初中数学设计教案(实用)
作为一名专为他人授业解惑的人民教师,总不可避免地需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。那么问题来了,教案应该怎么写?下面是小编为大家收集的初中数学设计教案,欢迎大家分享。
初中数学设计教案1
教学目标:
教学目标:
1、 会画已知点关于已知直线 的对称点,会画已知线段的对称线段,会画已知三角形的对称三角形。
2、 经历探索轴对称的性质的活动过程,积累数学活动经验,进一步发展空间观念和有条理地思考和表达能力。
三、教学重点与难点
教学重点:作已知图形的轴对称图形的一般步骤。
教学难点:怎样确定已知图形的关键点并根据这些点作出对称图形。
学习过程:
一.学前准备
1、完成课本第10页的操作,即图1—6,并将你完成的操作带到课堂上来。
2、思考:
下列图形中,哪些是轴对称图形,请把它们找出来,画出它们所有的对称轴。
3、请你在下图的'方格内,设计一个轴对称图形。
二.自学、合作探究
(一)自学、相信自己(书本)
实践、操作:
1、思考:如图1-9, 3点都在方格纸的格点位置上。请你再找一个格点 ,使图中的4点组成一个轴对称图形。
2、如果直线 外有一点 ,那么怎样画出点 关于直线 的对称点 ?
问题一:画点关于直线 的对称点 的方法,并说明道理。
问题二:怎样画已知线段的对称线段?怎样画已知三角形的对称三角形?说说你的想法和依据。
(二)思索、交流(书本例题练习难)
3、分别画出图1-10(1)、(2)、(3)中线段 关于直线 对称的线段 。
4、 分别在图图1-10(1)、(2)、(3)的直线 上取一点 ,并画 关于直线 对称的 .
(三)应用、探究(难度大综合纵横思考)
例题讲解
例题1、如图所示,要在街道旁修建一个牛奶站,向居民区A、B提供牛奶,牛奶站应建在什么地方,才能使A、B到它的距离之和最短?
例题1
例题2
三.学习体会(空)
四.自我测试(书本练习)
1.练习1 下列数字图象都是由镜中看到的,请分别写出它们所对应的实际数字,并说明数字图象与镜面的位置关系。
1、如图1,线段AB与A’B’关于直线l对称,
⑴连接AA’交直线l于点O,再连接OB、OB’。
⑵把纸沿直线l对折,重合的线段有: 。
⑶因为△OAB和△OA’B’关于直线l , 所以△OAB -△OA’B’,直线l垂直平分线段 ,∠ABO=∠ , ∠AO’B=∠ 。
图 1 图 2 图3
2、如图2,三角形Ⅰ的两个顶点分别在直线l1和l2,且l1⊥l2,
⑴画三角形Ⅱ与三角形Ⅰ关于l1对称;
⑵画三角形Ⅲ与三角形Ⅱ关于l2对称;
⑶画三角形Ⅳ与三角形Ⅲ关于l1对称;
⑷所画的三角形Ⅳ与三角形Ⅰ成轴对称吗?
3、如图3,四边形ABCD是长方形弹子球台面,有黑白两球分别位于E、F两点位置上,试问怎样撞击黑球E,才能使黑球先碰撞台边AB反弹后再击中白球F?
初中数学设计教案2
教学内容
24。2圆的切线(1)
教学目标 使学生掌握切线的识别方法,并能初步运用它解决有关问题
通过切线识别方法的学习,培养学生观察、分析、归纳问题的能力
教学重点 切线的识别方法
教学难点 方法的理解及实际运用
教具准备 投影仪,胶片
教学过程 教师活动 学生活动
(一)复习 情境导入
1、复习、回顾直线与圆的三 种位置关系。
2、请学生判断直线和圆的位置关系。
学生判断的过程,提问:你是怎样判断出图中的直线和圆相切的?根据学生的回答,继续提出 问题:如何界定直线与圆是否只有一个公共点?教师指出,根据切线的定义可以识别一条直线是不是圆的切线,但有时使用定义识别很不方便,为此我们还要学习识别切 线的其它方法。(板书课题) 抢答
学生总结判别方法
(二)
实践与探索1:圆的切线的判断方法 1、由上面 的复习,我们可以把上节课所学的切线的定义作为识别切线的方法1——定义法:与圆只有一个公共点的直线是圆的切线。
2、当然,我们还可以由上节课所学的用圆心到直线的距离 与半径 之间的关系来判断直线与圆是否相切,即:当 时,直线与圆的位置关系是相切。以此作为识别切线的方法2——数量关系法:圆心到直线的距离等于半径的直线是圆的切线 。
3、实验:作⊙O的半径OA,过A作l⊥OA可以发现:
(1)直线 经过半径 的外端点 ;
(2)直线 垂直于半径 。这样我们就得到了从位 置上来判断直线是圆的切线的方法3——位置关系法:经过半径的外端且垂直于这条半径的直线是圆的切线。 理解并识记圆的切线的几种方法,并比较应用。
通过实验探究圆的切线的位置判别方法,深入理解它的两个要义。
三、课堂练习
思考:现在,任意给定一个圆,你能不能作出圆的切线?应该如何作?
请学生回顾作图过程,切线 是如何作出来的?它满足哪些条件? 引导学生总结出:①经过半径外端;②垂直于这条半径。
请学生继续思考:这两个条件缺少一个行不行? (学生画出反例图)
(图1) (图2) 图(3)
图(1)中直线 经过半径外端,但不与半径垂直; 图(2)中直线 与半径垂直,但不经过半径外端。 从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线。
最后引导学生分析,方法3实际上是从前一节所讲的“圆 心到直线的距离等于半径时直线和圆相切”这个结论直接得出来的,只是为了便于应用把它改写成“经过半径的外端且垂直于这条半径的直线是圆的切线”这种形式。 试验体会圆的位置判别方法。
理解位置判别方法的两个要素。
(四)应用与拓展 例1、如图,已知直线AB经过⊙O上的点A,并且AB=OA,OBA=45,直线AB是⊙O的切线吗?为什么?
例2、如图,线段AB经过圆心O,交⊙O于点A、C,BAD=B=30,边BD交圆于点D。BD是⊙ O的切线吗?为什么?
