八年级数学教案(常用15篇)
作为一无名无私奉献的教育工作者,通常需要用到教案来辅助教学,教案有助于顺利而有效地开展教学活动。优秀的教案都具备一些什么特点呢?下面是小编帮大家整理的八年级数学教案,欢迎阅读,希望大家能够喜欢。
八年级数学教案1
分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式。
解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式。
(2)—3x≥0,x≤0,即x≤0时,是二次根式。
(3),且x≠0,∴x>0,当x>0时,是二次根式。
(4),即,故x—2≥0且x—2≠0,∴x>
2。当x
>2时,是二次根式。
例4下列各式是二次根式,求式子中的字母所满足的条件:
分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义。即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的'被开方数都大于等于零。
解:(1)由2a+3≥0,得。
(2)由,得3a—1>0,解得。
(3)由于x取任何实数时都有|x|≥0,因此|x|+0.1>0,于是,式子是二次根式。所以所求字母x的取值范围是全体实数。
(4)由—b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0。
八年级数学教案2
一、教学目标:
1、知识目标:能熟练掌握简单图形的移动规律,能按要求作出简单平面图形平移后的图形,能够探索图形之间的平移关系;
2、能力目标:
①,在实践操作过程中,逐步探索图形之间的平移关系;
②,对组合图形要找到一个或者几个“基本图案”,并能通过对“基本图案”的平移,复制所求的图形;
3、情感目标:经历对图形进行观察、分析、欣赏和动手操作、画图等过程,发展初步的审美能力,增强对图形欣赏的意识。
二、重点与难点:
重点:图形连续变化的特点;
难点:图形的划分。
三、教学方法:
讲练结合。使用多媒体课件辅助教学。
四、教具准备:
多媒体、磁性板,若干小正六边形,“工”字的砖,组合图形。
五、教学设计:
创设情景,探究新知:
(演示课件):教材上小狗的图案。提问:
(1)这个图案有什么特点?
(2)它可以通过什么“基本图案”,经过怎样的平移而形成?
(3)在平移过程中,“基本图案”的大小、形状、位置是否发生了变化?
小组讨论,派代表回答。(答案可以多种)
让学生充分讨论,归纳总结,老师给予适当的指导,并对每种答案都要肯定。
看磁性黑板,展示教材64页图3-9,提问:左图是一个正六边形,它经过怎样的平移能得到右图?谁到黑板做做看?
小组讨论,派代表到台上给大家讲解。
气氛要热烈,充分调动学生的'积极性,发掘他们的想象力。
畅所欲言,互相补充。
课堂小结:
在教师的引导下学生总结本节课的主要内容,并启发学生在我们周围寻找平移的例子。
课堂练习:
小组讨论。
小组讨论完成。
例子一定要和大家接触紧密、典型。
答案不惟一,对于每种答案,教师都要给予充分的肯定。
六、教学反思:
本节的内容并不是很复杂,借助多媒体进行直观、形象,内容贴近生活,学生兴致较高,课堂气氛活跃,参与意识较强,学生一般都能在教师的指导下掌握。教学过程中渗透数学美学思想,促进学生综合素质的提高。
八年级数学教案3
教学目标:
(1)理解通分的意义,理解最简公分母的意义;
(2)掌握分式的通分法则,能熟练掌握通分运算。
教学重点:分式通分的理解和掌握。
教学难点:分式通分中最简公分母的确定。
教学工具:投影仪
教学方法:启发式、讨论式
教学过程:
(一)引入
(1)如何计算:
由此让学生复习分数通分的意义、通分的根据、通分的法则以及最简公分母的概念。
(2)如何计算:
(3)何计算:
引导学生思考,猜想如何求解?
(二)新课
1、类比分数的通分得到分式的通分:
把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.
注意:通分保证
(1)各分式与原分式相等;
(2)各分式分母相等。
2.通分的依据:分式的基本性质.
3.通分的关键:确定几个分式的最简公分母.
通常取各分母的所有因式的最高次幂的积作最简公分母,这样的公分母叫做最简公分母.
