现在位置:范文先生网>教学论文>数学论文>数学建模论文

数学建模论文

时间:2023-07-21 16:58:08 数学论文 我要投稿

数学建模论文模板【精华15篇】

  在现实的学习、工作中,大家总少不了接触论文吧,论文是进行各个学术领域研究和描述学术研究成果的一种说理文章。那么一般论文是怎么写的呢?以下是小编帮大家整理的数学建模论文模板,仅供参考,大家一起来看看吧。

数学建模论文模板【精华15篇】

数学建模论文模板1

  【摘 要】首先阐述数学建模内涵;其次分析数学建模与数学教学的关系;最后总结出提高数学教学效果的几点思考。

  【关键词】数学建模;数学教学;教学模式

  什么是数学建模,为什么要把数学建模的思想运用到数学课堂教学中去?经过反复阅读有关数学建模与数学教学的文章,仔细研修数十个高校的数学建模精品课程,数学建模优秀教学案例等,笔者对数学教学与数学建模进行初步探索,形成一定认识。

  一、数学建模

  数学建模即运用数学知识与数学思想,通过对实际问题数学化,建立数学模型,并运用计算机计算出结果,对实际问题给出合理解决方案、建议等。系统的谈数学建模需从以下三个方面谈起。

  1.数学建模课程。

  “数学建模”课程特色鲜明,以综合门类为基础,重实践,重应用。旨在使学生打好数学基础,增强应用数学意识,提高实践能力,建立数学模型解决实际问题。注重培养学生参与现代科研活动主动性与参与工程技术开发兴趣,注重培养学生创新思维及创新能力等相关素质。

  2.数学建模竞赛。

  1985年,美国工业与应用数学学会发起的一项大学生竞赛活动名为“数学建模竞赛”。旨在提高学生学习数学主动性,提高学生运用计算机技术与数学知识和数学思想解决实际问题综合能力。学生参与这项活动可以拓宽知识面,培养自己团队意识与创新精神。同时这项活动推动了数学教师与数学教学专家对数学体系、教学方式与教学知识重新认识。1992年,教育部高教司和中国工业与数学学会创办了“全国大学生数学建模竞赛”。截止20xx年10月已举办有21届。大力推进了我国高校数学教学改革进程。

  3.数学建模与创新教育。

  创新教育是现代教育思想的灵魂。数学建模竞赛是实现数学教育创新的重要载体。如20xx年A题,葡萄酒的评价中,要求学生对葡萄酒原料与酿造、储存于葡萄酒色泽、口味等有全面认识;而20xx年D题,机器人行走避障问题,要求学生了解对机器人行走特点;20xx年B题,乘公交看奥运,要求学生了解公交换乘系统。大学生数学建模竞赛试题涉及不是单一数学知识。因此数学教师在数学教学中必须融合其它学科知识。同时学生参与数学建模竞赛有助于增强其积极思考应用数学知识创造性解决实际问题的意识。

  二、数学建模与数学教学的'关系

  数学建模是数学应用与实践的重要载体;数学教学旨在传授数学知识与数学思想,激发学生应用数学解决实际问题的意识。数学建模与数学教学相辅相成,数学建模思想与数学教学将有助于提高教学效果,反之传统应试扼杀了学生学习数学的兴趣与主观能动性;数学教学效果,在数学建模过程中体现显著。

  三、数学教学

  1.数学教学“教”什么。电子科技大学的黄廷祝老师说:“数学教学,最重要的就是数学的精神、思想和方法,而数学知识是第二位的。”因此数学教师不仅要传授数学知识,更要让学生知道数学的来龙去脉,领会数学精神实质。

  2.如何提高数学教学效果。提高数学教师自身素质是关键,创新数学教学模式是手段,革新评价机制是保障。

  ①提高数学教师自身素质。

  数学教师自身素质是提高数学教学效果的关键。20xx年胡书记在《国务院关于加强教师队伍建设的意见》中明确提出,我国教育出了问题,问题关键在教师队伍。数学学科特点鲜明。若数学教师数学素养与综合能力不强,则提高数学教学效果将无从谈起。因此数学教师需通过如参加培训、学习精品课程、同行评教、与专家探讨等途径努力提高自身素养。

  ②创新数学教学模式 。

  (1)必须转变教学理念。首先要转变继承性教育理念,注重培养学生综合素质与实际操作能力。其次要转变注入式教育理念,注重发挥学生主体能动性。再次要转变应试教育理念。注重素质的培养是长久发展之计。最后要转变传统教学模式。科技发展为教育教学实现提供多种选择。教育工作者应提供多种教学模式以提高学习效果。

  (2)必须改革数学教学模式。传统讲授式教学模式有很多不足,学生参与不够,不能发挥学生的主体能动性。因此,在今后数学教学中,要注重发挥学生的主体能动性,如增加课题互动环节,采用小组讨论,教师引导等方式。

  在数学教学过程中,要巧用提问。教师可针对某一具体教学内容根据数学思维方式特点巧设提问,让学生回答,教师在关键的地方进行启发点拨,并适当的总结。在问答过程中,培养学生分析和思考问题、解决问题能力;在数学教学过程中,可采用分组讨论形式。采用小组讨论与集体展示、互评相结合。旨在教育学生学会倾听,分析不同;学会表达,勇于提出见解,培养学生团队意识。

  在数学课堂上可通过对典型案例的剖析,使学生亲历发现问题、认识问题和解决问题的过程。培养学生实际动手操作能力。

  (3)建立多元化评价机制。一是要建立多元化教师教学评价机制。采用多元化考核、综合评定教师教学效果的方法,有利于教师发展。二是要建立多元化学生学习效果评价机制。多元化评价机制对学生评价更客观、公正,有利于发挥学生主观能动性。

数学建模论文模板2

  一、高数教学里的量化指标与线性关系

  要将数学建模应用于高等数学教学中,首先,要取得建模所需的一些参数;其次,要分析出各个参数之间的线性关系;然后,才能建立模型的计算公式,并进行测算、校验及修正。

  在选取参数之前,我们先要明确我们建立模型的目的。在这里,我们建立数学模型的目的是:建立课堂上的教学质量,与期中期末考试之间的某种联系,从而达到提升考试成绩的目的。

  经验表明,教学质量好,学生的整体成绩也会好。如果学生的整体成绩都不尽如人意,那么在教学的过程中就可能出现了问题。如何从细节上及早分析出教学的过程是否出现了问题,将对考试的成绩造成怎样的影响,正是我们建立这一数学模型的目的所在。

  二、分析数学建模中的相关参数

  我们分析一下在数学模型中将用到的一些量化指标,也就是模型的参数:

  (1)学生的上课签到情况;

  (2)课堂问答的情况;

  (3)作业的情况;

  (4)测验的成绩。

  这四项参数,与考试的成绩之间,有着某些必然的联系。下面我们对这些参数进行逐项分析:

  1.学生上课签到情况。如果签到率达到100%,那么授课是有保障的。反之,如果降为0(当然这是一种极端的情况),那么除非学生自学成才了,否则教学质量将是没有保障的。所以,课堂上的签到情况,与成绩之间,有一个乘数关系。

  2.课堂问答。课堂问答,包括学生的主动提问,教师的例行提问以及下课后的一些补充问答。课堂问答的多少,与两方面有关系。第一,是学生的学习积极性。如果学生对学习没有积极性,那么,主动提问的情况就不多。第二,是教学内容的难易度。如果教学的内容很简单,一般学生的提问也相对会减少。所以,对于课堂提问的情况,要一分为二地分析。当课堂提问的数量上升时,既有可能是学生的学习积极性上升,也可能是教学内容相对有难度。学习积极性上升,则成绩有可能提高。但如果是教学内容有难度,则成绩反而有可能下降。因此,对于课堂问答的情况,除了进行纵向对比外,还需进行历史同期数据的横向对比。

  所谓纵向对比,就是这一期学生,在学习高数的过程中,各阶段的课堂提问情况。横向对比,则是与前几期学生,以及同期别的班的学生相比,这一班学生的课堂问答情况。当然,也有可能出现学生不积极提问,同时教学难度也不大的'情况。这时候就要用到下一个关键参数——测验。

  3.测验的成绩。课堂问答相当于抽检,而测验则是一次小规模的普查。测验的结果可以较为真实的反映出学生的学习成果。不过,测验不可能频繁的进行。因为课时安排主要还是以授课为主。过多的测试,有可能导致本末倒置。

  4.作业的情况。除了测试之外,一个比较好的检测学生学习状况的方法,就是作业。大学的作业,由于教学安排的原因,不像中小学作业那样密集。同时,教授的主要工作也不是批改作业。但抽查作业的完成情况,仍然可以对了解学生的学习情况起到一些辅助作用。

  三、建立数学模型

  分析了数学建模的相关参数,我们就要着手进行数学建模。尽管模型中的几项参数,与考试成绩之间都是乘数关系,但是各项参数之间并不是简单的乘数关系,而是相互有一个比例。所以,在建立模型时,我们采用将参数域对象相乘,然后相加,取和,然后在分析与考试成绩之间的线性关系。

  我们设立这样一个方程式:

  上课签到情况×参数值A×权重值1+课堂问答情况×参数值B×权重值2+作业情况×参数值C×权重值3+测验情况×参数值D×权重值4=考试成绩。

  然后,实际成绩进行比对。

  在这个过程中,调整参数对象的值,以及四个权重值,推算出接近于考试成绩的公式,这样就可以建立起一个初步的数学模型。

  四、对数学模型进行应用和修正

  建立了数学模型后,还需要根据实际的教学情况,进行修正,是数学模型与真实情况相接近,从而对教学工作有真正的应用价值。

  当数学模型经过修正逐渐完善后,根据各项教学指标,就可以有预见性地调整教学工作。比如,课堂提问数量的上升,作业的情况良好,则教学情况有可能是在向好的方向发展。反之,就可及时进行调整。比如,增加与学生的交流,看是哪些地方还不尽理解,或者有些什么别的因素在影响,及早排查,从而确保期末考试成绩不出现大的波动,影响教学质量。

  通过在高等数学教学中,融入数学建模的思想,我们可以发现,以往那些不太理解的量化指标,确实是与教学质量之间有着必然联系的。通过数学建模,我们不仅促进了对科学化的教学方式的理解,也对数学建模这一工具方法本身,有了更多更深刻的了解。

数学建模论文模板3

  《新课程标准》对学生提出了新的教学要求,要求学生:

  (1)学会提出问题和明确探究方向;

  (2)体验数学活动的过程;

  (3)培养创新精神和应用能力。

  其中,创新意识与实践能力是新课标中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。

  数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义。

  数学建模活动是一种使学生在探究性活动中受到数学教育的学习方式,是应用已有的数学知识解决问题的教与学的双边活动,是学生围绕某个数学问题,自主探究、学习的过程。新的高中数学课程标准要求把数学探究、数学建模的思想以不同的形式渗透在各模块和专题内容之中,突出强调建立科学探究的学习方式,让学生通过探究活动来学习数学知识和方法,增进对数学的理解,体验探究的乐趣。但是《新课标》虽然提到了“数学模型”这个概念,但在操作层面上的指导意见并不多。如何理解课标的上述理念?怎样开展高中数学建模活动?