分析:欲证BD是⊙O的切线,由于BD过圆上点D,若连结OD,则BD过半径OD的外端,因此只需证明BD⊥OD,因OA=OD,BAD=B,易证BD⊥OD。
教师板演,给出解答过程及格式。
课堂练习:课本练习1-4 先选择方法,弄清位置判别方法与数量判别方法的本质区别。
注意圆的.切线的特征与识别的区别。
(四)小结与作业 识 别一条直线是圆的切线,有 三种方法:
(1)根据切线定义判定,即与圆只有一个公共点的直线是圆的切线;
(2)根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆的切线;
(3)根据直线的位置关系来判定,即经过半径的外端且垂直于这条半径的直线是圆的 切线,
说明一条直线是圆的切线,常常需要作辅助线,如果 已知直线过圆上某 一点,则作出过 这一点的半径,证明直线垂直于半径即可(如例2)。
各抒己见,谈收获。
(五)板书设计
识别一条直线是圆的切线,有三种方法: 例:
(1 )根据切线定义判定,即与圆只有一个公共点的直线是圆的切线;
(2)根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆 的切线;
(3)根据直线的位置关系来判定,即经过半径的外端且垂直于这条半径的直线是圆的 切线,
说明一条直线是圆的切线,常常需要作辅助线,如果已知直线过圆上某一点,则作出过 这一点的半径,证明 直线垂直于半径
(六)教学后记
教学内容 24。2圆的切线(2) 课型 新授课 课时 执教
教学目标 通过探究,使学生发现、掌握切线长定理,并初步长定理,并初步学会应用切线长定理解决问题,同时通过从三角形纸片中剪出最大圆的实验的过程中发现三角形内切圆的画法,能用内心的性质解决问题。
教学重点 切线长定理及其应用,三角形的内切圆的画法和内心的性质。
教学难点 三角形的内心及其半径的确定。
教具准备 投影仪,胶片
教学过程 教师 活动 学生活动
(一)复习导入:
请同学们回顾一下,如何判断一条直线是圆的切线?圆的切线具有什么性质?(经过半径外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径。)
你能说明以下这个问题?
如右图所示,PA是 的平分线,AB是⊙O的切线,切点E,那么AC是⊙O的切线吗?为什么?
回顾旧知,看谁说的全。
利用旧知,分析解决该问题。
(二)
实践与探索 问题1、从圆外一点可以作圆的几条切线?请同学们画一画。
2、请问:这一点 与切点的 两条线段的长度相等吗?为什么?
3、切线长的定义是什么?
通过以 上几个问题的解决,使同学们得出以下的结论:
从圆外一点可以引圆的两条切线,切线长相等。这一点与圆心的连线
平分两条切线的夹角。 在解决以上问题时,鼓励同学们用不同的观点、不同的知识来解决问题,它既可以用书上阐述的对称的观点解决,也可以用以前学习的其他知识来解决问题。
(三)拓展与应用 例:右图,PA、PB是,切点分别是A、B,直线EF也是⊙O的切线,切点为P,交PA、PB为E、F点,已知 , ,(1)求 的周长;(2)求 的度数。
解:(1)连结PA、PB、EF是⊙O的切线
所以 , ,
所以 的周长 (2)因为PA、PB、EF是⊙O的切线
所以 , ,,
所以
所以
画图分析探究,教学中应注重基本图形的教学,引导学生发现基本图形,应用基本图形解决问题。
(四)小结与作业 谈一下本节课的 收获 ? 各抒己见,看谁 说得最好
(五)板书设计
切线(2)
切线长相等 例:
切线长性质
点与圆心连 线平分两切线夹角
(六)教学后记
初中数学设计教案3
教学目标:
利用数形结合的数学思想分析问题解决问题。
利用已有二次函数的知识经验,自主进行探究和合作学习,解决情境中的数学问题,初步形成数学建模能力,解决一些简单的实际问题。
在探索中体验数学来源于生活并运用于生活,感悟二次函数中数形结合的美,激发学生学习数学的兴趣,通过合作学习获得成功,树立自信心。
教学重点和难点:
运用数形结合的思想方法进行解二次函数,这是重点也是难点。
教学过程:
(一)引入:
分组复习旧知。
探索:从二次函数y=x2+4x+3在直角坐标系中的图象中,你能得到哪些信息?
可引导学生从几个方面进行讨论:
(1)如何画图
(2)顶点、图象与坐标轴的交点
(3)所形成的三角形以及四边形的面积
(4)对称轴
从上面的问题导入今天的课题二次函数中的图象与性质。
(二)新授:
1、再探索:二次函数y=x2+4x+3图象上找一点,使形成的图形面积与已知图形面积有数量关系。例如:抛物线y=x2+4x+3的顶点为点A,且与x轴交于点B、C;在抛物线上求一点E使SBCE= SABC。
再探索:在抛物线y=x2+4x+3上找一点F,使BCE与BCD全等。
再探索:在抛物线y=x2+4x+3上找一点M,使BOM与ABC相似。
2、让同学讨论:从已知条件如何求二次函数的解析式。
例如:已知一抛物线的顶点坐标是C(2,1)且与x轴交于点A、点B,已知SABC=3,求抛物线的解析式。
(三)提高练习
根据我们学校人人皆知的船模特色项目设计了这样一个情境:
让班级中的上科院小院士来简要介绍学校船模组的情况以及在绘制船模图纸时也常用到抛物线的知识的'情况,再出题:船身的龙骨是近似抛物线型,船身的最大长度为48cm,且高度为12cm。求此船龙骨的抛物线的解析式。
让学生在练习中体会二次函数的图象与性质在解题中的作用。
(四)让学生讨论小结(略)
(五)作业布置
1、在直角坐标平面内,点O为坐标原点,二次函数y=x2+(k—5)x—(k+4)的图象交x轴于点A(x1,0)、B(x2,0)且(x1+1)(x2+1)=—8。
(1)求二次函数的解析式;
(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求 POC的面积。
2、如图,一个二次函数的图象与直线y= x—1的交点A、B分别在x、y轴上,点C在二次函数图象上,且CBAB,CB=AB,求这个二次函数的解析式。
3、卢浦大桥拱形可以近似看作抛物线的一部分,在大桥截面1:11000的比例图上,跨度AB=5cm,拱高OC=0。9cm,线段DE表示大桥拱内桥长,DE∥AB,如图1,在比例图上,以直线AB为x轴,抛物线的对称轴为y轴,以1cm作为数轴的单位长度,建立平面直角坐标系,如图2。
(1)求出图2上以这一部分抛物线为图象的函数解析式,写出函数定义域;
(2)如果DE与AB的距离OM=0。45cm,求卢浦大桥拱内实际桥长(备用数据: ,计算结果精确到1米)
初中数学设计教案4
一 、教学目标
(一)基础知识目标:
1。理解方程的概念,掌握如何判断方程。
2。理解用字母表示数的好处。
(二)能力目标
体会字母表示数的好处,画示意图有利于分析问题,找相等关系是列方程的重要一步,从算式到方程(从算术到代数)是数学的一大进步。
(三)情感目标
增强用数学的意识,激发学习数学的热情。
二、教学重点
知道什么是方程、一元一次方程,找相等关系列方程。
三、教学难点
如何找相等关系列方程
四、教学过程
我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系。因此对于
任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程。
本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤。
师生共同分析、研究一元一次方程解简单应用题的方法和步骤
例1 某面粉仓库存放的面粉运出 15%后,还剩余42 500千克,这个仓库 原来有多少面粉?