根据分式通分和最简公分母的定义,将分式通分:
最简公分母为:
然后根据分式的基本性质,分别对原来的各分式的分子和分母乘一个适当的整式,使各分式的分母都化为通分如下:xxx
通过本例使学生对于分式的通分大致过程和思路有所了解。让学生归纳通分的`思路过程。
例1 通分:xxx
分析:让学生找分式的公分母,可设问“分母的系数各不相同如何解决?”,依据分数的通分找最小公倍数。
解:∵ 最简公分母是12xy2,
小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数.
解:∵最简公分母是10a2b2c2,
由学生归纳最简公分母的思路。
分式通分中求最简公分母概括为:(1)取各分母系数的最小公倍数;(2)凡出现的字母为底的幂的因式都要取;(3)相同字母的幂的因式取指数最大的。取这些因式的积就是最简公分母。
八年级数学教案4
教学目标
1、理解并掌握等腰三角形的判定定理及推论
2、能利用其性质与判定证明线段或角的相等关系。
教学重点:
等腰三角形的判定定理及推论的运用
教学难点:
正确区分等腰三角形的判定与性质,能够利用等腰三角形的.判定定理证明线段的相等关系。
教学过程:
一、复习等腰三角形的性质
二、新授:
I提出问题,创设情境
出示投影片。某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得∠ACB为30°,这时,地质专家测得AC的长度就可知河流宽度。
学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”。
II引入新课
1、由性质定理的题设和结论的变化,引出研究的内容——在△ABC中,苦∠B=∠C,则AB= AC吗?
作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?
2、引导学生根据图形,写出已知、求证。
3、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称)。
强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”。
4、引导学生说出引例中地质专家的测量方法的根据。
III例题与练习
1、如图2
其中△ABC是等腰三角形的是[ ]
2、①如图3,已知△ABC中,AB=AC。∠A=36°,则∠C______(根据什么?)。
②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?)。
③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______。
④若已知AD=4cm,则BC______cm。
3、以问题形式引出推论l______。
4、以问题形式引出推论2______。
例:如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形。
分析:引导学生根据题意作出图形,写出已知、求证,并分析证明。
练习:
5、(l)如图6,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DE//BC,交AB于点D,交AC于E。问图中哪些三角形是等腰三角形?
(2)上题中,若去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗?
练习:P53练习1、2、3。
IV课堂小结
1、判定一个三角形是等腰三角形有几种方法?
2、判定一个三角形是等边三角形有几种方法?
3、等腰三角形的性质定理与判定定理有何关系?
4、现在证明线段相等问题,一般应从几方面考虑?
V布置作业:P56页习题12.3第5、6题
八年级数学教案5
教学目标:
1、了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。
2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。
教学重点:
算术平方根的概念。
教学难点:
根据算术平方根的概念正确求出非负数的算术平方根。
教学过程
一、情境导入
请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?如果这块画布的面积是?这个问题实际上是已知一个正数的平方,求这个正数的问题?
这就要用到平方根的概念,也就是本章的主要学习内容。这节课我们先学习有关算术平方根的概念。
二、导入新课:
1、提出问题:(书P68页的问题)
你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)
这个问题相当于在等式扩=25中求出正数x的值。
一般地,如果一个正数x的平方等于a,即=a,那么这个正数x叫做a的算术平方根。a的算术平方根记为,读作根号a,a叫做被开方数。规定:0的算术平方根是0。
也就是,在等式=a(x0)中,规定x = 。
2、试一试:你能根据等式:=144说出144的算术平方根是多少吗?并用等式表示出来。
3、想一想:下列式子表示什么意思?你能求出它们的值吗?
建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值。例如表示25的算术平方根。
4、例1求下列各数的算术平方根:
(1)100;(2)1;(3);(4)0。0001
三、练习
P69练习1、2
四、探究:(课本第69页)
怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?
方法1:课本中的方法,略;
方法2:
可还有其他方法,鼓励学生探究。
问题:这个大正方形的边长应该是多少呢?
大正方形的边长是,表示2的算术平方根,它到底是个多大的.数?你能求出它的值吗?
