、尺子、剪刀、课件

  教学过程

  一、谈话,揭题:

  1、谈话:听过曹冲称象的故事吗?曹冲真的称大象吗?

  2、揭题:平行四边形的面积。

  二、探究新知:

  问题(一)要求这个( )的面积,你认为必须知道哪些条件?

  1、 同桌交流

  2、 反馈:①长边×短边=10×7=70平方厘米

  ②底×高=10×6=60平方厘米

  3、 引发矛盾冲突:同一个平行四边形的面积怎么会有两个答案呢?

  4、 学生动手验证(小组合作)

  5、 请小组代表说明验证过程

  问题(二)为什么要沿着高将平行四边形剪开?

  问题(三)剪拼成的长方形的面积是60平方厘米,你怎么知道原平行四边形的面积也是60平方厘米?

  问题(四)是否每次计算平行四边形的面积都要进行剪拼转化成长方形来计算?如果要计算一个平行四边形池塘的面积,你还能剪拼吗?

  1、 引导观察,平行四边形转化成长方形,除了面积不变外,它们之间还有其它的联系吗?

  2、 推导公式:平行四边形的面积=底×高

  3、 小结

  问题(五)为什么不能用长边乘短边(即邻边相乘)来计算平行四边形的面积?

  1、动态演示: ,引导发现周长不变,面积变大了。

  2、动态演示: ,发现面积变小了

  。

  3、要求平行四边形的面积,现在你认为必须知道哪些条件?

  问题(六)是不是所有平行四边形的面积都等于底×高呢?

  让学生拿出各自的平行四边形,动手剪拼,看看行不行。

  三、应用新知

  1. 左图平行四边形的面积=?

  2.解决例1:平行四边形花坛的底是6米,高是4米,它的面积是多少?

  四、总结:

  1.回想一下今天我们是怎样学习平行四边形的面积?

  2.你还想学习哪些知识呢?

《平行四边形的面积》教学反思15

  1、深刻理解教材是有效课堂的基础

  教师如果没有深入地解读教材、领会编者的意图,而为了追求新意而过度改编教材内容,替换学习材料,往往会把数学知识固有的内涵丢掉,无法有效完成教学任务。这节课作为传统的教学内容,有那么多种讲法,教材为什么要这样编排和设计呢?

  教学之前,我觉得数方格对平行四边形面积公式的探究帮助不大,所以总想把它删去,节约出更多的时间来探究,但经过对教材的反复研读,我终于明白数方格在计算面积中的价值。

  这是一种直观的计量面积的方法,同时也是本节课学生新旧知识的连接点,学生在数方格的过程中很容易发现平行四边形的底,高和面积与长方形有着联系,为进一步的探究提供了思路。所以,深挖教材是有效进行教学设计的.第一步。

  2、课堂环节的合理设计是有效课堂的保证

  教师除了对教材的准确把握,还要对学情进行深入的分析,只有对学生的认知起点和认识发展过程进行分析和研究,才能设计出有效促进学生发展的数学活动。

  教师首先要用简约的情境带学生迅速进入课堂,并引发一系列的数学思维活动。

  然后,教师要精心选择教学内容,合理设计教学形式,让课堂活动变繁为简,变杂为精在学生探究平行四边形面积公式时,教师放得多了,探究的效率必然低下,扶得多了,学生探究的空间会大大缩水,束缚学生的发展。

  因此,对于教师应该给予什么样的指导,需要教师根据学情来合理预设。

  3、数学思想方法的提炼是有效课堂的精髓

  让学生获得基本的数学思想方法是一小学新课程改革的新视角之一。数学思想方法的孕育犹如胎儿的发育,有一个从模糊到清晰,从未成形到成形再到成熟的过程,至于转化的思想,在本册中多次用到。

  如第一、二单元中,小数乘法和小数除法的计算,无不是把小数转化成学过的整数进行的。平行四边形在整个小学阶段的数学教学内容中是一个承上启下的图形,教师应该看到学生学习计算平行四边形的面积,方法的价值更大,通过学习割补转化的方法,为后面学习三角形面积、梯形面积、圆的面积埋下了伏笔。学生以获取知识为明线,以探究数学思想方法为暗线,明暗结合与总结时的画龙点睛。让数学思想方法该露脸时就露脸,使学生知其然,更知其所以然。

  教学是一门有遗憾的艺术,虽然我在课前对教学的各个环节作了精心的预设,但面对生成的时候,自己的处理依然有些草率。在让学生展示自己剪拼的作品时,当让学生展示完平行四边形沿顶点向对边作高和作任意高两种方法剪拼一个长方形后,有一个学生兴致勃勃地展示他沿平行四边形对角线剪开,通过平移得到一个新的平行四边形的方法,由于没有达到我们拼成学过图形的目标,当即我就简单地否定了,那个学生也尴尬地坐下了。

  课后,这个学生坐下时的表情还深深印在我的脑海中,这个学生有着大胆动手,敢于交流分享的学习态度。他让同学们更深刻地认识到为什么一定要沿高来剪开,这是多么值得表扬啊!细节成就完美,关注课堂细节,敏锐地发现教育契机,还需要我们教师不断学习,不断努力,不断总结。

【《平行四边形的面积》教学反思】相关文章:

平行四边形的面积教学反思12-30

《平行四边形的面积》教学反思11-25

《平行四边形的面积》教学反思03-13

平行四边形的面积教学反思04-02

平行四边形面积教学反思04-06

《平行四边形面积》教学反思04-14

数学平行四边形的面积教学反思03-07

面积教学反思04-06

《平行四边形的面积》教学反思15篇03-14

平行四边形的面积教学反思(精选5篇)04-11