  数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力。数学建模以学生为主,教师利用一些事先设计好的问题,引导学生主动查阅文献资料和学习新知识,鼓励学生积极开展讨论和辩论,主动探索解决之法。教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。

  一、在教学中传授学生初步的数学建模知识

  中学数学建模的目的旨在培养学生的数学应用意识,掌握数学建模的方法,为将来的学习、工作打下坚实的基础。在教学时将数学建模中最基本的过程教给学生:利用现行的数学教材,向学生介绍一些常用的、典型的数学模型。如函数模型、不等式模型、数列模型、几何模型、三角模型、方程模型等。教师应研究在各个教学章节中可引入哪些数学基本模型问题,如储蓄问题、信用贷款问题可结合在数列教学中。教师可以通过教材中一些不大复杂的应用问题,带着学生一起来完成数学化的.过程,给学生一些数学应用和数学建模的初步体验。 二、培养学生的数学应用意识,增强数学建模意识

  在数学教学和对学生数学学习的指导中,介绍知识的来龙去脉时多与实际生活相联系。例如,日常生活中存在着“不同形式的等量关系和不等量关系”以及“变量间的函数对应关系”、“变相间的非确切的相关关系”、“事物发生的可预测性,可能性大小”等,这些正是数学中引入“方程”、“不等式”、“函数”“变量间的线性相关”、“概率”的实际背景。另外锻炼学生学会运用数学语言描述周围世界出现的数学现象。数学是一种“世界通用语言”它能够准确、清楚、间接地刻画和描述日常生活中的许多现象。应让学生养成运用数学语言进行交流的习惯。例如,当学生乘坐出租车时,他应能意识到付费与行驶时间或路程之间具有一定的函数关系。鼓励学生运用数学建模解决实际问题。首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,当然这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。

  三、在教学中注意联系相关学科加以运用

  在数学建模教学中应该重视选用数学与物理、化学、生物、美学等知识相结合的跨学科问题和大量与日常生活相联系(如投资买卖、银行储蓄、测量、乘车、运动等方面)的数学问题,从其它学科中选择应用题,通过构建模型,培养学生应用数学工具解决该学科难题的能力。例如,高中生物学科以描述性的语言为主,有的学生往往以为学好生物学是与数学没有关系的。他们尚未树立理科意识,缺乏理科思维。比如:他们不会用数学上的排列与组合来分析减数分裂过程配子的基因组成;也不会用数学上的概率的相加、相乘原理来解决一些遗传病机率的等等。这些需要教师在平时相应的课堂内容教学中引导学生进行数学建模。因此我们在教学中应注意与其它学科的呼应,这不但可以帮助学生加深对其它学科的理解,也是培养学生建模意识的一个不可忽视的途径。又例如教了正弦函数后,可引导学生用模型函数写出物理中振动图象或交流图象的数学表达式。

  最后,为了培养学生的建模意识,中学数学教师应首先需要提高自己的建模意识。中学数学教师除需要了解数学的和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把中学数学知识应用于现实生活。中学教师只有通过对数学建模的系统学习和研究,才能准确地的把握数学建模问题的深度和难度,更好地推动中学数学建模教学的发展。

数学建模论文模板4

  一、问题教学法的教学模式

  问题教学法是一种新的教学模式,与传统教学有很大的区别。在传统的教学中,教师考虑最多的是“教什么、怎样教”的问题,很少顾及学生“学什么、怎样学”,限制了学生学习的主动性和创造性。[1]为了改变这种现状,美国神经病学教授HowardBarrows于1969年创立了基于问题和项目的学习(ProblemBasedLearning)理念教学法。[2]这种方法不像传统教学模式那样先学习理论知识再解决问题,而是让学生围绕问题寻求解决方案。它强调让学生置身于复杂的、有意义的问题情境中,并让学生成为该问题情境的主体,自己去分析问题,学习解决该问题所需的知识,进而通过合作解决问题。此外,教师在该过程中也可以通过提问的方式,不断地激发学生去思考、探索,培养学生自主学习的能力。与传统的教学模式相比,问题教学模式更注重对学生自学能力、创新能力、发现问题和解决问题能力的培养。问题教学模式刚开始主要被应用于医学、市场营销、实验教学、毕业论文的写作等领域。[3]近年来,一些学者开始探索将这种教学模式引入到“数学建模”课程的教学中。黄河科技学院从20xx级信息与计算科学专业的学生开始,在“数学建模”教学活动引入问题教学模式,已经取得了初步的成效。

  二、基于问题教学法的实施步骤

  1.教师提出问题

  教师在每次上课之前要精心设计适合学生自学的问题体系,目的是为了诱导学生的思维,激发学生的学习兴趣,让学生置身于特定的问题环境中,营造一种质疑、探究、讨论、和谐互动的学习氛围。这一步骤要求教师不仅需要熟悉教学内容,还必须更好地了解学生的实际情况,这是成功实施问题教学模式的基础。

  2.积极分析问题

  问题教学法的基本特点是教学环节由一连串问题组成,并且问题与问题之间的`联系具有链接性和层次性。前一个问题是后一个问题的铺垫,后一个问题又是前一个问题的深化和拓展。在学生熟悉了相关知识的基础上,根据给出的实际问题,教师引导学生进行探索。探索活动一般包括自学教材、观察实验、小组讨论等方式。学生一方面要充分利用原有认知结构中存储的有关知识信息,另一方面可以利用教材、实验或教师提供的阅读材料,获取解决问题的方法。在对问题讨论中教师要创设和谐民主的教学环境,要让学生充分发表自己的见解,大胆质疑,相互答辩,相互启发。

  3.解决问题

  当所有学生都对问题的解决方案有了一定的思路之后,教师组织课堂发言。让每一小组推荐一位表达能力强的学生,在课堂上把他们对解决问题的方法及结论的合理性进行讲解。在每组讲解完之后,其他学生可以对他们进行提问,而发言小组的学生要向其他同学和老师进行解释。教师在主持和引导的同时,也可以向学生提问。这样通过对一个又一个问题的提问,推动学生思考,将问题引向纵深层次,一步步朝着解决问题的方向发展。

  4.对问题的结果进行评价

  问题教学法不仅以问题为开端,还以问题为终结。教学的最终结果不是传授知识来消灭问题,而是在解决已有问题的基础上引发更多、更广泛的问题。因此教师在对问题的结果进行总结时要注意引导学生反思“这个问题为什么要这样解决”,“这个问题还可以怎样解决”,“从解决这个问题中我学到了什么”以及“这种解决方案还有什么不足之处”等等,从而激发他们提出新的问题,这是问题教学中最重要、最有教益的一个方面。

  三、基于问题教学法的实施案例

  在基于问题教学的过程中,每次讨论的问题都围绕某一专题进行讨论学习,下面以“公平的席位分配问题”[4]为例,说明在“数学建模”中如何运用问题教学法。

  1.合理设计问题

  奖学金评定是学生比较关心的问题,笔者根据学生的兴趣及认知水平选择“奖学金名额分配问题”。设某校有5个系A、B、C、D、E,各系学生数分别为345、72、894、68、39,现在有74个奖学金名额,问每个系分配几个名额比较公平?[5]在给出问题后,我们将相关问题印发给学生,并让学生课下先收集关于“公平的席位分配问题”的模型及相关求解方法并认真研读。

  2.小组讨论分析问题

  根据课下学生收集的求解方案,上课时首先以小组为单位初步讨论。首先提出如果让同学们进行分配的话,他们会使用什么方法进行分配,让他们进行讨论。学生首先会给出比例分配方案,如果按人数比例分配到各系的名额恰好都是整数,可以得到完全公平的分配方案。但在很多情况下,按人数比例分配到各系的名额带有小数。比如在这个问题中各系分配的名额数分别为:18.00、3.76、46.65、3.55、2.04,有小数部分。可以先把整数分配完,这时各系分配的名额数为:18、3、46、3、2。共分配了72名额,还有2个名额该如何分配?大家经过讨论,会提出谁的小数部分大就把名额给谁的分配方案,于是第73个名额给B系,第74个名额给C系。最终的方案是各系名额数分别为:18、4、47、3、2。接着老师会提出下面的问题,这种分配方案对谁最不公平?学生会进一步讨论每个名额代表的人数,A为19.17人,B为18人,C为19.02人,D为22.67人,E为19.5人,说明这种分配方案对D系最不公平,而B系最占便宜,两个系中每个名额代表的人数相差了4.67人。那么要重点讨论有没有相对来说比较公平的席位分配方案。

