现在位置:范文先生网>教案大全>数学教案>八年级数学的教案

八年级数学的教案

时间:2024-07-24 18:22:00 数学教案 我要投稿

八年级数学的教案

  作为一无名无私奉献的教育工作者,编写教案是必不可少的,教案是教学活动的总的组织纲领和行动方案。教案应该怎么写才好呢?下面是小编为大家收集的八年级数学的教案,仅供参考,希望能够帮助到大家。

八年级数学的教案

八年级数学的教案1

  1、教材分析

  (1)知识结构

  (2)重点、难点分析

  本节内容的重点是线段垂直平分线定理及其逆定理. 定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据.

  本节内容的难点是定理及逆定理的关系. 垂直平分线定理和其逆定理,题设与结论正好相反. 学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.

  2、 教法建议

  本节课教学模式主要采用“学生主体性学习”的教学模式. 提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳. 教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人. 具体说明如下:

  (1)参与探索发现,领略知识形成过程

  学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点P,它到线段两端的距离有何关系?学生会很容易得出“相等”. 然后学生完成证明,找一名学生的证明过程,进行投影总结. 最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理. 这样让学生亲自动手实践,积极参与发现,激发了学生的'认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会.

  (2)采用“类比”的学习方法,获取逆定理

  线段垂直平分线的定理及逆定理的证明都比较简单,学生学习一般没有什么困难,这一节的难点仍然的定理及逆定理的关系,为了很好的突破这一难点,教学时采用与角的平分线的性质定理和逆定理对照,类比的方法进行教学,使学生进一步认识这两个定理的区别和联系.

  (3) 通过问题的解决,让学生学会从不同角度分析问题、解决问题;让学生学会引申、变更问题,以培养学生发现问题、提出问题的创造性能力.

八年级数学的教案2

  一、 教学目标

  1.了解分式、有理式的概念.

  2.理解分式有意义的条件,能熟练地求出分式有意义的条件.

  二、重点、难点

  1.重点:理解分式有意义的条件.

  2.难点:能熟练地求出分式有意义的条件.

  三、课堂引入

  1.让学生填写P127[思考],学生自己依次填出:,,,.

  2.学生看问题:一艘轮船在静水中的最大航速为30 /h,它沿江以最大航速顺流航行90 所用时间,与以最大航速逆流航行60 所用时间相等,江水的流速为多少?

  请同学们跟着教师一起设未知数,列方程.

  设江水的流速为v /h.

  轮船顺流航行90 所用的时间为小时,逆流航行60 所用时间小时,所以=.

  3. 以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?

  四、例题讲解

  P128例1. 当下列分式中的字母为何值时,分式有意义.

  [分析]已知分式有意义,就可以知道分式的分母不为零,进一步解

  出字母的`取值范围.

  [补充提问]如果题目为:当字母为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.

  (补充)例2. 当为何值时,分式的值为0?

  (1) (2) (3)

  [分析] 分式的值为0时,必须同时满足两个条件:分母不能为零;分子为零,这样求出的的解集中的公共部分,就是这类题目的解.

  [答案] (1)=0 (2)=2 (3)=1

  五、随堂练习

  1.判断下列各式哪些是整式,哪些是分式?

  9x+4, , , , ,

  2. 当x取何值时,下列分式有意义?

  (1) (2) (3)

  3. 当x为何值时,分式的值为0?

  (1) (2) (3)

  六、课后练习

  1.下列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?

  (1)甲每小时做x个零件,则他8小时做零件 个,做80个零件需 小时.

  (2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.

  (3)x与的差于4的商是 .

  2.当x取何值时,分式 无意义?

  3. 当x为何值时,分式 的值为0?

八年级数学的教案3

  【教学目标】

  一、教学知识点

  1.命题的组成.

  2.命题真假的判断。

  二、能力训练要求:

  1.使学生能够分清命题的条件和结论,能判断命题的真假

  2.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法

  三、情感与价值观要求:

  1.通过反例说明假命题,使学生认识到任何事情都是正反两方面对立统一

  2.帮助学生了解数学发展史,拓展视野,激发学习兴趣

  3.通过对《原本》介绍,使学生感受数学发展史和人类文明价值

  【教学重点】准确的找出命题的条件和结论

  【教学难点】理解判断一个真命题需要证明

  【教学方】探讨、合作交流

  【教具准备】投影片

  【教学过程】

  一、情景创设、引入新课

  师:如果这个星期不下雨,我们就去郊游,这是命题吗?分析这句话,这个周日,我们郊游一定能成行吗?为什么?

  新课:

  (1)观察下列命题,你能发现这些命题有什么共同结构特征?与同伴交流。

  1.如果两个三角形的三条边对应相等,那么这两个三角形全等。

  2.如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形。

  3.如果一个三角形是等腰三角形,那么这个三角形的两个底角相等。

  4.如果一个四边形的对角线相等,那么这个四边形是矩形。

  5.如果一个四边形的两条对角线相互垂直,那么这个四边形是菱形。

  师:由此可见,每个命题都是由条件和结论两部分组成的,条件是已知的事项,结论是由已知事项推出的事项。一般地,命题都可以写成“如果……那么……”的形式,其中“如果”引出部分是条件,“那么”引出部分是结论。

  二、例题讲解:

  例1:师:下列命题的条件是什么?结论是什么?

  1.如果两个角相等,那么他们是对顶角;

  2.如果a>b,b>c,那么a=c;

  3.两角和其中一角的对边对应相等的两个三角形全等;

  4.菱形的四条边都相等;

  5.全等三角形的面积相等。

  例题教学建议:1:其中(1)、(2)请学生直接回答,(3)、(4)、(5)请学生分成小组交流然后回答。

  2:有的命题的描述没有用“如果……那么……”的形式,在分析时可以扩展成这种形式,以分清条件和结论。

  例2:上述命题哪些是正确的,哪些是不正确的?你是怎么知道它是不正确的?与同伴交流。

  师:正确的命题叫真命题,不正确的命题叫假命题。要说明一个命题是假命题,通常可以举一个例子,使之具备命题的条件,却不具备命题的结论,即反例。

  教学建议:对于反例的要求可以采取启发式层层递进方式给出,即:说明命题错误可以举例→综合命题(1)、(2)的两例,两例条件具备→例子结论不吻合→给出如何举反例要求。

  三、思维拓展:

  拓展1.师:如何证实一个命题是真命题呢?请同学们分小组交流一下。

  教学建议:不急于解决学生怎么证实真命题的问题,可按以下程序设计教学过程

  (1)首先给学生介绍欧几里得的`《原本》

  (2)引出概念:公理、定理,证明

  (3)启发学生,现在如何证实一个命题的正确性

  (4)给出本套教材所选用如下6个命题作为公理

  (5)等式性质、不等式有关性质,等量代换也看作定理。

  拓展2.师:任何公理、定理是命题吗?是真命题吗?为什么?