师生共同分析:
1。本题中给出的已知量和未知量各是什么?
2。已知量与未知量之间存在着怎样的相等关系?(原来重量—运出重量=剩余重量)
若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?
上述分析过程可列表如下:
解:设原来有x千克面粉,那么运出了15%x千克,由题意,得
x—15%x=42 500,
此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?
(还有,原来重量=运出重量+剩余重量;原来重量—剩余重量=运出重量)
教师应指出:(1)这两种相等关系的表达形式与“原来重量—运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的'一个相等关系来列方程;
依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:
(1)仔细审题,透彻理解题意。即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;
(2)根据题意找出能够表示应用题全部含义的一个相等关系。(这是关键一步);
(3)根据相等关系,正确列出方程。即所列的方程应满足两边的量要相等;
例3 (投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果
分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一
小组有多少学生,共摘了多少个苹果?
(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨。解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误。并严格规范书写格式)
解:设第一小组有x个学生,依题意,得
3x+9=5x—(5—4),
解这个方程: 2x=10,
所以 x=5。
其苹果数为 3× 5+9=24。
答:第一小组有5名同学,共摘苹果24个。
学生板演后,引导学生探讨此题是否可有其他解法,并列出方程。
(设第一小组共摘了x个苹果,则依题意,得 )
课堂练习:
1。买4本练习本与3支铅笔一共用了1。24元,已知铅笔每支0。12元,问 练习本每本多少元?
2某工厂女工人占全厂总人数的 35%,男工比女工多 252人,求全厂总人数。
五、课堂小结
首先,让学生回答如下问题:
1。本节课学习了哪些内容?
2。列一元一次方程方法和步骤是什么?
3。在运用上述方法和步骤时应注意什么?
依据学生的回答情况,教师总结如下:
(1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;
布列方程)
(2)以上步骤同学应在理解的基础上记忆。
六、作业布置
1。买3千克苹果,付出10元,找回3角4分。问每千克苹果多少钱?
2。用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?
初中数学设计教案5
一、学生起点分析
通过第一节的学习,学生已对平移的基本性质有了的认识,能否利用平移的基本性质来学习有关画图的操作技能,能否探索图形之间的平移关系成了本节课学习的重要任务。
二、教学任务分析
本节课的主要内容是通过实例,让学生经历对图形进行观察、分析、欣赏和动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识。
教学目标
知识目标:
1.简单平面图形平移后的图形的作法.
2.确定一个图形平移的位置的条件.
能力训练:
1.对具有平移特征的图形进行观察、分析、画图和动手操作等过程,掌握画图技能.
2.能够按要求作出简单平面图形平移后的图形.
情感与价值观:
1.通过画图,进一步培养学生的动手操作能力.
2.对具有平移特征的图形进行观察、分析、画图过程中,进一步发展学生的审美观念.
教学重点:简单平面图形平移后的图形的作法.
教学难点:简单平面图形平移后的图形的作法.
三、教学过程设计
第一环节 复习回顾平移的基本性质,引入课题
如图,将线段AB平移,得到线段AB,则图中的线段有怎样的位置关系?有哪些相等的线段?
通过对上节课内容的回顾,帮助学生复习平移的基本性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等。(AA∥BB且AA=BB, A B∥AB且AB =AB)
如果给出了线段AB,也给出了平移方向和平移距离,你能作出选段AB经平移后的对应选段AB吗?
这节课我们就来研究:简单的平移作图.
第二环节 观察操作、探索归纳平移的作法
⑴已知线段AB和平移距离及方向,求作AB的对应线段AB。
让学生观察、动手画图。
得出已知平移距离和方向的作图:过A作平移方向的平行线,在平行线上沿平移方向上截取线段,使其长度等于平移距离,即得点A的对称点A。点B的对应点B的做法同上。
(2)已知线段AB和平移后点A的对应点A ,求作AB的对应线段AB[来源:中.考.资.源.网]
和上面的(1)相比,这里的新问题,不知道平移距离和平移方向,而只知道某点的对应点,该怎么办?鼓励学生思考、交流、动手画图。
连接A,A,得到线段AA,则AA的长度就是平移距离,有A到A的方向就是平移方向。于是问题转化为前面已经解决的问题了。
在这两个问题的画图中,若有学生有不同的画法,应鼓励学生交流、讨论。这时,可以思考:“画出选段AB的方法只有(1)中的方法吗?还有没有其他的画法”。若学生在处理简单的线段问题时,画法比较单一,这个讨论可以放在(3)之后。
(3)将(2)中的图形略微复杂化一些。已知平面图形以及该图形上的某一点经平移后的对应点,求作平移后的平面图形。
例题1 经过平移,△ABC的顶点A移到了点D,作出平移后的三角形。
留给学生完成。在学生完成平移的'作图后,根据前面的若干个作图问题,增加“议一议”内容。
①还有什么其他方法,作出△DEF吗?