  3.学生进行发言讨论

  在所有小组都讨论完之后,教师组织各组学生进行课堂发言和讨论,让每组选一人报告本小组讨论结果。教师对各组的报告进行评价,指出在讨论过程中的问题及不足之处。在这个问题中,学生根据课下收集的文献资料会逐步提出Q值分配方案,Q值分配方案的改进,Q值+D’Hondt分配方案,席位分配的平均公平度方案等等。每种方案都是前面方案的改进,最后我们提出问题,这些分配方案公平度如何?让学生逐一讨论,从而营造出一个讨论主题鲜明、学习氛围良好的课堂环境。

  4.教师对结果进行评价总结

  在这个问题中,经过逐一讨论,大部分学生认为问题已经圆满解决了,不会再对结果进行归纳整理,不会反思问题解决的思路。因此在最初的问题解决后,老师要引导学生进行评价总结,比如:“各个方案的公平度如何”,“我们还有没有更公平的分配方案”,“公平的席位分配方案应满足什么原则”等等。

  四、结论

  从“公平的席位分配问题”这个案例可以看到,在教学中为学生设计一个真实的问题进行教学,学生可以通过真实问题进行学习,并且以一个真实问题的解决为主线,激发学生的学习兴趣和探索精神,再通过结果反馈信息,引导学生逐步深入理解学习内容。学生在研究问题的过程中不仅学习了课本上的知识,而且还亲身体会了解决实际问题的乐趣,为学生以后自主学习提供了极大的帮助。[6]四、结语当然,在“数学建模”课程的教学过程中问题教学模式也存在不足之处,比如课程内容多、课时少,问题讨论时间和讲授时间出现矛盾,对有的专题讨论不够深入,学生参与度不够,学生发言的深度和广度都有待于进一步提高等等。这需要教师认真归纳讲课内容,尽量分离出较多比较有吸引力的专题供学生讨论,以问题为中心规划教学内容,让学生围绕问题寻求解决方案,从而提高学生学习的主动性,提高学生在教学过程中的参与程度,激发学生的求知欲。“数学建模”课程教学的本身就是一个不断探索、创新和提高的过程,选择正确有效的教学方法能更好培养学生的创新能力,激发学生对数学建模的兴趣。

数学建模论文模板5

  摘要:高校数学教育是高等教育的基础学科,占据重要的一席之地。如何改变学生对数学枯燥乏味的学习状态,让学生轻松愉快地参与到数学学习中,是当前高校数学教学者面临的一个重要课题。在高校数学教学中开展数学建模竞赛,不仅能培养学生的创新思维,还能有效提高提高学生的创新能力、综合素质和对数学的应用能力。本文对高校开展数学建模竞赛与创新思维培养进行了分析阐述,并对此进行了一定的思考。

  关键词:高校数学;建模竞赛;创新思维;培养

  1数学建模竞赛

  数学建模是一种融合数学逻辑思想的思考方法,通过运用抽象性的数学语言和数学逻辑思考方法,创造性的解决数学问题。当前很多高校中开始引入数学建模思想来加强学生创新能力的培养,可以使学生的逻辑思维能力和运用数学逻辑创新解决问题的能力得到提升。数学建模竞赛起源于1985年的美国,几年后国内几所高校数学建模教师组织学生开始参与美国的数学建模大赛,促进了数学建模思维的快速发展。直到1992中国首届数学建模大赛召开,而后一发不可收拾,至今仍以每年20%左右的速度增长,呈现一派繁荣景象。

  2当前中国数学建模竞赛的特点

  2.1数学建模竞赛自主性较强。自主性首先体现在在数学建模过程中学生可以根据自己的建模需要通过一切可以利用的资源、工具来进行资料查阅和收集,建模比赛队员可以根据自己的意见和思维进行灵活自由解答,形式不拘一格。其次体现在数学建模竞赛的组织形式呈现多元化特点,组织制度上也较为灵活多样,数学建模主要侧重于分析思想,没有标准答案可以参考分享。2.2建模队伍呈日益燎原之势。1992年首届中国数学建模大赛开展以来,其影响力与日俱增,高校和社会各界对数学建模颇为重视,参赛队伍、参赛学生的质量一直处于上升状态,数学模型也日渐合理科学,学生团队在国际数学建模大赛中屡创骄人战绩。2.3组织培训日益加强。数学建模竞赛对学生数学知识的掌握及灵活运用、口套表达、语言逻辑思维、综合素质都有着非常高的要求,因此高校遴选参赛选手都投入了很大的精力,组织培训的时间很长,培训内容也很丰富,为数学建模竞赛取得好成绩奠定了坚实的基础。

  3数学建模竞赛开展培养大学生创新能力的效果分析

  3.1学生的团队协作能力和意识得到增强。数学建模竞赛的团队组织形式活泼自由,通常采用学生组队模式开展,数学建模竞赛队伍形成一个团结战斗的整体,代表着不仅仅是学校的声誉,还一定程度上展示着国家的形象。经过长时间的培训,对数学模型的研究和分析,根据学生训练中的优势和特长,进行合理科学的小组分工,让学生快速高效地完成整个数学建模,在建模过程中学生统筹协作、密切配合,发挥各自的优势和长处,确保数学建模取得最大效用,学生的团队协作能力和意识得到锻炼,责任感和荣誉感进一步增强,通过建模竞赛彰显团队的合作能力和中国数学建模方面的发展。

  3.2高校学生参赛积极性高涨。近年来大学生数学建模竞赛的参与性高涨,参赛人数保持着20%左右的上涨幅度,参赛成绩也较为理想,创新能力得到了较好的锻炼和培养,综合素质得到提高,数学的应用能力提升。

  3.3高校学生数学逻辑思维能力和灵活运用知识的能力得到提升。数学建模竞赛充满着刺激性和挑战性,是学生各方面综合能力的一个展示。在数学建模竞赛中,学生不仅要需要扎实丰厚的数学知识储备,还需要具备清晰的数学逻辑思维和语言表达能力。同时要有机智的'临场发挥能力和应变能力,不怯场、不惊慌,有充分的思想准备,能轻松应对其他参赛选手和评委的提问,能组织条理性、逻辑性的语言进行表述,将参赛小组数学模型的含义和设计清晰完整的传达给评委和其他参赛选手。在这个过程中,无疑会使学生的数学逻辑思维和语言表达能力及灵活运用数学知识的能力有一个较大的提升。

  3.4学生的自学能力和意志力得到锻。数学建模竞赛对参赛学生的综合知识和能力要求非常高,难度也非常大,需要与众不同的智慧和能力。可以说数学建模过程中,有许多高深的知识难于理解,有的日常学习过程中根本接触不到,需要数学建模参赛小组成员的互助合作,充分发挥各自优势和平时培训中的知识积淀,通过借助大量的工具书及参考资料,加上团队的理解分析去摸索,探寻数学建模所需要的基础知识,无疑这对学生的自学能力培养是一个很好的锻炼。另外,搜寻资料、学习数学建模知识的过程是枯燥乏味的,需要长久的耐力和信心,无疑这对学生的坚毅不畏难的品质是一个很好的培养和磨炼。

  3.5创新思维与能力得到有效提升。经过艰苦复杂的数学建模训练,高校学生信息收集与处理复杂问题的能力得到培养锻炼,学生数量观念得到增强,能够养成敏锐观察事物数量变化的能力,数学的严谨推导也使学生养成认真细心、一丝不苟的习惯,逻辑思维能力得到提高,思路变得更加富有条理性,能灵活地处理各种复杂问题,有效解决数学疑难,数学理论能更好第应用于实践,数学素养进一步得到提升。

  4结语

  综上所述,高校学生数学建模竞赛的开展,能较高地提升学生的创新能力和综合素养,团队合作能力、竞争能力、表达交流能力、逻辑思维能力、意志品质能力等都能得到良好的塑造。高校要积极组织和开展数学建模竞赛,使学生的综合素质得到发展和锻炼。学校用重视和鼓励全体学生参与数学建模竞赛,通过竞赛实现学生各方面能力尤其是创新能力的培养。

  参考文献:

  [1]赵刚.高校数学建模竞赛与创新思维培养探究[J].才智,20xx(06).

  [2]陈羽,徐小红,房少梅.数学建模实践及其对培养学生创新思维的影响分析[J].科技创业月刊,20xx(08).

  [3]赵建英.数学建模竞赛对高校创新人才培养的促进作用分析[J].科技展望,20xx(08)5.

  [4]毕波,杜辉.关于高校开展数学建模竞赛与创新思维培养的思考[J].中国校外教育,20xx(12).