  建议:在学生回答后归纳总结:公理是经过长期实践验证的,不需要再进行推理论证都承认的真命题。定理是经过推理论证的真命题。

  练习书p197习题6.31

  四、问题式总结

  师:经过本节课我们在一起共同探讨交流,你了解了有关命题的哪些知识?

  建议:可对学生进行提示性引导,如:命题的构成特点、命题是否都正确、如何判断一个命题是假命题、如何证实一个命题是真命题。

  作业:书p197习题6.32、3

  板书设计:

  定义与命题

  课时2

  条件

  1.命题的结构特征

  结论

  1.假命题——可以举反例

  2.命题真假的判别

  2.真命题——需要证明 学生活动一——

  探索命题的结构特征

  学生观察、分组讨论,得出结论:

  (1)这五个命题都是用“如果……那么……”形式叙述的

  (2)这五个命题都是由已知得到结论

  (3)这五个命题都有条件和结论

  学生活动二——

  探索命题的条件和结论

  生:命题1、2如果部分是条件,那么部分是结论;命题3如果两个三角形两角和其中一角对边对应相等是条件,那么这两个三角形全等是结论;命题4如果是菱形是条件,那么四条边相等是结论;命题5如果两三角形全等是条件,那么面积相等是结论。

  学生活动三

  探索命题的真假——如何判断假命题

  生:可以举一个例子,说明命题1是不正确的,如图:

  已知:∠AOB,∠1=∠2,∠1,∠2不是对顶角

  生:命题2,若a=10,b=8,c=5,此时a>b,b>c,但a≠c

  生:由此说明:命题1、2是不正确的

  生:命题3、4、5是正确的

  学生活动四

  探索命题的真假——如何证实一个命题是真命题

  学生交流:

  生:用我们以前学过的观察、实验、验证特例等方法

  生:这些方法往往并不可靠

  生:能够根据已知道的真命题证实呢?

  生:那已经知道的真命题又是如何证实的?

  生:那可怎么办呢?

  生:可通过证明的方法

  学生分小组讨论得出结论

  生:命题的结构特征:条件和结论

  生:命题有真假之分

  生:可以通过举反例的方法判断假命题

  生:可通过证明的方法证实真命题

八年级数学的教案4

  【教学目标】

  1、了解三角形的中位线的概念

  2、了解三角形的中位线的性质

  3、探索三角形的中位线的性质的一些简单的应用

  【教学重点、难点】

  重点:三角形的中位线定理。

  难点:三角形的中位线定理的证明中添加辅助线的思想方法。

  【教学过程】

  (一)创设情景,引入新课

  1、如图,为了测量一个池塘的宽BC,在池塘一侧的平地上选一点A,再分别找出线段AB、AC的中点D、E,若测出DE的长,就可以求出池塘的宽BC,你知道这是为什么吗?

  2、动手操作:剪一刀,将一张三角形纸片剪成一张三角形纸片和一张梯形纸片

  (1)如果要求剪得的两张纸片能拼成平行的四边形,剪痕的位置有什么要求?

  (2)要把所剪得的两个图形拼成一个平行四边形,可将其中的三角形做怎样的图形变换?

  3、引导学生概括出中位线的概念。

  问题:(1)三角形有几条中位线?(2)三角形的中位线与中线有什么区别?

  启发学生得出:三角形的中位线的两端点都是三角形边的中点,而三角形中线只有一个端点是边中点,另一端点上三角形的一个顶点。

  4、猜想:DE与BC的关系?(位置关系与数量关系)

  (二)、师生互动,探究新知

  1、证明你的猜想

  引导学生写出已知,求证,并启发分析。

  (已知:⊿ABC中,D、E分别是AB、AC的中点,求证:DE∥BC,DE=1/2BC)

  启发1:证明直线平行的方法有哪些?(由角的相等或互补得出平行,由平行四边形得出平行等)

  启发2:证明线段的倍分的方法有哪些?(截长或补短)

  学生分小组讨论,教师巡回指导,经过分析后,师生共同完成推理过程,板书证明过程,强调有其他证法。

  证明:如图,以点E为旋转中心,把⊿ADE绕点E,按顺时针方向旋转180゜,得到⊿CFE,则D,E,F同在一直线上,DE=EF,且⊿ADE≌⊿CFE。

  ∴∠ADE=∠F,AD=CF,

  ∴AB∥CF。

  又∵BD=AD=CF,

  ∴四边形BCFD是平行四边形(一组对边平行且相等的四边形是平行四边形),

  ∴DF∥BC(根据什么?),

  ∴DE 1/2BC

  2、启发学生归纳定理,并用文字语言表达:三角形中位线平行于第三边且等于第三边的'一半。

  (三)学以致用、落实新知

  1、练一练:已知三角形边长分别为6、8、10,顺次连结各边中点所得的三角形周长是多少?

  2、想一想:如果⊿ABC的三边长分别为a、b、c,AB、BC、AC各边中点分别为D、E、F,则⊿DEF的周长是多少?

  3、例题:已知:如图,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点。

  求证:四边形EFGH是平行四边形。

  启发1:由E,F分别是AB,BC的中点,你会联想到什么图形?

  启发2:要使EF成为三角的中位线,应如何添加辅助线?应用三角形的中位线定理,能得到什么?你能得出EF∥GH吗?为什么?

  证明:如图,连接AC。

  ∵EF是⊿ABC的中位线,

  ∴EF 1/2AC(三角形的中位线平行于第三边,并且等于第三边的一半)。

  同理,HG 1/2AC。

  ∴EF HG。

  ∴四边形EFGH是平行四边形(一组对边平行并且相等的四边形是平行四边形)

  挑战:顺次连结上题中,所得到的四边形EFGH四边中点得到一个四边形,继续作下去。。。你能得出什么结论?