建议学生观察图形感受的大小。小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究。
五、小结:
1、这节课学习了什么呢?
2、算术平方根的具体意义是怎么样的?
3、怎样求一个正数的算术平方根
六、课外作业:
P75习题13.1活动第1、2、3题
八年级数学教案6
教材分析
1、本小节内容安排在第十四章“轴对称”的第三节。等腰三角形是一种特殊的三角形,它是轴对称图形,可以借助轴对称变换来研究等腰三角形的一些特殊性质。这一节的主要内容是等腰三角形的性质与判定,以及等边三角形的相关知识,重点是等腰三角形的性质与判定,它是研究等边三角形,是证明线段相等角相等的重要依据,这也是全章的重点之一。
2、本节重在呈现一个动手操作得出概念、观察实验得出性质、推理证明论证性质的过程,学生通过学习,既体会到一个观察、实验、猜想、论证的研究几何图形问题的全过程,又能够运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力。
学情分析
1、学生在此之前已接触过等腰三角形,具有运用全等三角形的判定及轴对称的知识和技能,本节教学要突出“自主探究”的特点,即教师引导学生通过观察、实验、猜想、论证,得出等腰三角形的.性质,让学生做学习的主人,享受探求新知、获得新知的乐趣。
2、在与等腰三角形有关的一些命题的证明过程中,会遇到一些添加辅助线的问题,这会给学生的学习带来困难。另外,以前学生证明问题是习惯于找全等三角形,形成了依赖全等三角形的思维定势,对于可直接利用等腰三角形性质的问题,没有注意选择简便方法。
教学目标
知识技能:1、理解掌握等腰三角形的性质。
2、运用等腰三角形的性质进行证明和计算。
数学思考:1、观察等腰三角形的对称性,发展形象思维。
2、通过时间、观察、证明等腰三角形性质,发展学生合情推理能力和演绎推理能力。
情感态度:引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心。
教学重点和难点
重点:等腰三角形的性质及应用。
难点:等腰三角形的性质证明。
八年级数学教案7
一、教学目标
1、理解分式的基本性质。
2、会用分式的基本性质将分式变形。
二、重点、难点
1、重点:理解分式的基本性质。
2、难点:灵活应用分式的基本性质将分式变形。
3、认知难点与突破方法
教学难点是灵活应用分式的基本性质将分式变形。突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质。应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形。
三、练习题的意图分析
1、P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。
2、P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分。值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的`最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。
教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。
3。P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“—”号。这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。
“不改变分式的值,使分式的分子和分母都不含‘—’号”是分式的基本性质的应用之一,所以补充例5。
四、课堂引入
1、请同学们考虑:与相等吗?与相等吗?为什么?
2、说出与之间变形的过程,与之间变形的过程,并说出变形依据?
3、提问分数的基本性质,让学生类比猜想出分式的基本性质。
五、例题讲解
P7例2。填空:
[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变。
P11例3。约分:
[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变。所以要找准分子和分母的公因式,约分的结果要是最简分式。
P11例4。通分:
[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。
八年级数学教案8
教学目标:
1. 掌握三角形内角和定理及其推论;
2. 弄清三角形按角的分类, 会按角的大小对三角形进行分类;
3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。
4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态
5. 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。
教学重点:
三角形内角和定理及其推论。
教学难点:
三角形内角和定理的证明
教学用具:
直尺、微机
教学方法:
互动式,谈话法
教学过程:
1、创设情境,自然引入
把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。
问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?
问题2 你能用几何推理来论证得到的关系吗?
对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线 ”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)
新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。
2、设问质疑,探究尝试
(1)求证:三角形三个内角的和等于
让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。
问题1 观察:三个内角拼成了一个
什么角?问题2 此实验给我们一个什么启示?
(把三角形的三个内角之和转化为一个平角)
问题3 由图中AB与CD的'关系,启发我们画一条什么样的线,作为解决问题的桥梁?
其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。
(2)通过类比“三角形按边分类”,三角形按角怎样分类呢?