数学建模论文模板6

  【摘 要】文章阐述了我们应用数学的发展现状,分析了应用数学建模的意义,提出在应用数学中渗透建模思想的措施,以期能够对当前应用数学建模思想的发展提供参考。

  【关键词】应用数学; 数学建模;建模思想

  将建模的思想有效的渗透到应用数学的教学过程中去,是我们当前开展应用数学教育的未来发展趋势,怎样才能够使应用数学更好的服务社会经济的发展,充分发挥数学工具在实际问题解决中的重要作用,是我们当前进行应用数学研究的核心问题,而建模思想在应用数学中的运用则能够很好的解决这一问题。

  1 当前应用数学的发展现状以及未来发展趋势

  数学教育至少应该涵盖纯粹数学和应用数学两方面内容,目前我国数学教育内容以纯粹数学为主,极少包括应用数学内容,这割裂了数学与外部世界的血肉联系,使数学变成了多数学生眼中的抽象、枯燥、无用的思维游戏,而厌学成风。因此,大家对现行的数学教育不满意,期望改革,期望找到方法激发学生的学习兴趣、培养学生利用数学解决各种实际问题的能力。在不改变传统的教学体系的前提下,有机地融入应用数学内容,应是解决现存问题的有效方法。事实上,数学发展的根本原动力,它的最初的根源,是来自客观实际的需要,数学教学中理应突出数学思想的来龙去脉,揭示数学概念和公式的实际来源和应用,恢复并畅通数学与外部世界的血肉联系。伴随着社会生产力的不断发展,多个学科交叉发展,使得应用数学逐渐发展成拥有众多发展方向的学科,应用数学所运用的领域不断延伸,已经不再局限于传统的、而是想着更为宽阔的、新兴的学科以及高新技术领域发展,应用数学目前已经渗透到社会经济发展的各个行业,在这一大背景下,应用数学的研究者就拥有了极大的发展空间以及展示才能的舞台,也迎来了应用数学发展的新机遇。

  2 开展数学建模的意义

  数学这一学科不仅具有概念抽象性、逻辑严密性、体系完整性以及结论确定性,而且还具备非常明显的应用广泛性,伴随着计算机网络在社会生活中的广泛运用,人们对于实践问题的解决要求越来越精确,这就给应用数学的广泛运用带来了前所未有的机遇。应用数学在这一背景下也已经成为当前高科技水平的一个重要内容,应用数学建模思想的引入与使用能够极大的提升自身应用数学的综合水平以及思维意识,开展应用数学建模不仅能够有效的提升自己的学习热情与探究意识,而且还能够将专业知识同建模密切结合在一起,对于专业知识的有效掌握是非常有益的。

  3 渗透建模思想的对策措施

  3. 1充分重视建模的桥梁作用

  建模是实现数学知识与现实问题相联系的桥梁与纽带,通过进行建模能够有效的`将实际问题进行简化。在这一转化的过程中,应当深入实际进行调查、收集相关数据信息,认真分析对象的独特特征及规律,构建起反映实际问题的数学关系,运用数学理论进行问题的解决。这正是各个学科之间进行有效联系的结合点,通过引进建模思想,不仅能够使我们有效掌握数学理论之外的实践问题,还能够推动创新意识的提升,因此,我们应当充分重视建模的作用。

  3. 2将建模的方法以及相关理论引入到数学教学中来

  我国当前数学课程教学体系的现状包括高等数学、线性代数、概率论与数理统计等几个部分。当前应用数学的发展,满足这一学科的建设以及其他学科对这一学科的需要,教师在教学中应当将问题的背景介绍清楚,并列出几种解决方案,启发学生进行讨论并构建数学模型。学生们在课堂上就能够获得更多的思考和讨论的机会,能够充分调动学生们的积极性,使其能够立足实际进行思考,这样一来就形成了以实际问题为基础的数学建模教学特色。

  3. 3积极参加数学模型课等相关课程与活动

  数学应用综合性的实验,要求我们掌握数学知识的综合性运用,做法是老师先讲一些数学建模的一些应用实例,然后学生上机实践,强调学生的动手实践。数学实验 课应该说是数学模型的辅助课程,主要培养我们的数学思维和创新能力,还应当组织一些建模比赛,不断提升数学建模的综合水平。

  上述几个部分的论述与分析,我们看到,在应用数学中加强建模思想具有非常重要的意义,不仅需要在课堂学习过程中认真掌握数学理论知识,还应当深入了解数学理论在实际生活中的可用之处,尽可能的使应用数学与自身所学专业相联系,这样,才能够使应用数学的能力与水平在日常实践过程中得到提升。就当前高等数学的现状来看,加强创新意识以及将实际问题转化为数学问题能力的培养,提升综合运用本专业知识以来解决实践问题的能力,使创新思维得到最大限度的发挥。

  参考文献:

  [1]余荷香,赵益民.数学建模在高职数学教学中的应用研究 [J].出国与就业(就业版),20xx(10).

  [2]关淮海.培养数学建模思想与方法高职高专数学教 改之趋势[J].职大学报,20xx(02).

  [3]李传欣.数学建模在工程类专业数学教学中的应用研究 [J].中国科教创新导刊,20xx(35).

  [4]李秀林.高等数学教学中渗透数学建模的探讨[J].吉林省 教育学院学报(学科版),20xx(08).

  [5]吴健辉,黄志坚,汪龙虎.对数学建模思想融入高等数学教.学中的探讨[J].景德镇高专学报,20xx(04).

数学建模论文模板7

  数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。

  一、数学应用题的`特点

  我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:

  第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。

  第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。

  第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。

  二、数学应用题如何建模

  第一层次:直接建模。

  根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:

  第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。

  第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。

  第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。

  三、建立数学模型应具备的能力

  从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。

  1提高分析、理解、阅读能力。

  2强化将文字语言叙述转译成数学符号语言的能力。

  3增强选择数学模型的能力。

  4加强数学运算能力。

  数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。

数学建模论文模板8

  摘要:以文献综述法为主要策略,查阅知网和万方数据库中有关高职数学建模教学的相关文献,对高职数学建模教学现状,存在问题以及优化发展对策的文献研究成果进行梳理,通过研究综述发现:以建模思维构建课堂情境已成为国内众多高职院校数学课程教学的重要方法,对数学教学效果的提升也起到了积极的作用,但在教学方法创新和学生有效引导等方面仍存在一些问题,希望各级高职院校能够针对凸显出的问题进行有效整改。

  关键词:高职数学;建模教学;现状与发展;综述分析

  一、数学建模教学理论概述

  (一)数学模型

  数学模型是一种使用数学语言对现实问题的抽象化表达形式。它是人们用数学方法解决现实问题的工具,基于数学模型的现实问题表达往往有着量化的表现形式,再通过数学方法的推演和求解,将现实问题中蕴含的数学含义表达出来。在数学、经济、物理等研究领域,有很多经典的数学模型,例如:,马尔萨斯人口增长理论模型、马尔维次投资组合选择模型等,这些数学模型的构建帮助人们解决了很多现实的问题,提升了相关领域量化分析的精确度。

  (二)数学建模教学的步骤

  数学建模教学是一种基于数学模型的教学方法,在高职院校数学教学中被普遍应用,具体来说数学建模教学的一般步骤为:

  (1)模型理论依据分析。在教学中倘若需要以某一个知识点为基础建设数学模型时,教师应该以前人的研究成果为依据,找寻模型建设的理论支撑点,切忌假大空似的模型构建思路。

  (2)以教学内容为基础假设模型。根据教学内容的需要,对待研究问题进行模型化假设,提出因变量、自变量等模型语言。

  (3)建立模型。在假设的基础上建立模型。

  (4)解析模型。将待求解的数学数据代入模型进行解析计算。

  (5)模型应用效果检验。将模型解析的结果与实际情况进行比较,以检验模型解析的准确性和实效性。

  二、高职数学建模教学现状与问题研究综述

  (一)教学现状综述

  施宁清等人(20xx)采用试验法研究了建模教学在高职数学课程教学中的效果,试验的过程以对照班和实验班对比教学的形式展开,针对试验班的教学采用数学建模的方法,而对照班的教学则采用传统的讲授法展开,通过一段时间的教学实践后设置评估变量对两个班级学生的数学学习效果进行了总结,结果显示:试验班学生的数学考试成绩、建模应用能力等均优于对照班,说明建模法对高职数学教学质量的提升效益明显。危子青等人(20xx)项目教学法与建模思想融合的高职数学教学形式,指出:该种教学的特色在于将高职数学课程的教学内容划分为若干个子項目,对每一个项目都进行模型化构建,并以模型为素材设计和组织项目化教学,通过教学应用后发现学生不仅掌握了项目教学的学习精髓,也掌握了数学模型的构建解析技能,教学效益获得了双丰收。冯宁(20xx)肯定了建模思想对高职数学教学带来的效益,指出:通过引入建模教学,能够最大化锻炼学生的'发散性思维,以及数学逻辑应用能力,对教学效果的促进效益明显。

  (二)存在问题综述

  尽管建模法对高职数学教学带来的效益十分明显,但在多年的教学实践中一些问题也不断凸显出来有待进一步整改,为此国内一些学者也将研究的视角放在建模法在高职数学教学中存在问题的研究上,例如:孟玲(20xx)从教学方法的教学分析了高职数学建模教学中的问题,指出:很多高职生对数学学习的兴趣不足,加之传统的数学模型又十分抽象,学生理解起来比较困难,一些高职数学教师采用传统的建模教学思路组织教学并不利于学生学习兴趣的激发,而抽象的数学模型与陈旧的教学方法结合反而降低的教学的效果。曹晓军(20xx)则认为:很多数学教师并不注重引导学生科学地理解数学模型,并在此基础上有效地接受学习内容,而是一味地采用灌输法设计教学过程,不利于数学模型在课程教学中的应用效益提升。

  三、高职数学建模教学发展对策综述

  针对建模法在高职数学教学中凸显出的问题,一些学者也提出了对策。例如,齐松茹(20xx)认为应创新建模教学的形式和方法,如引入游戏教学法,将深奥的数学模型趣味化,通过组织多元化的教学游戏激发起学生参与建模学习的兴趣。谷志元(20xx)则认为教师应该加大对学生的引导,通过课前、中、后期的有效引导,帮助学生有效地建立起对数学模型的认知,逐步教会学生利用模型解决实际问题,达到学以致用的教学效果,以提升数学模型在课程教学中的价值。周玮(20xx)则提出了结合网络课堂建立研讨式课堂的建模教学新思路,不失为一种高职数学建模教学的创新教法。

  四、结语

  通过对已有文献的查阅和梳理发现,高职数学课程教学中引入建模方法对于课程教学实效性提升的效果已经得到了国内众多学者的肯定,但在应用中也存在一些问题,比如:教学方法的创新度不够,学生引导的活动不多等,为此国内一些学者也提出了针对性的教学优化思路。本文的研究认为:建模法对于高职数学教学效益的提升有着积极的价值,在今后的教学实践中各级高职院校教师应该结合教学的实际情况开展科学的建模教学活动,以不断提升高职数学建模教学的实效性。

  参考文献:

  [1]施宁清,李荣秋,颜筱红.将数学建模的思想和方法融入高职数学的试验与研究[J].教育与职业,20xx,(09):116-118.