  (四)学生练习,巩固新知

  1、请回答引例中的问题(1)

  2、如图,在四边形ABCD中,AB=CD,M,N,P分别是AD,BC, BD的中点。求证:∠PNM=∠PMN

  (五)小结回顾,反思提高

  今天你学到了什么?还有什么困惑?

八年级数学的教案5

  知识目标:理解变量与函数的概念以及相互之间的关系

  能力目标:增强对变量的理解

  情感目标:渗透事物是运动的,运动是有规律的辨证思想

  重点:变量与常量

  难点:对变量的判断

  教学媒体:多媒体电脑,绳圈

  教学说明:本节渗透找变量之间的简单关系,试列简单关系式

  教学设计:

  引入:

  信息1:当你坐在摩天轮上时,想一想,随着时间的变化,你离开地面的高度是如何变化的?

  信息2:汽车以60km/h的速度匀速前进,行驶里程为skm,行驶的时间为th,先填写下面的表格,在试用含t的式子表示s.

  t/m 1 2 3 4 5

  s/km

  新课:

  问题:(1)每张电影票的售价为10元,如果早场售出票150张,日场售出票205张,晚场售出票310张,三场电影的票房收入各多少元?设一场电影受出票x张,票房收入为y元,怎样用含x的式子表示y?

  (2)在一根弹簧的下端悬挂中重物,改变并记录重物的质量,观察并记录弹簧长度的变化规律,如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用含重物质量 m(单位:kg)的式子表示受力后弹簧长度l(单位:cm)?

  (3)要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?怎样用含圆面积s的式子表示圆的半径r?

  (4)用10m长的绳子围成长方形,试改变长方形的长度,观察长方形的面积怎样变化。记录不同的长方形的长度值,计算相应的长方形面积的值,探索它们的变化规律,设长方形的长为xm,面积为sm2,怎样用含x的式子表示s?

  在一个变化过程中,我们称数值发生变化的量为变量(variable).数值始终不变的量为常量。

  指出上述问题中的变量和常量。

  范例:写出下列各问题中所满足的关系式,并指出各个关系式中,哪些量是变量,哪些量是常量?

  (1)用总长为60m的篱笆围成矩形场地,求矩形的面积s(m2)与一边长x(m)之间的关系式;

  (2)购买单价是0.4元的铅笔,总金额y(元)与购买的铅笔的数量n(支)的关系;

  (3)运动员在4000m一圈的跑道上训练,他跑一圈所用的时间t(s)与跑步的速度v(m/s)的`关系;

  (4)银行规定:五年期存款的年利率为2.79%,则某人存入x元本金与所得的本息和y(元)之间的关系。

  活动:

  1.分别指出下列各式中的常量与变量.

  (1)圆的面积公式s=πr2;

  (2)正方形的l=4a;

  (3)大米的单价为2.50元/千克,则购买的大米的数量x(kg)与金额与金额y的关系为y=2.5x.

  2.写出下列问题的关系式,并指出不、常量和变量.

  (1)某种活期储蓄的月利率为0.16%,存入10000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x之间的关系式.

  (2)如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n盆花,每个图案的花盆总数是s,求s与n之间的关系式.

  思考:怎样列变量之间的关系式?

  小结:变量与常量

  作业:阅读教材5页,11.1.2函数

八年级数学的教案6

  教学课题:2.6近似数与有效数字

  教学时间(日期、课时):

  教材分析:

  学情分析:

  教学目标:

  1、了解近似数与有效数字的概念,体会近似数的意义及在生活中的作用

  2、能说出一个近似数的精确度或有几个有效数字,能按照要求用四舍五入的方法取一个数的近似数

  教学准备

  《数学学与练》

  集体备课意见和主要参考资料

  页边批注

  教学过程

  一.新课导入

  (1)从早晨起床到上学,你从你的生活环境中获得哪些数的信息?

  (2)生活中,有些数据是准确的,有 些是近似的,你能举例说明吗?

  二.新课讲授

  实际生产生活中的许多数据都是近似数,例如测量长度,时间,速度所得的结果都是近似数,且由于测量工具不同,其测量的精确程度也不同。在实际计算中对于像π这样的数,也常常需取它们的近似值.请说说生活中应用近似数的例子。

  取一个数的近似值有多种 方法,四舍五入是最常用的`一种方法。用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位. 例如,圆周率=3.1 415926…

  取π≈3,就 是精确到个位(或精确到1)

  取π≈3.1,就是精确到十分位(或精确到0.1)

  取π≈3.14,就是精确到百分位位(或精确到0.01)

  有效数字

  对一个近似数,从左面第一个不是0的数字起,到末位数字止,所有的数字都称为这个近似数的有效 数字。例如:上 面圆周率π的近似值中,3.14有3 个有效数字3,1,4;3.142有4个有效数字3,1,4,2.

  例题教学

  例1 小亮用天平称得罐头的质量为2.026kg,, 按下列要求取近似 数,并指出每个近似数的有效数字:

  精确 到0.01kg; 精确到0.1kg; 精确到1kg.

  例2 用四舍五入法,按要求对下列各数取近似值,并用科学记数法表示.

  (1)地球上七大洲的面积约为149480000 ( 保留2个有效数字)

  (2)某人一天饮水1890ml(精确到1000ml)

  (3)小明身高1.595m(保留3个有效数字)

  (4)人的眼睛可以看见的红光的波长为0.000077cm(精确到0.00001)

  请与同学交流讨论.

  三.巩固练 习

  书p63 1,2

  四.小结

  举出生活中的近似数,指出它们精确到哪一位?各有几个有效数字?

  板书设计

  作业设计

  补充习题2.6

  教学反思

八年级数学的教案7

  第一步:情景创设

  乒乓球的标准直径为40mm,质检部门从A、B两厂生产的乒乓球中各抽取了10只,对这些乒乓球的直径了进行检测。结果如下(单位:mm):

  A厂:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1;

  B厂:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.

  你认为哪厂生产的乒乓球的直径与标准的误差更小呢?

  (1)请你算一算它们的平均数和极差。

  (2)是否由此就断定两厂生产的乒乓球直径同样标准?