学生回答后,电脑显示图表。
(3)三角形中三个内角之和为定值
,那么对三角形的其它角还有哪些特殊的关系呢?问题1 直角三角形中,直角与其它两个锐角有何关系?
问题2 三角形一个外角与它不相邻的两个内角有何关系?
问题3 三角形一个外角与其中的一个不相邻内角有何关系?
其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。
这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。
3、三角形三个内角关系的定理及推论
引导学生分析并严格书写解题过程
八年级数学教案9
一、教学目标
知识目标
1.了解并掌握分式乘除法运算法则。
2.会运用分式乘除法法则进行分式乘除法运算。
能力目标
1.会通过类比的方法来理解和掌握分式的乘除法法则。
2.熟练运用分式乘除法法则,将分式乘除法全部化归为分式乘法进行计算。
情感目标
1.继续熟悉“数、式通性”的数学思想方法。
2.会通过类比的方法来理解和掌握分式的乘除法法则。
二、重点难点和关键
重点
会用分式乘除法法则进行分式乘除法的运算。
难点
会将多项式因式分解。
关键
将除法转化为乘法进行计算。
三、教学方法和辅助手段
教学方法
讲练结合、以练为主
辅助手段
幻灯投影演示
四、教学过程
复习
1.计算:
2.分数的乘除法法则是什么?
新课讲解
1.分式的乘除法法则
提问:由分数的乘除法法则猜想分式的乘除法法则是什么?(讨论、交流、集中评讲)
分式乘除法法则:(略)
式子表示:
2.例题讲解
例2计算:(解略)
注意:
1.计算过程要对照分式乘除法法则,将乘除法全部化为乘法进行。
2.第三题中的(-8xyz)应看成分母是“1”的式子。
3.计算结果要化为最简分式或整式。
4.运算过程中要注意符号的变化。
练习:P67 T1(板演)
例3计算:(解略)
注意:分式乘除法运算时,分子分母中的`多项式要先因式分解,再约分。
练习:P67 T2(1)—(4)(板演)
例4计算:
解:=
注意:
1.分子分母中的多项式一般要先按某一字母降幂或升幂排列。
2.同级运算中,如没有附加条件(如括号),则应按从左到右的顺序进行计算。
练习:P67 T(5)(板演)
小结
这节课学习了运用“分式乘除法法则”进行分式乘除法的方法,主要借助分式约分、因式分解等知识来进行,计算的结果应是最简分式或整式。
作业
P73 A组T4 T5 T6
五、板书设计(略)
六、教学后记
八年级数学教案10
教学目标:
1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。
2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。
重点难点:
重点:了解勾股定理的由来,并能用它来解决一些简单的问题。
难点:勾股定理的发现
教学过程
一、创设问题的情境,激发学生的学习热情,导入课题
出示投影1(章前的图文p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。
出示投影2(书中的P2图1—2)并回答:
1、观察图
1—2,正方形A中有_______个小方格,即A的面积为______个单位。
正方形B中有_______个小方格,即A的面积为______个单位。
正方形C中有_______个小方格,即A的面积为______个单位。
2、你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:
3、图
1—2中,A,B,C之间的面积之间有什么关系?
学生交流后形成共识,教师板书,A+B=C,接着提出图1—1中的A。B,C的关系呢?
二、做一做
出示投影3(书中P3图1—4)提问:
1、图
1—3中,A,B,C之间有什么关系?
2、图
1—4中,A,B,C之间有什么关系?
3、从图
1—1,1—2,1—3,1|—4中你发现什么?
学生讨论、交流形成共识后,教师总结:
以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。
三、议一议
1、图
1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?
2、你能发现直角三角形三边长度之间的关系吗?
在同学的交流基础上,老师板书:
直角三角形边的'两直角边的平方和等于斜边的平方。这就是的“勾股定理”
也就是说:如果直角三角形的两直角边为a,b,斜边为c
那么
我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。
3、分别以
5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?(回答是肯定的:成立)
四、想一想
这里的29英寸(74厘米)的电视机,指的是屏幕的长吗?只的是屏幕的款吗?那他指什么呢?