②确定一个图形平移后的位置,除需知道原来图形的位置外,还需要什么条件?
对于①,教师要帮助学生整理平移作图的常用方法以及这些作法所依据的原理。
方法一:过点B、点C,分别作线段BE,CF,使得它们与线段AD平行且相等,连接DE,DF,EF,△DEF就是△ABC平移后的图形。
方法二:过点D分别作出与AB,AC平行且相等的线段DE,DF,连接EF,△DEF就是△ABC平移后的图形。
方法三:因为平移后的图形与原图形是全等,所以过点B作线段BE,使得它与线段AD平行且相等,得到另一个对应点E(或者过点D作与AB平行且相等的线段DE,得到另一个对应点E)后,按原方向作△ABC的全等△DEF。
对于②,确定一个图形平移后的位置的全部条件为:
(1)图形原来的位置 (2)平移方向 (3)平移距离.
这三个条件缺一不可.只有这三个条件都具备,我们才能准确地找到一个图形平移后的位置,进而作出它平移后的图形.
第三环节 课堂练习
1.如图,将字母A按箭头所指的方向平移3cm,作出平移后的图形。
解:在字母A上,找出关键的5个点(如图),分别过这5个点按箭头方向作5条长3cm的线段,将所作线段的另5个端点按原来的方式连接,即可得到字母A平移后的图形。
2.
将图中的字母N沿水平方向向右平移3cm,作出平移后的图形。
3.图中的窗棂轮廓是由一个半圆和一个矩形组成,试作出这个图案向左平移10格后的图案。
解:分别确定矩形的四个顶点和半圆的圆心,向左平移10格后的位置,画半圆(以“圆心”平移后的位置为圆心,以6格的边长为直径),连线即可。
第四环节 课时小结
本节课我们通过作平面图形平移的图形,进一步理解了平移的性质,并且还知道要确定一个图形平移后的位置,需要有:①此图形原来的位置.②平移方向.③平移距离等三个条件.
在作图时,要注意语言的表达
第五环节 课后作业
1.必做习题:习题3.2 2,3,4
2.选做习题
(1)如图,正方形ABCD边长为4,沿对角线所在直线l将该正方形向右平移到EFGH的位置,已知△ODH的面积为92,求平移的距离.
(2)如图,在△ABC中,D,E是BC上的点,且BD=CE,求证:AB+ACAD+AE.
四、教学设计反思
在教学过程的设计上,通过对上节课学习的平移的基本性质的复习,为新知的探索作好铺垫,进而引出新课课题简单的平移作图。在例题的选择和设计上,循序渐进,前一题往往是后一题的基础,后一题通过化归都可转化为前一题的问题,在课堂教学中努力渗透数学中重要的思想方法化归。
在练习的设计上,遵循由浅入深的原则,循序渐进地让学生逐步熟练应用平移的特征、平移作图的方法,从而体现数学的价值;同时,设计了不同难度的习题,提供给不同层次的学生,满足不同层次学生的需要,让“不同的人在数学上得到不同的发展”。
初中数学设计教案6
一、 教学目标
(一)。使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;
(二)。培养学生观察能力,提高他们分析问题和解决问题的能力;
3。使学生初步养成正确思考问题的良好习惯。
二、教学重点和难点
一元一次方程解简单的应用题的方法和步骤。
三、教学过程
我们可以直接看出像4x=24,x+1=3这样简单方程的解,但是仅仅依靠观察来解决比较复杂的方程是很困难的 ,因此,我们还要讨论怎么样解方程,方程是含有未知数的等式,为了讨论方程,我们先来看看等式有什么性质。
像m+n=n+m,x+2x=3x,3x+!=5y这样的式子都是等式。
由教科书中天平的图形,由它可以发现什么规律?
我们可发现,如果在平衡的'天平两边都加(或减)同样的量,天平还保持平衡。
等式就像平衡的天平,它具有与上面的事实同样的性质。
由此,我们得出等式的性质1
等式两边加(或减)同一个数(或式子),结果仍相等。
用字母表示:a=b,那么a±c=b±c
等式的性质2
等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
用字母表示:
如果a=b,那么ac=bc
如果 a=b,(c≠0),那么 =
通过例题来对等式的性质进行巩固。
例:利用等式的性质解下列方程。
(1)x+7=26; (2)—5x=20; (3)— x—5=4
分析:要使方程x+7=26转化为x=a(常数)的形式,要去掉方程左边的7,因此两边要减7,另外两个方程如何转化为x=a的形式。
解:(1)两边减7,得
x+7—7=26—7
于是
x=19
(2)两边同时除以—5,得
=
于是
x=—4
(3)两边加5,得
—
化简,得
两边同乘—3,得
x=—27
一般地,从方程解出未知数的值以后,可以带如原方程检验,看这个值能否使方程的两边相等。
让学生检验上题是否正确。
(四)课堂练习
利用等式的性质解下列方程并检验。
(1)x—5=2; (2)0。3x=45; (3)2— x=3; (4)5x+4=0
教师引导学生做,做好师生互动。
四、课后总结
1。本节课学习了哪些内容?
2。利用等式的性质解方程方法和步骤是什么?
3。在运用上述方法和步骤时应注意什么?
五、作业布置;
习题3。1,3,4,5题
初中数学设计教案7
教学目标
①感受生活中幂的运算的存在与价值.
②经历自主探索同底数幂的乘法、幂的乘方和积的乘方等运算性质的过程,能用代数式和文字正确地表述这些性质,并会运用它们熟练地进行计算.
③逐步形成独立思考、主动探索的习惯.
④通过由特殊到一般的猜想与说理、验证,培养学生一定的说理能力和归纳表达能力.
教学重点与难点
重点:幂的三个运算性质.
难点:幂的三个运算性质.
教学设计
创设情境导入新课
问题:一种电子计算机每秒可以进行1012次运算,它工作103s可以进行多少次运算?你能用学过的知识解决吗?
从实际问题的导入,让学生自己动手试一试,主动探索,在自己的实践中获得知识.从而构建新的知识体系,同时因为关于底数、指数、幂等概念是在有理数的乘法中学习的,学生可能生疏或遗忘,在新课讲解之前利用这个实际问题进行复习.