  [2]危子青,王清玲.项目教学法与高职数学建模教学的改革[J].职教论坛,20xx,(35):76-78.

  [3]孟玲.高职数学建模教学的策略与方法刍议[J].教育与职业,20xx,(17):106-107.

  [4]冯宁.基于数学建模实践活动的高职数学课程教学[J].教育与职业,20xx,(17):127-129.

  [5]曹晓军,李健.高职数学教学中渗透数学建模思想的必要性[J].吉首大学学报(社会科学版),20xx,37(S1):200-201.

  [6]齐松茹,郑红.引入数学建模内容促进高职数学教学改革[J].中国高教研究,20xx,(12):86-87.

  [7]谷志元.数学建模促进高职数学课程改革新探[J].中国职业技术教育,20xx,(29):11-13+20.

  [8]周玮.基于数学建模的高职数学创新性课堂研究[J].中国成人教育,20xx,(12):135-137.

数学建模论文模板9

  数学,源于人们对生产与生活实际问题,抽象出的数量关系与空间结构发展而成的.近年来,信息技术飞速发展,推动了应用数学的发展,使数学日益渗透到社会各个领域.中考实际应用题目更贴近日常生活,具有时代性、灵活性,涉及的模型有方程、函数、不等式、统计、几何等模型.数学课程标准指出,教师在教学中应引导学生从实际背景中理清数学关系、把握变化规律,能从实际问题中建立数学模型.教师要为学生创造用数学的氛围,引导学生参与自主学习、自主探索、自主提问、自主解决,体验做数学的过程,从而提高解决实际问题的能力.

  一、影响数学建模教学的成因探析

  一是教师未能实现角色转换.建模教学离不开学生“做”数学的过程,因而教师在教学中要留有让学生思考、想象的空间,让他们自主选择方法.然而部分教师对学生缺乏信任,由“引导者”变为“灌输者”,将解题过程直接教给学生,影响了学生建模能力的提高.二是教师的专业素养有待提高.开展建模教学,需要教师具有一定的专业素养,能驾驭课堂教学,激发学生的兴趣,启发学生进行思考,诱发学生进行探索,但是部分教师专业素养有待提高,或认为建模就是解应用题,或重生活味轻数学味,或使讨论活动流于形式.三是学生的抽象能力较差.在建模教学中,教师须呈现生活中的实际问题,其题目长、信息量大、数据多,需要学生经历阅读提取有用的信息,但是部分学生感悟能力差,不能明析已知与未知之间的关系,影响了学生成功建模.

  二、数学建模教学的`有效原则

  1.自主探索原则.

  学生长期处于师讲、生听的教学模式,沦为被动接受知识的“容器”,难有创造的意识.在教学中,教师要为学生创设轻松愉悦的探究氛围,让学生手脑并用,在探索、交流、操作中提高解决问题的能力.

  2.因材施教原则.

  教师要着眼于学生原有的认知结构,要贴近学生的最近发展区,引导他们从旧知的角度思考,找出问题的解决方法。

  3.可接受性原则.

  数学建模内容的设计,要符合学生的年龄特点和认知能力,能让学生理解所探究的内容.若设计的问题不切实际,往往会扼杀学生的兴趣,教师要密切联系教学内容、生活实际,让学生有能力解决问题.

数学建模论文模板10

  【摘要】提出数学建模的基本概念,通过考查独立院校大学生数学建模竞赛发展状况,针对独立学院人才培养目标以及学生的特点,从多个方面阐述独立院校大学生数学建模教育存在的突出问题,在此基础上,提出了独立大学数学建模教学改革策略和方法。

  【关键词】独立院校;数学建模;改革

  一、数学建模的基本概念

  数学是在实际应用的需求中产生的,要描述一个实际现象可以有很多种方式,为了实际问题描述的更具逻辑性、科学性、客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。数学建模则是架于数学理论和实际问题之间的桥梁,数学模型是对于现实生活中的特定对象,根据其内在的规律,做出一些必要的假设,为了一个特定目的,运用数学工具,得到的一个数学结构,用来解释现实现象,预测未来状况。因此,数学建模就是用数学语言描述实际现象的过程。

  二、独立院校数学建模课程现状

  大部分的独立院校的数学建模工作纯在一定的问题,主要体现在以下几个方面:(一)学生方面的问题。独立院校的大部分学生的数学功底差,对数学的学习兴趣不大,普遍认为数学的学习对自身的专业的帮助不大。从而更不愿意接触与数学有关的数学建模,对数学建模竞赛的兴趣不大。在独立院校中,参加数学建模竞赛的大都是低年级的学生,而这些学生的数学知识结构还不完整,他们往往参加了一届数学竞赛并未获得奖项后就不愿意再次参加。而高年级的同学忙于其他的就业、考研等压力,无暇参加数学建模竞赛的培训。(二)教资方面的问题。首先。传统的教学是知识为中心、以教师的讲解为中心。数学建模的教学要求教师以学生为中心,培养学生学会学习的能力,发展学生的创新能力和创造能力。独立院校外聘的老师常常对独立院校的学生不够了解,这直接影响到教学成果。其次,数学建模涉及的知识面广,不但包括数学的各个分支,还包含了其他背景的专业知识。独立院校的教师一部分是才从大学毕业不久的研究生,他们对于数学建模教学和竞赛的培训经验不足,科研能力不是很强,对数学的各个分支的把控能力不强,对其他专业的了解不够全面。(三)教学实施方面的问题。大学生数学建模竞赛的目的`决不仅仅是获奖,更重要的是通过参加大学生数学建模竞赛活动,促进高校数学教学改革,起到培养全体学生能力、提高全体学生素质的作用。独立院校数学建模教学存在很多的问题。首先,大学数学建模教育在独立院校中的普及性不够。数学建模的宣传力度不大,课程大多开在大一和大二的跨选课,这个时候学生的数学知识结构还不完整。其次就是教材的选取,数学建模的相关教材大都是为了数学建模竞赛而编写的,对于独立院校的学生来说,这些教材的难度系数大,涉及的知识面广,远远超过了学生的接受能力。

  三、改革的具体措施

  (一)让学生了解数学建模,培养学习数学建模的兴趣。数学建模课程的开设有利于培养学生运用数学具体解决实际问题的能力,让学生发现学习数学的用处,改变学生学习数学的态度,提高学习数学的能力,认识到数学的意义和价值。独立院校学生的数学基础虽然比较差,但是学生的动手能力强。学校可以在多开展数学建模的讲座和课程,让学生了解数学建模。同时多向学生宣传数学建模的成果。(二)在教学内容中渗透数学建模思想和方法。1.在日常数学教学中渗透数学建模的思想方法。传统的数学教学重视的是知识的培养和传输,而忽视的是实际应用能力。教师的教学目标是使学生掌握数学理论知识。一般的教学方法是:教师引入相关的的基本概念,证明定理,推导公式,列举例题,学生记住公式,套用公式,掌握解题方法与技巧。学生往往学习了不少的纯粹的数学理论知识,却不知道如何应用到实际问题中。数学建模课程与传统数学课程相比差别较大,学校开设的数学建模跨选课及数学建模培训班,对培养学生观察能力、分析能力、想象力、逻辑能力、解决实际问题的能力起到了很好的作用。由于学校开设的数学建模课程大多是选修课程,课时较少,参选的学生也有限,数学建模的作用不能很好的向学生传输。高等数学中的很多内容都与数学建模的思想有关,因此,在大学数学课程的教学过程中,教师应有意识地结合传统的数学课程的特点,将数学建模的思想和内容融入到数学课堂教学中。这样既可以激发学生的学习兴趣,又能很好的将突出数学建模的思想。2.数学建模与专业紧密联系,发挥数学对专业知识的服务作用。数学建模与专业知识的结合,不仅可以让学生认识到数学的重要作用,在专业知识学习中的地位,还可以培养学习数学知识的兴趣,增强数学学习的凝聚力,同时加深对专业知识的理解。通过专业知识作为背景,学生更愿意尝试问题的研究。在学习中遇到的专业问题也可以尝试用数学建模的思想进行解决。这有利于提高学生的综合能力的培养。3.分层次进行数学建模教育。大体说来独立院校的数学建模课程的开设应该分成两个阶段:(1)第一阶段:大学一年级,在这个阶段,大部分学生对数学建模没有了解,这时候适合开设一些数学建模的讲座和活动,让学生了解数学建模。同时,在日常的数学教学中选择简单的应用问题和改变后的数学建模题目,结合自身的专业知识进行讲解,让学生了解数学建模的一般含义。基本方法和步骤,让学生具备初步的建模能力。(2)中级层次:大学二、三年级。在这个阶段,学生基本具备了完整的数学结构,具有了基本的建模能力。这个时候应该开设数学建模专业课程,让学生处理比较复杂的数学建模问题,让学生自己去采集有用的信息,学会提出模型的假设,对数据和信息需进行整理、分析和判断,并模型进行分析和评价,最终完成科技论文。