  今天我们一起来探索这个问题。

  探索活动

  通过计算发现极差只能反映一组数据中两个极值之间的大小情况,而对其他数据的波动情况不敏感。让我们一起来做下列的数学活动

  算一算

  把所有差相加,把所有差取绝对值相加,把这些差的平方相加。

  想一想

  你认为哪种方法更能明显反映数据的波动情况?

  第二步:讲授新知:

  (一)方差

  定义:设有n个数据,各数据与它们的平均数的差的平方分别是,…,我们用它们的平均数,即用

  来衡量这组数据的波动大小,并把它叫做这组数据的方差(variance),记作。

  意义:用来衡量一批数据的波动大小

  在样本容量相同的情况下,方差越大,说明数据的'波动越大,越不稳定

  归纳:(1)研究离散程度可用(2)方差应用更广泛衡量一组数据的波动大小

  (3)方差主要应用在平均数相等或接近时

  (4)方差大波动大,方差小波动小,一般选波动小的

  方差的简便公式:

  推导:以3个数为例

  (二)标准差:

  方差的算术平方根,即④

  并把它叫做这组数据的标准差.它也是一个用来衡量一组数据的波动大小的重要的量.

  注意:波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。所以方差公式是能够反映一组数据的波动大小的一个统计量,教师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。

八年级数学的教案8

  教学目标:

  【知识与技能】

  1、理解并掌握等腰三角形的性质。

  2、会用符号语言表示等腰三角形的性质。

  3、能运用等腰三角形性质进行证明和计算。

  【过程与方法】

  1、通过观察等腰三角形的对称性,发展学生的形象思维。

  2、通过实践、观察、证明等腰三角形的性质,积累数学活动经验,感受数学思考过程的条理性,发展学生的合情推理能力。

  3、通过运用等腰三角形的性质解决有关问题,提高学生运用几何语言表达问题的,运用知识和技能解决问题的能力。

  【情感态度】

  引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中取得成功的体验。

  【教学重点】

  等腰三角形的性质及应用。

  【教学难点】

  等腰三角形的证明。

  教学过程:

  一、情境导入,初步认识

  问题1什么叫等腰三角形?它是一个轴对称图形吗?请根据自己的理解,利用轴对称的知识,自己做一个等腰三角形。要求学生独立思考,动手作图后再互相交流评价。

  可按下列方法做出:

  作一条直线l,在l上取点A,在l外取点B,作出点B关于直线l的对称点C,连接AB,AC,CB,则可得到一个等腰三角形。

  问题2每位同学请拿出事先准备好的长方形纸片,按下图方式折叠剪裁,再把它展开,观察并讨论:得到的△ABC有什么特点?

  教师指导:上述过程中,剪刀剪过的两条边是相等的,即△ABC中AB=AC,所以△ABC是等腰三角形。

  把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角。由这些重合的线段和角,你能发现等腰三角形的性质吗?说说你的猜想。

  在一张白纸上任意画一个等腰三角形,把它剪下来,请你试着折一折。你的猜想仍然成立吗?

  教学说明:通过学生的动手操作与观察发现,加深学生对等腰三角形性质的理解。

  二、思考探究,获取新知

  教师依据学生讨论发言的情况,归纳等腰三角形的性质:

  ①∠B=∠C→两个底角相等。

  ②BD=CD→AD为底边BC上的中线。

  ③∠BAD=∠CAD→AD为顶角∠BAC的平分线。

  ∠ADB=∠ADC=90°→AD为底边BC上的高。

  指导学生用语言叙述上述性质。

  性质1等腰三角形的两个底角相等(简写成:“等边对等角”)。

  性质2等腰三角形的顶角平分线、底边上的中线,底边上的高重合(简记为:“三线合一”)。

  教师指导对等腰三角形性质的证明。

  1、证明等腰三角形底角的性质。

  教师要求学生根据猜想的结论画出相应的图形,写出已知和求证。在引导学生分析思路时强调:

  (1)利用三角形全等来证明两角相等。为证∠B=∠C,需证明以∠B,∠C为元素的.两个三角形全等,需要添加辅助线构造符合证明要求的两个三角形。

  (2)添加辅助线的方法可以有多种方式:如作顶角平分线,或作底边上的中线,或作底边上的高等。

  2、证明等腰三角形“三线合一”的性质。

  【教学说明】在证明中,设计辅助线是关键,引导学生用全等的方法去处理,在不同的辅助线作法中,由辅助线带来的条件是不同的,重视这一点,要求学生板书证明过程,以体会一题多解带来的体验。

  三、典例精析,掌握新知

  例如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数。

  解:∵AB=AC,BD=BC=AD,

  ∴∠ABC=∠C=∠BDC,∠A=∠ABD(等边对等角)。

  设∠A=x,则∠BDC=∠A+∠ABD=2x,

  从而∠ABC=∠C=∠BDC=2x。

  于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,

  解得x=36°

  于是在△ABC中,有∠A=36°,∠ABC=∠C=72°。

  【教学说明】等腰三角形“等边对等角”及“三线合一”性质,可以实现由边到角的转化,从而可求出相应角的度数。要在解题过程中,学会从复杂图形中分解出等腰三角形,用方程思想和数形结合思想解决几何问题。

  四、运用新知,深化理解

  第1组练习:

  1、如图,在下列等腰三角形中,分别求出它们的底角的度数。

  如图,△ABC是等腰直角三角形,AB=AC,∠BAC=90°,AD是底边BC上的高,标出∠B,∠C,∠BAD,∠DAC的度数,指出图中有哪些相等线段。

  2、如图,在△ABC,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数。

  第2组练习:

  1、如果△ABC是轴对称图形,则它一定是( )

  A、等边三角形

  B、直角三角形

  C、等腰三角形

  D、等腰直角三角形

  2、等腰三角形的一个外角是100°,它的顶角的度数是( )

  A、80° B、20°

  C、80°和20° D、80°或50°

  3、已知等腰三角形的腰长比底边多2cm,并且它的周长为16cm。求这个等腰三角形的边长。

  4、如图,在△ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E。求证:AE=CE。

  【教学说明】

  等腰三角形解边方面的计算类型较多,引导学生见识不同类型,并适时概括归纳,帮学生形成解题能力,注意提醒学生分类讨论思想的应用。

  【答案】

  第1组练习答案:

  1、(1)72°;(2)30°

  2、∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD

  3、∠B=77°,∠C=38、5°

  第2组练习答案:

  1、C

  2、C

  3、设三角形的底边长为xcm,则其腰长为(x+2)cm,根据题意,得2(x+2)+x=16。解得x=4。∴等腰三角形的三边长为4cm,6cm和6cm。

  4、延长CD交AB的延长线于P,在△ADP和△ADC中,∠PAD=∠CAD,AD=AD,∠PDA=∠CDA,∴△ADP≌△ADC。∴∠P=∠ACD。又∵DE∥AP,∴∠CDE=∠P。∴∠CDE=∠ACD,∴DE=EC。同理可证:AE=DE。∴AE=CE。

  四、师生互动,课堂小结

  这节课主要探讨了等腰三角形的性质,并对性质作了简单的应用。请学生表述性质,提醒每个学生要灵活应用它们。

  学生间可交流体会与收获。

八年级数学的教案9

  教学目标:

  (一)教学知识点:梯形的判别方法.