五、巩固练习
1、错例辨析:
△ABC的两边为3和4,求第三边
解:由于三角形的两边为3、4
所以它的第三边的c应满足=25
即:c=5
辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题
△ ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。
(2)若告诉△ABC是直角三角形,第三边C也不一定是满足,题目中并为交待C是斜边
综上所述这个题目条件不足,第三边无法求得。
2、练习P
7 §1.1 1
六、作业
课本P7 §1.1 2、3、4
八年级数学教案11
一、学习目标
1.多项式除以单项式的运算法则及其应用。
2.多项式除以单项式的运算算理。
二、重点难点
重点:多项式除以单项式的运算法则及其应用。
难点:探索多项式与单项式相除的运算法则的过程。
三、合作学习
(一)回顾单项式除以单项式法则
(二)学生动手,探究新课
1.计算下列各式:
(1)(am+bm)÷m;
(2)(a2+ab)÷a;
(3)(4x2y+2xy2)÷2xy。
2.提问:
①说说你是怎样计算的;
②还有什么发现吗?
(三)总结法则
1.多项式除以单项式:先把这个多项式的每一项除以XXXXXXXXXXX,再把所得的商XXXXXX
2.本质:把多项式除以单项式转化成XXXXXXXXXXXXXX
四、精讲精练
例:(1)(12a3—6a2+3a)÷3a;
(2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);
(3)[(x+y)2—y(2x+y)—8x]÷2x;
(4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。
随堂练习:教科书练习。
五、小结
1、单项式的除法法则
2、应用单项式除法法则应注意:
A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的`符号;
B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;
C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;
D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行;
E、多项式除以单项式法则。
八年级数学教案12
一、学习目标及重、难点:
1、了解方差的定义和计算公式。
2、理解方差概念的产生和形成的过程。
3、会用方差计算公式来比较两组数据的波动大小。
重点:方差产生的必要性和应用方差公式解决实际问题。
难点:理解方差公式
二、自主学习:
(一)知识我先懂:
方差:设有n个数据 ,各数据与它们的平均数的差的平方分别是
我们用它们的平均数,表示这组数据的方差:即用
来表示。
给力小贴士:方差越小说明这组数据越 。波动性越 。
(二)自主检测小练习:
1、已知一组数据为2、0、-1、3、-4,则这组数据的方差为 。
2、甲、乙两组数据如下:
甲组:10 9 11 8 12 13 10 7;
乙组:7 8 9 10 11 12 11 12.
分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小.
三、新课讲解:
引例:问题: 从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下:(单位:cm)
甲:9、10、 10、13、7、13、10、8、11、8;
乙:8、13、12、11、10、12、7、7、10、10;
问:(1)哪种农作物的苗长的比较高(我们可以计算它们的平均数: = )
(2)哪种农作物的苗长得比较整齐?(我们可以计算它们的极差,你发现了 )
归纳: 方差:设有n个数据 ,各数据与它们的平均数的差的平方分别是
我们用它们的平均数,表示这组数据的方差:即用 来表示。
(一)例题讲解:
例1、 段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?、
测试次数 第1次 第2次 第3次 第4次 第5次
段巍 13 14 13 12 13
金志强 10 13 16 14 12
给力提示:先求平均数,在利用公式求解方差。
(二)小试身手
1、.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:
甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7
经过计算,两人射击环数的平均数是 ,但S = ,S = ,则S S ,所以确定
去参加比赛。
1、求下列数据的众数:
(1)3, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 2
2、8年级一班46个同学中,13岁的.有5人,14岁的有20人,15岁的15人,16岁的6人。8年级一班学生年龄的平均数,中位数,众数分别是多少?
四、课堂小结
方差公式:
给力提示:方差越小说明这组数据越 。波动性越 。
每课一首诗:求方差,有公式;先平均,再求差;
求平方,再平均;所得数,是方差。
五、课堂检测:
1、小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒)
小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9
小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8
如果根据这几次成绩选拔一人参加比赛,你会选谁呢?