  四、加强教学组织与学校管理

  (一)提高数学教师自身水平。在数学建模教学过程中,教师扮演着重要的角色。教师水平的高低决定着数学建模教学能否达到预期的目的。数学建模的教学,不仅要求教师具备较高的专业水平,还要求教师具备解决实际问题的能力和丰富的数学建模实践经验。而独立院校的教师部分教师是才毕业不久的研究生,缺乏实践经验。这就对独立院校的的数学建模教学工作产生了很大的障碍。为了提高教师的水平,可以多派青年教师进行专业培训学习和学术交流,参加各种学术会议、到名校去做访问学者等等。同时可以多请著名的数学专家教授来到校园做建模学术报告,使师生拓宽视野,增长知识,了解建模的新趋势、新动态。青年教师还需要依据特定的教学内容、教学对象和教学环境对自己的教学工作作出计划、实施和调整以及反思和总结。青年数学教师还必须更新教育理念,改变传统的教学理念。只有不断创新,努力提高自身素质,才能适应新的形势,符合建模发展的要求。(二)选取合适的教材。数学建模教材使用也存在诸多不足之处。绝大部分高校教学建模课程采用的是理工类专业数学建模教材。这些教材主要涵盖的数学模型的难度系数大。而独立院校的学生的基础薄弱,无法接收这些模型。在教学过程中,教师可以将具体的案例或是历年的数学建模题目做为教学内容。通过具体的建模实例,讲解建模的思想和方法。一边讲解,一边让学生分组讨论,提出对问题的新的理解和对魔性的认识,尝试提出新的模型。(三)丰富建模活动。全面开展数学建模活动是数学建模思想的最重要的形式,它既使课内和课外知识相互结合,又可以普及建模知识与提高建模能力结合,可以培养学生利用数学知识分析和解决实际问题的能力,可以有效地提升了学生的数学综合素质。学校可以定期的开展数学建模宣传活动,扩大数学建模的知名度。学校还可以邀请有经验的专家和获奖学生开展建模讲座,提高对数学建模的重视,积极的组织建模活动。实践证明,只有根据独立院校的自身特点和培养目标,对数学建模课程的教学不断进行改革,才能解决独立院校数学建模课程教学的问题,才能真正的让学生喜欢上数学,喜欢上数学建模。

  【参考文献】

  [1]李大潜.将数学建模思想融入数学主干课程[J].中国大学教育.20xx.

  [2]贾晓峰等.大学生数学建模竞赛与高等学校数学改革[J].工科数学.20xx:162.

  [3]融入数学建模思想的高等数学教学研究[J].科技创新导报.20xx:162.

  作者:李双 单位:湖北文理学院理工学院

数学建模论文模板11

  摘要:在新课改以后,要求教师要在教学中重视学生的主体地位,提升学生学习兴趣,培养他们的自主学习能力。本文从小学数学教学过程中数学建模入手,对如何将数学建模运用到学生解题过程中进行了分析。

  关键词:小学数学;建模;运用

  数学建模是指利用数学模型的形式去解决实际中遇到的问题,换句话说,就是利用数学思维、数学方法解决各种数学问题。数学建模是在新课程改革后出现的新概念,经过一段时间的观察我们可以发现,数学建模的方法能够有效的提高学生的学习兴趣,培养学生的数学能力。这种方式能够将复杂的数学问题利用简单的方式找到解决方案,是提高小学数学课堂效率及课堂质量的有效手段。小学数学是小学学习中的重要课程之一,也是培养学生数学思维的重要阶段。可以说,小学数学的学习是学生学习数学的关键,对今后的学习起到极大的影响。因此,对于小学数学教师来说,不断的完善教学手段,提高数学课堂质量是教学工作中的重中之重。而数学建模就是为了解决数学在生活中的实际问题,能够让学生感受到数学本身的魅力,培养他们的数学思维,提高数学学习能力,从而让小学数学教学质量也得到大幅度的提升。小学数学与数学建模之间有着密不可分的作用,两者相互联系、相互促进,如何有效的将数学建模运用在小学数学教学过程中,是每个小学数学教师都值得思考的问题。

  一、培养学生数学建模意识

  数学建模是为了解决数学中遇到的问题,数学本身特别是小学数学也是一门较贴近学生生活的学科。因此在数学学习中,教师要首先培养学生的数学学习意识,让他们感受到数学与生活的紧密联系,然后再引导学生用数学建模去解决遇到的问题。在这一过程中,数学教师要注意以下两个问题:(一)在教学中一定要贴近学生的生活,课堂中所提出的问题也必须要符合生活实际,让学生对所学内容感到亲切。积极引导学生利用多种方式解决同一问题,尤其是利用数学建模的`方式,以达到培养他们的数学思维以及想象能力的目的。(二)在学生进行数学建模的过程中要利用多鼓励的方式调动他们对数学学习的积极性,让他们在数学建模中获得成就感,增加自信心,以此来提高学生在今后学习中使用数学建模方法的热情。

  二、提高学生想象力,用数学建模简化问题

  对于小学生来说,他们的思维与其他年龄段相比极其活跃,拥有了丰富的想象力。在数学学习中,如果能将想象力与数学学习结合在一起,一定会得到意想不到的效果。教师可以根据小学生这一特点,提高他们的想象力,然后再引导他们利用数学建模解决问题,让题目简单化。具体来说,就是在面对复杂的数学问题时,教师可以先为学生创建教学情境,以这样的方式提高学生的学习兴趣,让他们愿意主动去深入的研究遇到的题目。之后教师再去对他们进行引导,让他们能够理解题目中所提问题的含义,并能够运用他们的想象能力思考解决问题的方式。最后再引导他们进行数学建模,解决问题。这样的方式充分的利用了学生的想象能力,将所需解决的问题简单化。

  三、选择合适的题目作为建模案例

  在数学建模过程中,教师也要时刻牢记题目应该贴近学生的生活,符合实际,并且具有一定的趣味性,让他们有兴趣投入到数学建模的过程中去,然后再反复练习之后达到提高他们建模能力的目的。在选择数学建模案例时教师主要应该注意以下两点:首先,教师在选择建模案例时要尽量选择比较典型的问题,能够让学生在学习了该题目以后掌握这一类的解题方法,达到小学数学教学的目的。所以,这就需要教师对题目进行深入的分析,看是否在拥有趣味性、真实性的同时符合教学要求。其次,题目最好能够拥有可变性,教师能够通过对题目中已知条件的改变让学生进行不同方面的建模练习,以此提高他们数学建模的能力。

  四、引导学生主动进行数学建模

  在教师经过反复的教学后,学生都已经拥有了基本的数学建模知识,了解了数学建模过程,并且能够在解题过程中简单的使用数学建模。此时,教师在教学中就可以引导学生利用数学建模解决数学题目了。引导学生用数学建模方法解决数学问题,就要在解题过程中多对学生进行这一方面的鼓励,让他们提高建模信心。在这一过程中,教师还可以尝试让学生之间利用合作的方式让他们进行数学建模方法的探讨,并在探讨的过程中吸取他人的经验,提高自己数学建模水平,同时这样的方式能够让数学建模深入到每一个学生的心中,逐渐影响每一个学生的解题思路,让他们能够在解题过程中熟练运用建模的方式,提高解题能力。数学建模的方法能够有效的改变过去的传统教学思路,增加学生对数学的学习兴趣,提高数学解题能力。这种教学方法对于小学数学教师来说,值得不断的探讨研究,并应用在教学中,以此提高数学课堂的教学效率和教学质量。

数学建模论文模板12

  一、数学建模思想与大学数学类课程教学的融合切入点

  1、从应用数学出发数学建模主要是通过运用数学知识解决生活中遇到实际问题的全过程。要让数学建模思想与大学数学教学课程进行有效的融合,最佳切入点就是课堂上把用数学解决生活中的实际问题与教学内容相融合,以应用数学为导向,训练学生综合运用数学知识去刻画实际问题、提炼数学模型、处理实际数据、分析解决实际问题的能力,培养学生运用数学原理解决生活问题的兴趣和爱好。授课过程中,要改变以往单纯地进行课堂灌输的行为,多引入应用数学的内容,通过师生互动、课堂讨论、小课题研究实践等多种形式灵活多样的教学方法,培养引导学生树立应用数学建模解决实际问题的思想。

  2、从数学实验做起要加强独立学院学生进行数学实验的行为,笔者认为数学建模与数学实验有着密切的联系,两者都是从解决实际问题出发,当前的大学生数学实验基本上是应用数学软件、数值计算、建立模型、过程演算和图形显示等一系列过程,因此进行数学实验的全过程就是数学建模思想的启发过程。但是我国的教育资源和教学方针限制了独立学院学生的学习环境和学习资源,能够进行数学实验的条件还是有限的。即使个别有实验能力的学校,也未能进行充分利用,数学实验课的内容随意性较大,有些院校将其降格为软件学习课程或初级算法课。根据调研,目前大部分独立学院未开设此类课程,这是数学建模思想与大学数学教学课程融合的一大损失,不利于学生创新思维能力的提高。各校应当积极创造条件,把数学实验课设为大学数学的必修课,争取设立数学建模选修课,并积极探索、逐步实现把数学建模的思想和方法融入大学数学的主干课程。

  3、从计算机应用切入数学是为理、工、经、管、农、医、文等众多学科服务的基础工具,它在不同的领域因为应用程度不同而导致被重视的程度不同。但在当今的信息化时代,计算机的广泛应用和计算技术的飞速发展,使科学计算和数值模拟已成为绝大多数学科的必要工具和常用手段。数学在不同学科领域有了共同的主题,即应用数学建模,通过计算机对各自领域的科学研究、生活问题等进行模拟分析,这成为数学建模思想在跨学科领域交流和传播的一个重要途径。每个领域的教学可以计算机应用为切入点,让数学建模思想与数学授课无缝结合,在提高学生掌握知识能力、挖掘培养创新思维的同时,增加了大学数学课程内容的丰富性、实用性,促进教学手段变革和创新。因此,大学应以适应现代信息技术发展的形势和学生将来的需求为契机,加快改进大学数学课程教学方式,把数学建模的思想和方法以及现代计算技术和计算工具尽快融入大学数学的主干课程当中。

  二、探索适合独立学院学生的数学建模教学内容

  大学数学课程是大学工科各专业培养计划中重要的公共基础理论课,其目的在于培养工程技术人才所必备的数学素质,为培养我国现代化建设需要的高素质人才服务。数学建模课程的必修化,要从能够扩充学生的知识结构,培养学生的创造性思维能力、抽象概括能力、逻辑推理能力、自学能力、分析问题和解决问题能力的角度出发,建立适合独立学院学生的数学建模教学内容。日前独立学院开展数学建模活动涉及内容较浅,缺少相应的数学建模和数学实验方而的教材。笔者近几年通过承担此类课题的研究,认为应该加强以下内容的建设:

  1、加强对计算机语言和软件的学习,对数学原理进行剖解分析,多分析运行数学解决的社会生活问题,多设定课程设计工作。学生通过对科学问题、生活问题的深入研究,结合自己的课程设计,建立数学建模,让数学建模思想渗透到整个学习过程中。对非数学领域的问题,引导学生通过计算机软件的学习,建模解决专业中遇到的实际问题。比如通用的CAD等基于数学理论,解决不同领域的数学建模问题,以便将来适应社会的需要

  。2、开设选修课拓展知识领域,让学生可以通过选修数学建模、运筹学、开设数学实验(介绍Matlab、Maple等计算软件课程),增加建立和解答数学模型的方法和技巧。比如以前用的“文曲星”电子词典里的贷款计算,就是一个典型的运用数学模型方便百姓自己计算的应用。这个模型单靠数学和经济学单方面的知识是不够的,必须把数学与经济学联系在一起,才能有效解决生活中的问题。

  3、积极组织学生开展或是参加数学建模大赛比赛是各个选手充分发挥水平、展示自己智慧的途径,也是数学建模思想传播的最好手段。比赛可以让各个选手发现自己的不足,寻找自身数学建模出发点的缺陷,通过交流,还可以拓展学生思维。因此,有必要积极组织学生参入初等数学知识可以解决的数学模型、线性规划模型、指派问题模型、存储问题模型、图论应用题等方面的模拟竞赛,通过参赛积累大量数学建模知识,促进数学建模在教学中扮演更重要的角色。教师应该对历年的全国大学生数学建模竞赛真题进行认真的解读分析,通过对有意义的题目,如20xx年的《葡萄酒的评价》、《太阳能小屋的设计》,20xx年的《交巡警服务平台的.设置与调度车灯线光源的计算》、20xx年的《眼科病床的合理安排》等,与生活相关的例子进行讲解分析,提高学生对数学建模的兴趣和对模型应用的直观的认识,实现学校应用型人才的培养。

  4、加快教育方式的转变高等教育设立数学这门学科就是为了应用服务,内容应重点放在基本概念、定理、公式等在生活中的应用上。而传统的高等数学,除了推导就是证明,因此,要对传统内容进行优化组合,根据教学特点和学生情况推陈出新,要注重数学思想的渗透和数学方法的介绍,对高等数学精髓的求导、微分方法、积分方法等的授课要重点放在解决实际生活的应用上。要结合一些社会实践问题与函数建立的关系,分析确定变量、参数,加强有关函数关系式建立的日常训练。培养学生对一些问题的逻辑分析、抽象、简化并用数学语言表达的能力,逐步将学生带入遇到问题就能自然地去转化成数学模型进行处理的境界,并能将数学结论又能很好反向转化成实际应用。

  三、注意的问题

  21世纪我国进入了大众教育时期,高校招生人数剧增,学生水平差距较大,需要学校瞄准正确的培养方向。通过对美国教学改革的研究,笔者认为我国的数学建模思想与大学数学教学课程融合必须尽快在大学中广泛推进,但要注意一些问题:第一,数学教学改革一定要基于学生的现实水平,数学建模思想融入要与时俱进。第二,教学目标要正确定位,融合过程一定要与教学研究相结合,要在加强交流的基础上不断改进。第三,大学生数学建模竞赛的举办和参入,要给予正确的理解和引导,形成良性循环。要根据个人兴趣爱好,注重个性,不应面面强求。第四,传统数学思想与现在数学建模思想必须互补,必修与选修课程的作用与角色要分清。数学主干课程的教学水平是大学教学质量的关键指标之一,具备数学建模思想是理工类大学生能否成为创新人才的重要条件之一。两者的融合必将促进我国教学水平和质量的提高,为社会输送更多的实用型、创新型人才。

数学建模论文模板13

  一)论文形式:科学论文

  科学论文是对某一课题进行探讨、研究,表述新的科学研究成果或创见的文章。

  注意:它不是感想,也不是调查报告。

  (二)论文选题:新颖,有意义,力所能及。

  要求:

  有背景.

  应用问题要来源于学生生活及其周围世界的真实问题,要有具体的对象和真实的数据。理论问题要了解问题的研究现状及其理论价值。要做必要的学术调研和研究特色。

  有价值

  有一定的应用价值,或理论价值,或教育价值,学生通过课题的研究可以掌握必须的科学概念,提升科学研究的能力。

  有基础

  对所研究问题的背景有一定了解,掌握一定量的参考文献,积累了一些解决问题的方法,所研究问题的数据资料是能够获得的。

  有特色

  思路创新,有别于传统研究的新思路;

  方法创新,针对具体问题的特点,对传统方法的改进和创新;

  结果创新,要有新的,更深层次的结果。

  问题可行

  适合学生自己探究并能够完成,要有学生的特色,所用知识应该不超过初中生(高中生)的'能力范围。

  (三)(数学应用问题)数据资料:来源可靠,引用合理,目标明确

  要求:

  数据真实可靠,不是编的数学题目;

  数据分析合理,采用分析方法得当数学建模论文格式模板以及要求数学建模论文格式模板以及要求。

  (四)(数学应用问题)数学模型:通过抽象和化简,使用数学语言对实际问题的一个近似描述,以便于人们更深刻地认识所研究的对象。

  要求:

  抽象化简适中,太强,太弱都不好;

  抽象出的数学问题,参数选择源于实际,变量意义明确;

  数学推理严格,计算准确无误,得出结论;

  将所得结论回归到实际中,进行分析和检验,最终解决问题,或者提出建设性意见;

  问题和方法的进一步推广和展望。

  (五)(数学理论问题)问题的研究现状和研究意义:了解透彻

  要求:

  对问题了解足够清楚,其中指导教师的作用不容忽视;

  问题解答推理严禁,计算无误;

  突出研究的特色和价值。

  (六)论文格式:符合规范,内容齐全,排版美观

  1. 标题:是以最恰当、最简明的词语反映论文中主要内容的逻辑组合。

  要求:反映内容准确得体,外延内涵恰如其分,用语凝练醒目。

  2. 摘要:全文主要内容的简短陈述。

  要求:

  1)摘要必须指明研究的主要内容,使用的主要方法,得到的主要结论和成果;

  2)摘要用语必须十分简练

  3)不要举例,不要讲过程,不用图表,不做自我评价。

  3. 关键词:文章中心内容所涉及的重要的单词,以便于信息检索。

  要求:数量不要多,以3-5各为宜,不要过于生僻。

  (七). 正文

  1)前言:

  问题的背景:问题的来源;

  提出问题:需要研究的内容及其意义;

  文献综述:国内外有关研究现状的回顾和存在的问题;

  概括介绍论文的内容,问题的结论和所使用的方法。

  2)主体:

  (数学应用问题)数学模型的组建、分析、检验和应用等。

  (数学理论问题)推理论证,得出结论等。

  3)讨论:

  解释研究的结果,揭示研究的价值, 指出应用前景, 提出研究的不足。

  要求:

  1)背景介绍清楚,问题提出自然;

  2)思路清晰,涉及到得数据真是可靠,推理严密,计算无误;

  3)突出所研究问题的难点和意义。

  5. 参考文献:

  是在文章最后所列出的文献目录。他们是在论文研究过程中所参考引用的主要文献资料,是为了说明文中所引用的的论点、公式、数据的来源以表示对前人成果的尊重和提供进一步检索的线索。

  要求:

  1)文献目录必须规范标注;

  2)文末所引的文献都应是论文中使用过的文献,并且必须在正文中标明数学建模论文格式模板以及要求论文。

  (七)数学建模论文模板

  1. 论文标题

  摘要

  摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息

  一般说来,摘要应包含以下五个方面的内容:

  ①研究的主要问题;

  ②建立的什么模型;

  ③用的什么求解方法;

  ④主要结果(简单、主要的);

  ⑤自我评价和推广。

  摘要中不要有关键字和数学表达式。

  数学建模竞赛章程规定,对竞赛论文的评价应以:

  ①假设的合理性

  ②建模的创造性

  ③结果的正确性

  ④文字表述的清晰性 为主要标准。

  所以论文中应努力反映出这些特点。

  注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。

数学建模论文模板14

  数学建模是联系数学理论和实际问题的桥梁和纽带,是数学学科与社会的交汇,是解决实际问题的一种方法。数学建模是从数学角度出发,对所需研究的问题作一个模拟,舍去无关因素,保留本质因素,把现实原型作抽象、简化后,使用数学符号、数学式子、数量关系简化而成某种数学结构。

  当前高职数学课程教学中,由于课时少,教师多采用填鸭式的教学法,过分注重训练学生的逻辑思维能力、解题技巧,过分强调教学要求、教学进度的统一,缺乏层次性多样化,不能适应不同专业的要求,考试形式也几乎是清一色的笔试,而没有着意讨论和训练如何从实际问题中提炼出数学问题,以及如何用数学来解决实际问题,从而造成不少学生认为“学高等数学没用”,大大影响了学生学习数学的积极性和数学素养的提高,以及后继专业课程的学习。而现行教材上又很少接触实际问题,如果教师照本宣科,学生就根本体会不到数学的广泛应用。因此,若教师能在实际教学中渗透一些数学建模思想,理论联系实际,不仅能激发学生学习数学的兴趣,帮助学生理解和掌握教材中的定义、定理,而且可以培养学生应用数学的意识,提高其解决实际问题的能力。