  (二)能力训练要求

  1.经历探索梯形的判别条件的过程,在简单的操作活动中发展学生的说理意识.

  2.探索并掌握“同一底上的两个内角相等的梯形是等腰梯形”这一判别条件.

  (三)情感与价值观要求

  1.通过探索梯形的判别条件,发展学生的说理意识,主动探究的习惯

  2.解决梯形问题中,渗透转化思想

  教学重点:梯形的.判别条件

  教学难点:解决梯形问题的基本方法

  教学过程:

  一、引入课题

  上节课我们研究了特殊的梯形——等腰梯形的概念及其性质,下面我们来共同回忆一下:什么样的梯形是等腰梯形?等腰梯形有什么性质?

  1.两腰相等的梯形是等腰梯形

  2.等腰梯形同一底上的两个内角相等,对角线相等

  怎样判定等腰梯形呢?我们这节课就来探讨等腰梯形的判定

  二、讲授新课

  判定:同一底上的两个内角相等的梯形是等腰梯形

  问:我们能说明这种判定方法的正确性吗?

  如图,在梯形ABCD中,AD∥BC,∠B=∠C

  求证:梯形ABCD是等腰梯形

  法一:证明:把腰DC平移到AE的位置,这时,四边形AECD是平行四边形,则AE∥CD

  AE=CD,因为AE∥CE,所以∠AEB=∠C

  又因为∠B=∠C,所以∠AEB=∠B

  由在一个三角形中,等角对等边,得

  AB=AE,所以AB=CD

  因此梯形ABCD是等腰梯形

八年级数学的教案10

  教学目标

  1.等腰三角形的概念。2.等腰三角形的性质。3.等腰三角形的概念及性质的应用。

  教学重点:1.等腰三角形的概念及性质。2.等腰三角形性质的应用。

  教学难点:等腰三角形三线合一的性质的理解及其应用。

  教学过程

  Ⅰ.提出问题,创设情境

  在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?

  有的三角形是轴对称图形,有的三角形不是。

  问题:那什么样的三角形是轴对称图形?

  满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形。

  我们这节课就来认识一种成轴对称图形的三角形──等腰三角形。

  Ⅱ.导入新课:要求学生通过自己的思考来做一个等腰三角形。

  作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形。

  等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角。

  思考:

  1.等腰三角形是轴对称图形吗?请找出它的对称轴。

  2.等腰三角形的两底角有什么关系?

  3.顶角的平分线所在的`直线是等腰三角形的对称轴吗?

  4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?

  结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线。

  要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系。

  沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高。

  由此可以得到等腰三角形的性质:

  1.等腰三角形的两个底角相等。(简写成“等边对等角”)

  2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合。(通常称作“三线合一”)

  由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质。同学们现在就动手来写出这些证明过程。

  如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为

  所以△BAD≌△CAD(SSS).

  所以∠B=∠C.

  ]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为

  所以△BAD≌△CAD.

  所以BD=CD,∠BDA=∠CDA=∠BDC=90°.

  [例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:△ABC各角的度数.

  分析:根据等边对等角的性质,我们可以得到

  ∠A=∠ABD,∠ABC=∠C=∠BDC,

  再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.

  再由三角形内角和为180°,就可求出△ABC的三个内角.

  把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.

  解:因为AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC.

  ∠A=∠ABD(等边对等角).

  设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x.

  于是在△ABC中,有

  ∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=72°.

  [师]下面我们通过练习来巩固这节课所学的知识.

  Ⅲ.随堂练习:1.课本P51练习1、2、3.2.阅读课本P49~P51,然后小结。

  Ⅳ.课时小结

  这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高。

  我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们。

  Ⅴ.作业:课本P56习题12.3第1、2、3、4题。

  板书设计

  12.3.1.1等腰三角形

八年级数学的教案11

  教学目标:

  1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.

  2.会综合运用平行四边形的判定方法和性质来解决问题.

  3.培养用类比、逆向联想及运动的思维方法来研究问题.

  重点、难点

  1.重点:平行四边形的判定方法及应用.

  2.难点:平行四边形的判定定理与性质定理的灵活应用.

  3.难点的突破方法:

  平行四边形的判别方法是本节课的核心内容.同时它又是后面进一步研究矩形、菱形、正方形判别的基础,更是发展学生合情推理及说理的良好素材.本节课的教学重点为平行四边形的判别方法.在本课中,可以探索活动为载体,并将论证作为探索活动的自然延续与必要发展,从而将直观操作与简单推理有机融合,达到突出重点、分散难点的目的.

  (1)平行四边形的判定方法1、2都是平行四边形性质的逆命题,它们的证明都可利用定义或前一个方法来证明.

  (2)平行四边形有四种判定方法,与性质类似,可从边、对角线两方面进行记忆.要注意:

  ①本教材没有把用角来作为判定的方法,教学中可以根据学生的情况作为补充;

  ②本节课只介绍前两个判定方法.

  (3)教学中,我们可创设贴近学生生活、生动有趣的问题情境,开展有效的数学活动,如通过欣赏图片及识别图片中的平行四边形,使学生建立对平行四边形的直觉认识.并复习平行四边形的定义,建立新旧知识间的相互联系.接着提出问题:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?从而组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中,从整体上把握“平行四边形的判别”的方法.

  然后利用学生手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件.

  在学生拼图的活动中,教师可以以问题串的形式展开对平行四边形判别方法的探讨,让学生在问题解决中,实现对平行四边形各种判别方法的掌握,并发展了学生说理及简单推理的能力.