学生略作思考后得出,它工作103s可以进行的运算次数是1012×103.怎样计算1012×103?
根据乘方的意义可以知道:
探究新知1.探一探根据乘方的意义填空:
从引例到“探一探”,“猜一猜”,“说一说”是一个从特殊到一般,从具体到抽象,把幂的底数与指数分两步有层次地进行概括抽象的过程.在这一过程中,要注意留给学生探索与交流的空间,让学生在自己的实践中获得运算法则.
学生独立思考后回答,教师板演.
2.猜一猜
问:看看计算结果,你能发现结果有什么规律吗?
学生小组讨论后交流结果:不管底数是什么数,只要底数相同,结果就是指数相加.
3.说一说
am×an(m,n是正整数)?学生说出理由,教师板演共同得出结论:am×an=am+n(m,n都是正整数)
即同底数幂相乘,底数不变,指数相加.
注意性质中的m、n的取值范围.
注:要求学生用语言叙述这个性质,即“同底数的幂相乘,底数不变,指数相加”,这对于学生提高数学语言的表述能力是有益的.
4.想一想
am×an×ap=?
5.做一做
例1教科书第142页的例1(1)~(4)
(5)—a3a5;
(6)(x+1)2(x+1)3
同底数幂的性质很容易推广到三个以上的同底数幂相乘.
在例1的课堂教学中教师要求学生说明底数是什么,指数是什么,引导学生观察是不是同底数幂相乘,再利用性质进行计算.例1(5)中注意让学生说清“—a3”的底数是“a”还是“—a”.性质中的字母可以是单项式也可以是多项式,如例1(6),把底数进一步扩充到式的范围.
6.自主学习
根据乘方的意义及同底数幂的乘法,让学生自主探究教科书第170页探究问题.学生在独立思考、合作交流的基础上,得出幂的乘方运算性质:(am)n=amn(m,n都是正整数)即幂的乘方,底数不变,指数相乘.
7.做一做
例2教科书第171页的`例2(1)~(4)
(5) —(x3)4x2
8.想一想
让学生自主探究教科书第171页的探究问题,并完成填空.尝试分析运算过程中用到哪些运算律?运算结果有什么规律?
学生自己归纳出积的乘方的运算性质:(ab)n=anbn(n为正整数)即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.
那么,(abc)n=?
注:和前两个性质的教学一样,这个性质也是先用具体指数为例说明积的乘方的意义和导出性质的每一步依据,从而归纳出一般指数情形的性质.这个性质也很容易推广到三个以上因式的乘方.
9.做一做
例3教科书第172页的例3(1)~(4);补充:(5) [—3(x+y)2]3
例4 计算:x(x2)3—2x4x2
比一比
这节课我们学习了三个运算性质:“同底数幂的乘法”、“幂的乘方”和“积的乘方”.组织学生进行计时比赛,在规定时间内完成教科书第170页、17l页、172页的练习.
深入探究例5计算:(1)(—8)20xx(—0。125)20xx(2)(—2)2n+1+2(—2)2n(n为正整数).
在这三个性质中的底数、指数中,指数注明为正整数,而底数可以是数、字母或式.把底数进一步扩充到式的范围.
议一议
下面的计算对不对?如果不对,应当怎样改正.
(1)a3a3=a6; (2)b4b4=2b4;
(3)x5+x5=x10; (4)y7y=y8;
(5)(a3)5=a8; (6)a3a5=a15;
(7)(a2)3a4=a9; (8)(xy3)2=xy6;
(9)(—2x)3=—2x3
注:补充议一议与辨析题的目的是让学生通过对这些判断题的讨论甚至争论,加强对运算性质的掌握,同时也培养学生一定的批判性思维能力.
小结
组织学生讨论和辨析三个运算性质.
课外巩固
1.必做题:教科书第148页习题15。1第1、2题.
2.备选题:
(1)计算:
(2)计算:am—1an+2+am+2an—1+aman+1
(3)已知:am=7,bm=4,则(ab)2m=______
(4)已知:3x+2y—3=0,则27x9y=___________
初中数学设计教案8
一、教学案例的特点
1、案例与论文的区别
从文体和表述方式上看,论文是以说理为目的,以议论为主;案例则以记录为目的,以记叙为主,兼有议论和说明。也就是说,案例是讲一个故事,是通过故事说明道理。
从写作的思路和思维方式来看,论文写作一般是一种演绎思维,思维的方式是从抽象到具体;案例写作是一种归纳思维,思维的方式是从具体到抽象。
2、案例与教案、教学设计的区别
教案和教学设计都是事先设想的教学思路,是对准备实施的教学措施的简要说明;教学案例则是对已经发生的教学过程的反映。一个写在教之前,一个写在教之后;一个是预期达到什么目标,一个是结果达到什么水平。教学设计不宜于交流,教学案例适宜于交流。
3、案例与教学实录的区别
案例与教学实录的体例比较接近,它们都是对教学情景的描述,但教学实录是有闻必录,而案例则是有所选择的,教学案例是根据目的和功能选择内容,并且必须有作者的反思(价值判断或理性思考)。
4、教学案例的特点是
——真实性:案例必须是在课堂教学中真实发生的事件;
——典型性:必须是包括特殊情境和典型案例问题的故事;
——浓缩性:必须多角度地呈现问题,提供足够的信息;
——启发性:必须是经过研究,能够引起讨论,提供分析和反思。
二、数学案例的结构要素
从文章结构上看,数学案例一般包含以下几个基本的元素。
(1)背景。案例需要向读者交代故事发生的有关情况:时间、地点、人物、事情的起因等。如介绍一堂课,就有必要说明这堂课是在什么背景情况下上的,是一所重点学校还是普通学校,是一个重点班级还是普通班级,是有经验的优秀教师还是年青的新教师执教,是经过准备的'“公开课”还是平时的“家常课”,等等。背景介绍并不需要面面俱到,重要的是说明故事的发生是否有什么特别的原因或条件。
(2)主题。案例要有一个主题:写案例首先要考虑我这个案例想反映什么问题,例如是想说明怎样转变学困生,还是强调怎样启发思维,或者是介绍如何组织小组讨论,或是观察学生的独立学习情况,等等。或者是一个什么样的数学任务解决过程和方法,在课程标准中数学任务认知水平的要求怎么样,在课堂教学中数学任务认知水平的发展怎么样等等。动笔前都要有一个比较明确的想法。比如学校开展研究性学习活动,不同的研究课题、研究小组、研究阶段,会面临不同的问题、情境、经历,都有自己的独特性。写作时应该从最有收获、最有启发的角度切入,选择并确立主题。