  一、重视数学概念背景模型的引入,启发学生对数学公式、定义的理解与认识

  一切数学概念和知识都是从现实世界的各种模型中抽象出来的,利用建模的思想进行教学是理论与应用相结合的重要手段。让学生从模型中切实体会到数学概念是因为有用而产生的',从而培养学生学习数学的兴趣。例如,在讲极限的定义时,如果把定义直接灌输给学生,学生会感到数学概念犹如空中楼阁,看不见,摸不着。如果我们换一种方式,从求圆周长讲起,向学生提出分析和解决这个问题所用到的数学思想方法,从而引出极限的概念。再如讲导数的概念,先从求变速直线运动的速度、产品成本的变化率、切线等问题为背景引入,再从这些应用入手,有意识地挖掘它们,进一步提出或构造一些比较浅的数学建模问题。这样借助于数学知识与实际问题的联系引入数学概念,加强“数学源于现实”的思想教育,容易牵动学生的数学思维,加深对概念的理解,从而提高学习数学的兴趣。

  二、在高职数学教学中渗透数学建模思想,有助于提高教学效果

  针对教材中实际应用问题较少的现状,教师在数学教学活动中,可以精选一些学生感兴趣的简单的实际应用问题,进行建模示范,帮助学生理论联系实际。比如有的学生数学基础可能不太好,但他爱好体育、经济、化学、计算机等,教师就可以从这些方面引入一些简单的相关题目,引起他们的兴趣。比如让有体育特长的学生分析“香港赛马比赛的奖金分配情况”,爱好化学的学生分析、抽象“化学方程式配平”的数学模型,爱好计算机的学生学会“编制解决数学模型的程序”等等。这样做可以激发其学习的积极性,发挥学生的个性,往往会收到意想不到的结果。在学生对数学建模感兴趣的基础上,能激发学生对数学学习的积极性,使得学生被动地“学”、老师被动地“教”,改变为学生主动地“学”、老师“灵活”主动地“教”。学生的学习主动性调动起来了,老师的工作热情就会高涨,就能达到提高高职数学教学效果的目的。

  三、培养学生应用数学的意识,提高其解决实际问题的能力

  在教学实践中,专业课教师认为学生的数学基础不扎实,不能灵活运用在具体问题上,而对于学生自己,则表现为不能通过自学来获取新知识,对教师过于依赖等。在学生毕业以后,不会或者意识不到可以应用数学工具去解决他们各自领域的问题。在数学教学中渗透数学建模思想,可以适当选编一些实际应用问题,引导学生进行分析,通过抽象、简化、假设、确定变量、参数、确立数学模型,解答数学问题,从而解决实际问题。这样既让学生掌握一些数学建模的方法,又有利于学生遇到实际问题时,在所学过的课程中找到适当的模型,依据模型的有关性质或解题思路去考查现有问题,使学生深刻体会到数学是解决实际问题的锐利武器,也有利于在教学中贯彻理论与实际相结合的原则,逐步提高学生分析、解决问题的能力。例如,向学生介绍函数模型、微分方程模型、优化模型、Malthus人口模型、Logist ic人口模型、跟踪问题模型等。微分方程来源于实际,微分方程模型是常用的数学模型,许多数学问题可通过建立微分方程,解微分方程来解决。比如传染病模型,人类虽已跨入21 世纪,但一些险恶的传染病,如淋病、艾滋病等在许多国家蔓延,通过分析受感染人数的变化规律可以预报传染病高潮的到达时间。在讲解导数、微分、积分及其应用时,可编制“商品存储费用优化问题、批量进货的周转周期、最大收益原理、磁盘最大存储量、交通管理中的黄灯、红灯、绿灯亮的时间”等问题,都可用导数或微积分的数学方法进行求解。在概率与统计的应用教学中,“医学检验的准确率问题”、“居民健康水平的调查与估测”、“临床诊断的准确性”、“不同的药物有效率的对比分析”等实际应用问题都可以用概率与统计的数学模型来解决。

  在线性代数的应用问题中,可以建立研究一个种群的基因变异,基因遗传等医学问题的模型,使数学知识直接应用于学生今后的专业中,有效地促进了学生学习高等数学的积极性,提高了数学的应用意识。总之,高等数学教学的目的是提高学生的数学素质,为进一步学习其专业课打下良好的数学基础。

  教学中渗透数学建模思想,不但促进高职数学学科建设,推动教学改革,更重要的是能激发学生学习数学的兴趣,帮助学生培养和提高想象力、洞察力和创造力。

数学建模论文模板15

  一、小学数学建模

  "数学建模"已经越来越被广大教师所接受和采用,所谓的"数学建模"思想就是通过创建数学模型的方式来解决问题,我们把该过程简称为"数学建模",其实质是对数学思维的运用,方法和知识解决在实际过程中遇到的数学问题,这一模式已经成为数学教育的重要模式和基本内容。叶其孝曾发表《数学建模教学活动与大学数学教育改革》,该书指出,数学建模的本质就是将数学中抽象的内容进行简化而成为实际问题,然后通过参数和变量之间的规律来解决数学问题,并将解得的结果进行证明和解释,因此使问题得到深化,循环解决问题的过程。

  二、小学数学建模的定位

  1.定位于儿童的生活经验

  儿童是小学数学的主要教学对象,因此数学问题中研究的内容复杂程度要适中,要与儿童的生活和发展情况相结合。"数学建模"要以儿童为出发点,在数学课堂上要多引用发生在日常生活中的案例,使儿童在数学教材上遇到的问题与现实生活中的问题相结合,从而激发学生学习的积极性,使学生通过自身的经验,积极地感受数学模型的作用。同时,小学数学建模要遵循循序渐进的原则,既要适合学生的年龄特征,赋予适当的挑战性;又要照顾儿童发展的差异性,尊重儿童的个性,促进每一个学生在原有的基础上得到发展。

  2.定位于儿童的思维方式

  小学生的特点是年龄小,思维简单。因此小学的数学建模必须与小学生的实际情况相结合,循序渐进的进行,使其与小学生的认知能力相适应。

  实际情况表明,教师要想使学生能够积极主动的思考问题,提高他们将数学思维运用到实际生活中的能力,就必须把握好儿童在数学建模过程中的情感、认知和思维起点。我们以《常见的数量关系》中关于速度、时间和路程的教学为例,有的老师启发学生与二年级所学的乘除法相结合,使乘除法这一知识点与时间、速度和路程建立了关联,从而使"数量关系"与数学原型"一乘两除"结合起来,并且使学生利用抽象与类比的思维方法完成了"数量关系"的"意义建模",从而创建了完善的认知体系。

  三、小学"数学建模"的教学策略

  1.培育建模意识

  当前的小学数学教材中,大部分内容编排的思路都是以建模为基础,其内容的开展模式主要是"生活情景到抽象模型,然后到模型验证,最后到模型的运用和解释".培养建模思维的关键是对教材的解读是否从建模出发,使教材中的建模思想得到充分的开发。然后对教材中比较现实的问题进行充分的挖掘,将数学化后的实际问题创建模型,最后解决问题。教师要提高学生对建模的意识与兴趣就要充分挖掘教材,指导学生去亲身体会、思考沟通、动手操作、解决问题。其次,通过引入贴近现实生活、生产的探索性例题,使学生了解数学是怎样应用于解决这些实际问题的。同时,让学生在利用数学建模解决实际问题的过程中理解数学的应用价值和社会功能,不断增强数学建模的意识。

  2.体验建模过程

  在数学的建模过程中,要将生活中含有数学知识与规律的实际问题抽象化,从而建成数学模型。然后利用数学规律对问题进行推理,解答出数学的结果后再进行证明和解释,从而使实际问题得到合理的解决。我们以解决问题的方法为例,使学生能够解决题目不是教学的唯一目的,使学生通过对数学问题的研究和体验来提升自己"创建"新模型的能力。使学生在不断的提出与解决问题的过程中培养成自主寻找数学模型和数学观念的.习惯。如此一来,当学生遇到陌生的问题情境,甚至是与数学无关的实际问题时,都能够具备"模型"思想,处理问题的过程能具备数学家的"模型化"特点,从而使"模型思想"影响其生活的各个方面。

  3.在数学建模中促进自主性建构

  要使"知识"与"应用"得到良好的结合就必须提高学生积极构建数学模型的能力。我们要将数学教学的重点放在对学生观察、整合、提炼"现实问题"的能力培养上来。教学过程中,通过对日常问题的适当修改,使学生的实际生活与数学相结合,从而提升学生发现和提出问题,并通过创建模型解决问题的能力,为学生提供能够自主创建模型的条件。

  我们以《比较》这课程内容为例,我们通过"建模"这一教学方法,培养学生对">""<"和"="的掌握与使用,进而使学生明确了解"比较"的真正含义。首先,利用公园或者学校等地方的跷跷板为素材,让学生了解自己的哪个伙伴被压上去,哪个伙伴被压下来;然后让班级的高矮不同的同学进行身高比较。最后将上面这些情景在课堂上通过多媒体手段展现出来,由于这些情景都是学生曾亲身体验过的,此时再叫他们去做"重量"或者"高度"的比较,他们就可以轻松的掌握">""<"和"="等符号。这种将学生的实际生活与课堂教学相结合的方法,使学生能够轻松的创建其数学模型,提升他们自主建模的信心。

  四、总结

  数学建模是将实际生活与数学相结合的有效途径和方法。学生在创建数学模型的过程中,其思维方式也得到了锻炼。小学阶段的教学,其数学模型的构建应当以儿童文化观为基础,其目的主要是培养儿童的建模思想,这也是提升小学生学习数学积极性,提升课堂文化气息的有效方法和途径。

【数学建模论文】相关文章:

数学建模论文模板07-20

数学建模论文模板07-21

数学建模A优秀论文08-01

【优】数学建模论文模板07-20

数学建模工作总结05-28

参加数学建模竞赛心得08-19

数学建模心得体会05-02

数学建模学习心得(精选14篇)05-27

数学的论文09-30

数学小论文12-07