  (4)从本节开始,就应让学生直接运用平行四边形的性质和判定去解决问题,凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明.应该对学生提出这个要求.

  (5)平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如,求角的.度数,线段的长度,证明角相等或线段相等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.

  (6)平行四边形的概念、性质、判定都是非常重要的基础知识,这些知识是本章的重点内容,要使学生熟练地掌握这些知识.

  例题的意图分析

  本节课安排了3个例题,例1是教材P96的例3,它是平行四边形的性质与判定的综合运用,此题最好先让学生说出证明的思路,然后老师总结并指出其最佳方法.例2与例3都是补充的题目,其目的就是让学生能灵活和综合地运用平行四边形的判定方法和性质来解决问题.例3是一道拼图题,教学时,可以让学生动起来,边拼图边说明道理,即可以提高学生的动手能力和学生的思维能力,又可以提高学生的学习兴趣.如让学生再用四个不等边三角形拼一个如图的大三角形,让学生指出图中所有的平行四边形,并说明理由.

  课堂引入

  1.欣赏图片、提出问题.

  展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?

  2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?

  让学生利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:

  (1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?

  (2)你怎样验证你搭建的四边形一定是平行四边形?

  (3)你能说出你的做法及其道理吗?

  (4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?

  (5)你还能找出其他方法吗?

  从探究中得到:

  平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。

  平行四边形判定方法2 对角线互相平分的四边形是平行四边形。

  例习题分析

  1(教材P96例3)已知:如图ABCD的对角线AC、BD交于点O,E、F是AC上的两点,并且AE=CF.

  求证:四边形BFDE是平行四边形.

  分析:欲证四边形BFDE是平行四边形可以根据判定方法2来证明.

  (证明过程参看教材)

  问;你还有其它的证明方法吗?比较一下,哪种证明方法简单.

  2(补充) 已知:如图,A′B′∥BA,B′C′∥CB, C′A′∥AC.

  求证:(1) ∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;

  (2) △ABC的顶点分别是△B′C′A′各边的中点.

  证明:(1)∵A′B′∥BA,C′B′∥BC,

  ∴四边形ABCB′是平行四边形.

  ∴ ∠ABC=∠B′(平行四边形的对角相等).

  同理∠CAB=∠A′,∠BCA=∠C′.

  (2) 由(1)证得四边形ABCB′是平行四边形.同理,四边形ABA′C是平行四边形.

  ∴ AB=B′C, AB=A′C(平行四边形的对边相等).

  ∴ B′C=A′C.

  同理 B′A=C′A, A′B=C′B.

  ∴ △ABC的顶点A、B、C分别是△B′C′A′的边B′C′、C′A′、A′B′的中点.

  3(补充)小明用手中六个全等的正三角形做拼图游戏时,拼成一个六边形.你能在图中找出所有的平行四边形吗?并说说你的理由.

  解:有6个平行四边形,分别是ABOF,ABCO, BCDO,CDEO,DEFO,EFAO.

  理由是:因为正△ABO≌正△AOF,所以AB=BO,OF=FA.根据 “两组对边分别相等的四边形是平行四边形”,可知四边形ABCD是平行四边形.其它五个同理.

  随堂练习

  1.如图,在四边形ABCD中,AC、BD相交于点O,

  (1)若AD=8cm,AB=4cm,那么当BC=____cm,CD=____cm时,四边形ABCD为平行四边形;

  (2)若AC=10cm,BD=8cm,那么当AO=___cm,DO=___cm时,四边形ABCD为平行四边形.

  2.已知:如图,ABCD中,点E、F分别在CD、AB上,DF∥BE,EF交BD于点O.求证:EO=OF.

  3.灵活运用课本P89例题,如图:由火柴棒拼出的一列图形,第n个图形由(n+1)个等边三角形拼成,通过观察,分析发现:

  ①第4个图形中平行四边形的个数为_____.

  (6个)

  ②第8个图形中平行四边形的个数为_____.

  (20个)

  课后练习

  1.(选择)下列条件中能判断四边形是平行四边形的是( ).

  (A)对角线互相垂直 (B)对角线相等

  (C)对角线互相垂直且相等 (D)对角线互相平分

  2.已知:如图,△ABC,BD平分∠ABC,DE∥BC,EF∥BC,

  求证:BE=CF

八年级数学的教案12

  教学目标:

  (1)通过观察操作,认识轴对称图形的特点,掌握轴对称图形的概念。

  (2)能准确判断哪些事物是轴对称图形。

  (3)能找出并画出轴对称图形的对称轴。

  (4)通过实验,培养学生的抽象思维和空间想象能力。

  (5)结合教材和联系生活实际培养学生的学习兴趣和热爱生活的情感。

  教学重点:

  (1)认识轴对称图形的特点,建立轴对称图形的概念;

  (2)准确判断生活中哪些事物是轴对称图形。

  教学难点:

  根据本班学生学习的实际情况,本节课教学的难点是找轴对称图形的对称轴。

  教学过程:

  一、认识对称物体

  1、出示物体:今天秦老师给大家带来了一些物体,这是我们学校的同学参加数学竞赛获得的奖杯。这时一架轰炸战斗机。这是海狮顶球。

  2、请同学们仔细观察这些物体,想一想它们的外形有什么共同的特点。(可能的回答:对称)

  (但部分学生这时并不真正理解何为对称)

  追问:对称?你是怎样理解对称的呢?

  (可能的回答:两边是一样的)

  像这样两边形状、大小都完全相同的物体,我们就说它是对称的。(板书:对称)像这样对称的物体,在我们的生活中你看到过吗?谁来说说看?

  (可能正确的回答:蝴蝶、蜻蜓……)

  (可能错误的回答:剪刀)

  若有错误答案则如此处理。追问:剪刀是不是对称的?学生产生分歧,有说是,有说不是。剪刀两边不是完全一样的,所以它不对称。但是沿着轮廓把它画在纸上,是一个对称的。

  二、认识对称图形

  1、这些对称的物体,我们把它画在纸上,就得到这样一些平面图形。(出示图片)这些图形还是对称的吗?(是对称的)

  同学们真聪明,一眼就能看出这些图形都是对称的。那么像这样的图形,我们就把它们叫做——(生齐说:对称图形)

  (师在“对称”后接着板书:图形)

  2、是不是所有的图形都是对称的?它们又是怎样对称的?我们又怎样证明它们是不是对称图形?这就是我们这节课要研究的问题。为了研究这些问题,老师还带来了一些平面图形,你们看——

  (师在黑板上贴出图形)

  边贴边说:汽车图形、钥匙图形、桃子图形、蝴蝶图形、青蛙图形、竖琴图形、香港区徽图形。

  这些图形都是对称的吗?(不是)

  3、你们能给它们分分类吗?(能)谁愿意上来分一分?