(3)情节。有了主题,写作时就不会有闻必录,而要是对原始材料进行筛选。首先需要教师对课堂教学中师生双方(外显的和内隐的)活动的清晰感知,然后是有针对性地向读者交代特定的内容,把关键性的细节写清楚。比如介绍教师如何指导学生掌握学习数学的方法,就要把学生怎么从“不会”到“会”的转折过程,要把学习发生发展过程的细节写清楚,要把教师观察到的学生学习行为,学习行为反映的学生思想、情感、态度写清楚,或者把小组合作学习的突出情况写清楚,或者把个别学生独立学习的典型行为写清楚。不能把“任务”布置了一番,把“方法”介绍了一番,说到“任务”的完成过程,说到“掌握”的程度就一笔带过了。
(4)结果。一般来说,教案和教学设计只有设想的措施而没有实施的结果,教学实录通常也只记录教学的过程而不介绍教学的效果;而案例则不仅要说明教学的思路、描述教学的过程,还要交代学生学习的结果,即这种教学措施的即时效果,包括学生的反映和教师的感受等。读者知道了结果,将有助于加深对整个过程的内涵的了解。
(5)反思。对于案例所反映的主题和内容,包括教育教学指导思想、过程、结果,对其利弊得失,作者要有一定的看法和分析。反思是在记叙基础上的议论,可以进一步揭示事件的意义和价值。比如同样是一个学困生转化的事例,我们可以从社会学、教育学、心理学、学习理论等不同的理论角度切入,揭示成功的原因和科学的规律。反思不一定是理论阐述,也可以是就事论事、有感而发,引起人的共鸣,给人以启发。
三、初中数学教学案例主题的选择
新课程理念下的初中数学教学案例,可从以下六方面选择主题:
(1)体现让学生动手实践、自主探究、合作交流的教学方式;
(2)体现教师帮助学生在自主探究、合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验;
(3)体现让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,采用“问题情境——建立模型——解释、应用与拓展”的模式教学的成功经验;
(4)体现数学与信息技术整合的教学方法;
(5)体现教师在教学过程中的组织者、引导者与合作者的作用;
(6)体现教学中对学生情感、态度的关注和评价,以及怎样帮助不同的人在数学上获得不同的发展,等等。
初中数学设计教案9
教学目标
(一)教学知识点
1.命题的组成:条件和结论。 2。命题的真假 。 3。了解数学史。
(二)能力训练要求
1.能够分清命题的题设和结论。会把命题改写成“如果……,那么……”的形式;能 判断命题的真假。
2.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法。
3.通过对欧几里得《原本》 的介绍,感受几何的演绎体系对数学发展和人类文明的价值。
(三)情感与价值观要求
1.通过举反例的方法来 判断一个命题是假命题,说明任何事物都是正反两方面的对立统一体。
2.通过了解数学知识,拓展学生的视野,从而激发学生学习的兴趣。
教学重点
找出命题的条件(题设)和结论。
教学 难点
找出命题的条件和结论。
教学过程
Ⅰ.巧设现实情境,引入课题
上节课我们研究了命题,那么什么叫命题呢?
下面大家来 想一想:
观察下列命题,你能发现这些命题有什么共同的结构特征?
(1)如果两个三角形的三条边对应相等,那么这两个三角形全等。
(2)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形。
(3)如果一个三角形是 等腰三角形,那 么这个三角形的两个底角相等。
(4)如果一个四边形的.对角线相等,那么这个四边形是矩形。
(5)如果一个四边形的两条对角线互相垂直,那么这个四边形是菱形。
学生分组讨论。
①这五个命题都是用“如果……,那么……”的 形 式叙述的。
②每个命题都 是由已知得到结论。
③这五个命题的每个命题都有条件和结论。
Ⅱ.讲授新课
1 .命题的组成:每个命题都有条件和结论两部分组成。
条件是已知的事项,结论是由已知事项推断 出的事项。
2.举例说明 命题如何写成“如果……,那么……”的形式
①明显的。
②不明显的。
做一做
1.下列各命题的条件是什么?结论是 什么?
(1)如果两个角相等,那么它们是对顶角;
(2)如果a>b,b>c,那么a=c;
(3)两角和其中一角的对边对应 相等的两个三角形全等;
(4)菱形的四条边都 相等;
(5)全等三角形的面积相等。
2.上述命题中哪 些是正确的?哪些是不正确的?你怎么知道它们是不正确的?
3.真命题和假命题
我们把正确的命题称为真命题(tru e statement),不正确的命题称为假命题(false statement)。
思考:如何证实一个命题是真命题呢?
4.我们这套教材有如下命题作为公理:
1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
2.两条平行线被第三条直线所 截,同位角相等。
3.两边及其夹角对应相等的两个三角形全等。
4.两角及其夹边对应相等的两个三角形全 等。
5.三边对应相等的两个 三角形全等。
6.全等三角形的对应边相等,对应角相等。
Ⅲ.课堂练习
Ⅳ.课时小结
本节课我们主要研究了命题的组成及真假。知道任何一个命题都是由条件和结论两部分组成。命题分为真命题和 假命题。
在辨别真假命题时。注意:假命题只需举一个反例即可。而真命题除公理和性质外,必须通过推理得证。
Ⅴ.课后作业
2.预习提纲
(1)平行线的判定方法的证明
(2)如何进行推理
初中数学设计教案10
[教学目标]
1. 认识平面直角坐标系,了解点的坐标的意义,会用坐标表示点,能画出点的坐标位
2. 渗透对应关系,提高学生的数感.
[教学重点与难点]
重点:平面直角坐标系和点的坐标.
难点:正确画坐标和找对应点.
[教学设计]
[设计说明]
一.利用已有知识,引入
1.如图,怎样说明数轴上点A和点B的位置,
2.根据下图,你能正确说出各个象棋子的位置吗?
二.明确概念
平面直角坐标系:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系(rectangular coordinate system).水平的数轴称为x轴(x-axis)或横轴,习惯上取向右为正方向;竖直的数轴为y轴(y-axis)或纵轴,取向上方向为
由数轴的表示引入,到两个数轴和有序数对。
从学生熟悉的物品入手,引申到平面直角坐标系。
描述平面直角坐标系特征和画法
正方向;两个坐标轴的交点为平面直角坐标系的原点。
点的坐标:我们用一对有序数对表示平面上的点,这对数叫坐标。表示方法为(a,b).a是点对应横轴上的数值,b是点在纵轴上对应的数值。
例1 写出图中A、B、C、D点的坐标。
建立平面直角坐标系后,平面被坐标轴分成四部分,分别叫第一象限,第二象限,第三象限和第四象限。
你能说出例1中各点在第几象限吗?
例2 在平面直角坐标系中描出下列各点。
()A(3,4);B(-1,2);C(-3,-2);D(2,-2)
问题1:各象限点的坐标有什么特征?
练习:教材49页:练习1,2。
三.深入探索
教材48页:探索:
识别坐标和点的位置关系,以及由坐标判断两点的关系以及两点所确定的直线的位置关系。
[巩固练习]
1. 教材49页习题6.1——第1题
2. 教材50页——第2,4,5,6。
[小结]
1. 平面直角坐标系;
2. 点的'坐标及其表示
3. 各象限内点的坐标的特征
4. 坐标的简单应用
[作业]
必做题:教科书50页:3题
(教材51页综合运用7,8,9,10为练习课内容)
明确点的坐标的表示法
仿照例题,画坐标轴,描点,要求能正确画平面直角坐标系
通过探究,发现坐标不但能代表点的位置,而且能反映他所在的直线的特征
初中数学设计教案11
一、教学目标
(一)。及时巩固所学知识;
(二)。培养学生观察能力,提高他们分析问题和解决问题的能力;
(三)。使学生初步养成正确思考问题的良好习惯。
二、教学重点和难点
一元一次方程解简单的应用题的方法和步骤。
三、教学过程
主要为习题处理,由浅入深,使学生把所学知识系统化。
主要由学生完成,老师引导。
习题3。1中,1。2。3都是基础知识题,让学生到黑板上做几道有代表意义的题,然后老师对错的给与纠正,让学生对基础知识题的正确把握。
主要针对学生比较难懂的应用题来讲解;
习题5,把1400元奖学金按照两种奖项奖给22名学生,其中一等奖每人200元,二等奖每人50元,获得一等奖的学生有多少人?
分析:设获得一等奖的.学生有X人,由已知条件得:
X×200+(22—X)×50=1400
本题要让学生理解这种设未知数建立方程的思想,设获得一等奖的学生有X人,那么二等奖的人数就是22—X。
习题6,种一批树苗,如果每人种10棵,则剩6棵树苗未种,如果每人种12棵,则缺少6棵苗,有多少人种数?
分析:两种方法种树苗,等式就是总树苗相等,设有X人种树,
那么:10X+6=12X—6
所以找到等式就是列出方程的重要一步。
习题7,一辆汽车已经行驶了12000千米,计划每月再行驶800千米,几个月后这辆汽车将行驶20800千米?
分析:由已经行驶了12000千米,计划每月再行驶800千米,最后达到20800千米,我们设X个月后达到目标,列出等式
12000+800X=20800
总之,找出他们之间存在的相等关系就是解决问题的关键。
通过系统的学习,让学生的综合运用能力提高,对拓广探索中的题目老师要细心讲解,因为学生对这些题的理解有困难。
四、课堂总结
通过大量的练习,及时巩固所学知识,使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题。
五、作业布置
习题3。1第7、8题。
初中数学设计教案12
一、教学目的
1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。
2.使学生会列一元一次方程解决一些简单的应用题。
3.会判断一个数是不是某个方程的解。
二、重点、难点
1.重点:会列一元一次方程解决一些简单的应用题。
2.难点:弄清题意,找出“相等关系”。
三、教学过程
(一)复习提问
一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?
解:设小红能买到工本笔记本,那么根据题意,得1.2x=6。
因为1.2×5=6,所以小红能买到5本笔记本。
(二)新授
问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?(让学生思考后,回答,教师再作讲评)
算术法:(328-64)÷44=264÷44=6(辆)。
列方程:设需要租用x辆客车,可得解这个方程,就能得到所求的结果。
问:你会解这个方程吗?试试看?
问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”
通过分析,列出方程:13+x=(45+x)。
问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?
把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,因为左边=右边,所以x=3就是这个方程的解。
这种通过试验的方法得出方程的.解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。
问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?
同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?