  你准备怎么分类?(分成两类:一类是对称图形,一类是不对称图形)

  问全班同学:你们同意吗?(同意)

  你们怎么知道这些图形就是对称图形?有什么办法来证明吗?(对折)

  好,我们用这个办法试一下。谁愿意上来折给大家看的?自己上来,选择一个喜欢的图形折给大家看。

  4、图形对折后你发现了什么?谁先说?(可能的回答:对折后两边一样或对折后两边重叠)

  你们所说的两边一样、两边重叠,也就是说对折后两边重合了。

  (师板书:重合)(若有说出完全重合则板书:完全重合)

  请将对折后的对称图形贴到黑板上,谢谢。

  师指不对称图形。同学们刚才我们通过把这些对称图形对折,发现对折后两边重合了,现在再请几位同学上来折一折不对称图形,看看这次又有什么发现?还是自己上来。

  折后你发现了什么?(可能的回答:没有重合、对折后两边不一样)它们有没有重合?一点点重合都没有吗?

  (有一点重合)

  拿一个对称图形和同学折过的不对称图形比较。这个图形对折后重合了,这个也重合了,那这两种重合有什么不一样吗?

  (可能的回答:这个全部重合了,这个没有)

  这些对称的图形对折后全部重合了,也就是完全重合了!

  (师在“重合”前板书:完全)而不对称图形只是部分重合。

  好,谢谢你们,请将图形放这(不对称图形下黑板)

  大家的表现非常出色,奖励一下我们自己,来拍拍手吧!

  “一——二——停!”我们的两只手掌现在是——

  (生齐说:完全重合)

  三、认识对称轴,对称轴的画法

  同学们都很聪明,课前你们都准备了彩纸、剪刀,如果请你用这些材料创作一个对称图形,行吗?

  1、请将你创作的对称图形,慢慢打开,问:你们发现了什么?

  (中间有一条折痕)

  大家把手中的对称图形举起来,看看是不是每个对称图形中间——都有一条折痕。这些折痕的左右两边——(生齐说:完全重合)。

  这条折痕所在的直线,有它独有的名称叫做“对称轴”。

  (在“对称图形”前板书:轴)

  像这样的图形,我们就把它们叫做“轴对称图形”。

  (师手指板书,边说边把“对折——完全重合——轴对称图形”连起来)

  现在大家知道了这个图形是——轴对称图形。这个呢?这个呢?他们都是——轴对称图形。接下来请你看着自己创作的图形说说。

  谁来说说,怎样的图形是轴对称图形?

  可以上来拿一个轴对称图形说。请学生用自己的语言说。

  2、师拿一张轴对称图形,随便折两下。

  这是一个轴对称图形吗?是的`。师随便折两下。

  谁来说说这个轴对称图形的对称轴是那条?

  (一条都不是。)为什么?

  只有对折后两边完全重合的折痕才是对称轴。

  请你来折出它的对称轴。通常我们用点划线表示对称轴。

  师示范。请你在所创作的轴对称图形上用点划线表示出对称轴。

  四、平面图形中的轴对称图形,及它们的对称轴各有几条。

  1、对于轴对称图形,其实我们并不陌生,在我们认识的一些平面图形中应该就有一些是轴对称图形。我们先回忆一下学习过的平面图形有哪些?

  (可能的回答:正方形、长方形、平行四边形、圆形、梯形、三角形等等)(教师板书,适当布局)

  同学们说的是否正确呢?用什么办法来证明?(对折)如果它是轴对称图形,那它有几条对称轴呢?

  好,那我们就拿出课前准备的平面图形,用对折的方法来证明,注意如果它有对称轴请你折出来。

  结论出来了吗?现在你的判断和刚才还是一样的吗?

  3、问:你想汇报什么?学生汇报。教师机动回答,回答语可有:

  这位同学既能给出判断结果,又能说出判断的理由,非常好。

  看来,仅靠经验、观察得出的结论有时并不准确,还需要动手实验进行验证。

  能抓住轴对称图形的特征进行分析,不错!

  也许一般的平行四边形不是轴对称图形,但有些特殊的平行四边形却是比如:长方形和正方形。以此类推……

  圆有无数条对称轴。所有的圆都是轴对称图形。

  讨论平行四边形、梯形、三角形时,我们既要考虑一般的图形,又要考虑特殊的图形。但是关于圆形,我们却无需考虑这么多,正如你所说的,所有的圆都是轴对称图形,不存在什么特殊的情况。看来,数学学习中,具体的问题还得具体对待。

  (一般三角形、一般梯形、直角梯形、一般平行四边形不是轴对称图形,等腰三角形、等腰梯形、正三角形、长方形、正方形和圆都是轴对称图形)等腰梯形(1条),正五边形(5条),圆(无数条)

  4、用测量的方法找对称轴。

  刚才,大家都用对折的方法找出了他们的对称轴,但是如果老师请你在黑板面上找出对称轴呢?

  大家都有一张长方形纸,假设它就是不能对折的黑板面,怎么画出它的对称轴?(我们可以用测量的方法,来找出对边的中点,连结中点。用同样的方法,我们可以画出另一条对称轴。

  现在请同学们打开书本,画出书上长方形的对称轴。(小组内交流检查)

  五、练习

  1、学习了什么是轴对称图形,现在请在你身边的物体上找出三个轴对称图形。(瓷砖面、电视机柜、衣服、国旗?、凳面、桌面)

  问:国旗是轴对称图形吗?