四、巩固练习
教科书习题
五、小结
本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。
初中数学设计教案13
教材分析
1.本节在引言中的方程基础上,首先通过两个实际问题,进一步引出一元二次方程的具体例子,然后引导学生观察出它们的共同点,得出一元二次方程的定义。
2.书中的定义是以未知数的个数和次数为标准,用文字的形式给出的。一元二次方程都可以整理为ax2+bx+c=0(a≠0)的形式,即一元二次方程的一般形式。
3、本节始终都有列方程的内容,这样安排一方面是分散列方程这一教学难点,化整为零地培养由实际问题抽象出方程模型的.能力;另一方面是为由一些具体的方程归纳出一元二次方程的概念。
学情分析
1、通过课堂练习,大部分学生对概念基本理解,能够找出各项系数,但有少数学困生对于系数符号没有掌握。
2、部分学生由于基础较薄弱,用一元二次方程解决实际问题有一定的难度,解决这问题要以多练为主。
3、学生认知障碍点:一元二次方程与不等式和整式的综合运用能力有待提高。
教学目标
1、从实际问题引出一元二次方程,使学生进一步体会方程是刻画现实世界中数量关系的一个有效数学模型,培养学生分析问题和解决问题的能力及用数学的意识。
2、使学生正确理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。
3、通过概念教学,培养学生的观察、类比、归纳能力,同时通过变式练习,使学生对概念理解具备完整性和深刻性。
教学重点和难点
1、重点:概念的形成及一般形式。
2、难点:从实际问题引出一元二次方程;正确识别一般形式中的“项”及“系数”。
初中数学设计教案14
教学目标:
知识与技能:
1. 能说出列一元一次方程解应用题的一般步骤;
2. 会列一元一次方程解决水费和出租车计费问题;
3. 进一步培养学生分析问题和解决实际问题的能力;
过程与方法:
1. 一题多解,学会从多角度分析问题的能力;
2. 初 步体会数学建模的基本方法;
情感态度价值观:
1. 增强节约用水的意识;
2. 体会数学来源于生活、来源于实践、又服务于实践,认识到学习数学的用处,增强学习的目的性和数学意识。
教学重点:构建“数学模型”,并列出一元一次方程解应用题
教学难点:挖掘题目中的等量关系
教学 方法:探究式
教学过程:
一、创设情境,导入新课
问题情境:
据《北京日报》报道:北京市人均水资源占有量只有300立方米,仅是全国人均占有量的 ,是世界人均占有量的 .
(1)问全国人均水资源占有量是多少立方米?世界人均水资源占有量是多少立方米?
(2)北京市一年漏掉的`水相当于新建一个自来水厂全年的产量。据不完全统计,全市至少有6×105个水龙头和 2×105个抽水马桶漏水,如果一个关不紧的水龙头,一个月能漏 掉a立方米的水;一个漏水马桶,一个月漏掉b立方米水,那么一个月造成的水流失量至少多少立方米(用含a、b的代数式表示);
水资源透支令人担忧,节约用水迫在眉睫。你家每月用水水多少呢?连续观察并记录一个星期的自来水表示数,估算本月你家共用多少立方米水?按3.7元/立方米计算应交纳多少水费?
小红家上月5日自来水表的读数为344米3,本月5日自来水表各指针的位置如图所示,这时水表的示数 是_______ 米3,所以一个月来她家用去_______米3水(读数到米3即可), 应缴纳水费 元.
水费是由哪几个量决定的?(答:单价、用量)
三者之间的关系:单价×用量=水费.
二、呈现问题,自主探究
(一) 水费问题
问题:实行新的阶梯水价后你会计算自家的水费吗?
资料表明:“按照《北京市水价调整及阶梯式水价初步方案》,对于生活用水阶梯式水价价格级差拟采用1:3,即第一级水量价格为居民基本生活水价,第二级水量价格为居民基本生活水价的3倍,阶梯式水价的计量方法将按四口家庭核定水量基数,每人月均用水量3立方米,为了方便居民用水淡旺季自行调剂,实行阶梯式水价以后,每半年查一次水表.”
若居民基本生活用水费用为每立方米3.7元。某户 共4口人,上下半年各缴纳水费543.9元和259元,问上下半年各用水多少立方米?
分析:阶梯式水价水费的计算,需要分别按不同的单价进行计算。单价分别为3.7元和11.1元.
解: (元)
设上半年用水为x立方米,根据题意列方程,得
解这个方程,得
下半年用水为: (立方米)
答:上半年用水97立方米,下半年 用水70立方米.
说明:本题也可采用计算的方法直接得到结果.
例1:某市收水费按以下规定:若每月每户用量不超过20立方米,则按每立方米1.2元收费,若超过20立方米,则超过部分每立方米按2元收费.如果某户居民在某月所交水费的平均水价为每立方米1.5元,那么他家这个月共用了多少立方米的水?
分析:
单价 数量(立方米) 水费(元)
未超部分 1.2 20 1.2×20
超过部分 2 (x-20) 2(x-20)
平均 1.5 x 1.2×20+2(x- 20)
水费应按两部分计算, 即单价分别为1.2元和2元.
解:设他家这个月共用x立方米的水.
1.5x=1.2×20+2(x-20)
x=32
答:他家这个月共用32立方米的水.
(二)出租车计费问题
例2:
乘某市的一种出租汽车起价10元(即行驶在4km以内都需付10元的车费),达到 或超过4km后,每增加1km加价1.2元(不足1km的部分按1km计算).超过15千米,加收50%的空驶费.现在小红乘这种出租汽车从甲地到乙地,支付车费34元.求甲、乙两地的路程大约是多少?
分析:收空驶费了吗?即超过15千米吗?如何判断?
15千米收费:10+1.2×11=23.2(元)
34 > 23.2
所以,超过了15千米.
总费用应分三段计费:(1)10元:4千米 ;(2)1.2×(15-4)=13. 2元:11千米 ;(3)超过15千米部分的费用,单价1.8元.
解:设甲、乙的路程大约是x千米,由题意得,
10+1.2×(15-4)+1.2×(1+50%)(x-15)=34
解这个方程得:x=25
答:甲、乙两地的路程大约是25千米.
巩固练习:书P119/2
三、提高拓展,发展创新:
围绕出租车计费的多 种情况,学生分组进行编题并解答。
由学生利用投影进行展示,其他学生给与评价.
四、师生共同小结:
1. 本节课我们共同研究的问题是什么?共同点是:由于单价的变化,必须要分段计算.
2. 列一元一次方程解应用题的一般步骤是什么?
3. 你的收获是什么?
五、作业:
整理分组编题 及解答的笔记.
初中数学设计教案15
教学目标
1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;
2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;
3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;
4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。
教学建议
1. 知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。
2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法 ,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数式的概念可以从三个方面去理解:
(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.
(2)代数式中并不要求数和表示数的'字母同时出现,单独的一个数和字母也是代数式.如:2,m都是代数式.
等都不是代数式.
3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。
如:说出代数式7(a-3)的意义。
分析 7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。
【初中数学设计教案】相关文章:
初中数学设计教案06-29
初中数学设计教案模板范文01-03
初中数学教学设计08-06
初中数学的作业设计07-30
初中数学 教案02-24
数学教学设计教案02-15
初中数学直线教案12-29
初中数学教案08-12
初中数学矩形教案12-30
初中数学《圆 》教案12-30