  产生冲突。说明:不但要观察外形,还要观察里面的图案。

  2、判断国旗是否是轴对称图形。

  3、找阿拉伯数字中的轴对称图形

  4、领略窗花的美丽,再从中找到创作的灵感,创作轴对称图形。教师可出示一些指导性图片。

  选择一些贴到黑板上,最后出示“美”字。

  总结:轴对称图形非常美丽,因此被广泛的运用于服装、家具、交通、商标等方面的设计中,希望大家能够运用今天的知识,把我们的教室、把你的家以后把我们的祖国装扮得更漂亮。

八年级数学的教案13

  课时目标

  1.掌握分式、有理式的概念。

  2.掌握分式是否有意义、分式的值是否等于零的识别方法。

  教学重点

  正确理解分式的意义,分式是否有意义的条件及分式的值为零的条件。

  教学难点:

  正确理解分式的`意义,分式是否有意义的条件及分式的值为零的条件。

  教学时间:一课时。

  教学用具:投影仪等。

  教学过程:

  一.复习提问

  1.什么是整式?什么是单项式?什么是多项式?

  2.判断下列各式中,哪些是整式?哪些不是整式?

  ①+m2 ②1+x+y2- ③ ④

  ⑤ ⑥ ⑦

  二.新课讲解:

  设问:不是整工式子中,和整式有什么区别?

  小结:1.分式的概念:一般地,形如的式子叫做分式,其中A和B均为整式,B中含有字母。

  练习:下列各式中,哪些是分式哪些不是?

  (1)、、(2)、(3)、(4)、(5)x2、(6)+4

  强调:(6)+4带有是无理式,不是整式,故不是分式。

  2.小结:对整式、分式的正确区别:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必须含有字母,这是分式与整式的根本区别。

  练习:课后练习P6练习1、2题

  设问:(让学生看课本上P5“思考”部分,然后回答问题。)

  例题讲解:课本P5例题1

  分析:各分式中的分母是:(1)3x(2)x-1(3)5-3b(4)x-y。只要这引起分母不为零,分式便有意义。

  (板书解题过程。)

  3.小结:分式是否有意义的识别方法:当分式的分母为零时,分式无意义;当分式的分母不等于零时,分式有意义。

  增加例题:当x取什么值时,分式有意义?

  解:由分母x2-4=0,得x=±2。

  ∴ 当x≠±2时,分式有意义。

  设问:什么时候分式的值为零呢?

  例:

  解:当 ① 分式的值为零

八年级数学的教案14

  一、创设情境

  在学习与生活中,经常要研究一些数量关系,先看下面的问题.

  问题1如图是某地一天内的气温变化图.

  看图回答:

  (1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温.

  (2)这一天中,最高气温是多少?最低气温是多少?

  (3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?

  解(1)这天的6时、10时和14时的气温分别为-1℃、2℃、5℃;

  (2)这一天中,最高气温是5℃.最低气温是-4℃;

  (3)这一天中,3时~14时的气温在逐渐升高.0时~3时和14时~24时的气温在逐渐降低.

  从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.那么在生活中是否还有其它类似的数量关系呢?

  二、探究归纳

  问题2银行对各种不同的存款方式都规定了相应的利率,下表是20xx年7月中国工商银行为“整存整取”的'存款方式规定的年利率:

  观察上表,说说随着存期x的增长,相应的年利率y是如何变化的.

  解随着存期x的增长,相应的年利率y也随着增长.

  问题3收音机刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的.下面是一些对应的数值:

  观察上表回答:

  (1)波长l和频率f数值之间有什么关系?

  (2)波长l越大,频率f就________.

  解(1)l与f的乘积是一个定值,即

  lf=300000,

  或者说.

  (2)波长l越大,频率f就 越小 .

  问题4圆的面积随着半径的增大而增大.如果用r表示圆的半径,S表示圆的面积则S与r之间满足下列关系:S=_________.

  利用这个关系式,试求出半径为1cm、1.5cm、2cm、2.6cm、3.2cm时圆的面积,并将结果填入下表:

  由此可以看出,圆的半径越大,它的面积就_________.

  解S=πr2.

  圆的半径越大,它的面积就越大.

  在上面的问题中,我们研究了一些数量关系,它们都刻画了某些变化规律.这里出现了各种各样的量,特别值得注意的是出现了一些数值会发生变化的量.例如问题1中,刻画气温变化规律的量是时间t和气温T,气温T随着时间t的变化而变化,它们都会取不同的数值.像这样在某一变化过程中,可以取不同数值的量,叫做变量(variable).

  上面各个问题中,都出现了两个变量,它们互相依赖,密切相关.一般地,如果在一个变化过程中,有两个变量,例如x和y,对于x的每一个值

八年级数学的教案15

  教材分析

  平方差公式是在学习多项式乘法等知识的基础上,自然过渡到具有特殊形式的多项式的乘法,体现教材从一般到特殊的意图。教材为学生在教学活动中获得数学的思想方法、能力、素质提供了良好的契机。对它的学习和研究,不仅得到了特殊的多项式乘法的简便算法,而且为以后的因式分解,分式的化简、二次根式中的分母有理化、解一元二次方程、函数等内容奠定了基础,同时也为完全平方公式的学习提供了方法,因此,平方差公式在教材中有承上启下的作用,是初中阶段一个重要的公式。

  学情分析

  学生是在学习积的乘方和多项式乘多项式后学习平方差公式的,但在进行积的乘方的运算时,底数是数与几个字母的积时往往把括号漏掉,在进行多项式乘法运算时常常会确定错某些次符号及漏项等问题。学生学习平方差公式的困难在于对公式的结构特征以及公式中字母的广泛的理解,当公式中a、b是式时,要把它括号在平方。

  教学目标

  1、知识与技能:经历探索平方差公式的过程,会推导平方差公式,并能运用公式进行运算.

  2、过程与方法:在探索平方差公式的过程中,发展学生的符号感和归纳能力、推理能力.在计算的'过程中发现规律,掌握平方差公式的结构特征,并能用符号表达,从而体会数学语言的简洁美.

  3、情感、态度与价值观:激发学习数学的兴趣.鼓励学生自己探索,有意识地培养学生的合作意识与创新能力.

  教学重点和难点

  重点:平方差公式的推导和应用.

  难点:理解掌握平方差公式的结构特点以及灵活运用平方差公式解决实际问题.

【八年级数学的教案】相关文章:

八年级数学的教案01-10

八年级的数学教案12-14

八年级数学下册教案01-10

八年级数学下册教案05-16

(经典)八年级数学教案06-25

八年级《函数》数学教案04-03

八年级数学教案12-09

【热】八年级数学教案12-07

【热门】八年级数学教案11-29