六、课后作业:必做题:教材141页 练习1、2 选做题:练习册对应部分习题
七、学习小札记:
写下你的收获,交流你的经验,分享你的成果,你会感到无比的快乐!
八年级数学教案13
一、教学目的
1.使学生进一步理解自变量的取值范围和函数值的意义.
2.使学生会用描点法画出简单函数的图象.
二、教学重点、难点
重点:1.理解与认识函数图象的意义.
2.培养学生的看图、识图能力.
难点:在画图的三个步骤的列表中,如何恰当地选取自变量与函数的对应值问题.
三、教学过程
复习提问
1.函数有哪三种表示法?(答:解析法、列表法、图象法.)
2.结合函数y=x的图象,说明什么是函数的图象?
3.说出下列各点所在象限或坐标轴:
新课
1.画函数图象的方法是描点法.其步骤:
(1)列表.要注意适当选取自变量与函数的对应值.什么叫“适当”?——这就要求能选取表现函数图象特征的几个关键点.比如画函数y=3x的图象,其关键点是原点(0,0),只要再选取另一个点如M(3,9)就可以了.
一般地,我们把自变量与函数的对应值分别作为点的横坐标和纵坐标,这就要把自变量与函数的对应值列出表来.
(2)描点.我们把表中给出的有序实数对,看作点的坐标,在直角坐标系中描出相应的点.
(3)用光滑曲线连线.根据函数解析式比如y=3x,我们把所描的两个点(0,0),(3,9)连成直线.
一般地,根据函数解析式,我们列表、描点是有限的几个,只需在平面直角坐标系中,把这有限的几个点连成表示函数的曲线(或直线).
2.讲解画函数图象的三个步骤和例.画出函数y=x+0.5的图象.
小结
本节课的重点是让学生根据函数解析式画函数图象的三个步骤,自己动手画图.
练习
①选用课本练习(前一节已作:列表、描点,本节要求连线)
②补充题:画出函数y=5x-2的图象.
作业
选用课本习题.
四、教学注意问题
1.注意渗透数形结合思想.通过研究函数的`图象,对图象所表示的一个变量随另一个变量的变化而变化就更有形象而直观的认识.把函数的解析式、列表、图象三者结合起来,更有利于认识函数的本质特征.
2.注意充分调动学生自己动手画图的积极性.
3.认识到由于计算器和计算机的普及化,代替了手工绘图功能.故在教学中要倾向培养学生看图、识图的能力.
八年级数学教案14
一、教学目标:
1、加深对加权平均数的理解
2、会根据频数分布表求加权平均数,从而解决一些实际问题
3、会用计算器求加权平均数的值
二、重点、难点和难点的突破方法:
1、重点:根据频数分布表求加权平均数
2、难点:根据频数分布表求加权平均数
3、难点的突破方法:
首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。
应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。
为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。
三、例习题的意图分析
1、教材P140探究栏目的意图。
(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。
(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。
这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。
2、教材P140的思考的意图。
(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题
(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。
3、P141利用计算器计算平均值
这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比。一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的'使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器。所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单。统计中一些数据较大、较多的计算也变得容易些了。
四、课堂引入
采用教材原有的引入问题,设计的几个问题如下:
(1)、请同学读P140探究问题,依据统计表可以读出哪些信息
(2)、这里的组中值指什么,它是怎样确定的?
(3)、第二组数据的频数5指什么呢?
(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。
五、随堂练习
1、某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表
所用时间t(分钟)人数
0 0<≤ 6 20 30 40 50 (1)、第二组数据的组中值是多少? (2)、求该班学生平均每天做数学作业所用时间 2、某班40名学生身高情况如下图, 请计算该班学生平均身高 答案1.(1).15. (2)28. 2. 165 六、课后练习: 1、某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表 部门A B C D E F G 人数1 1 2 4 2 2 5 每人创得利润20 5 2.5 2 1.5 1.5 1.2 该公司每人所创年利润的平均数是多少万元? 2、下表是截至到20xx年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得主获奖时的平均年龄? 年龄频数 28≤X<30 4 30≤X<32 3 32≤X<34 8 34≤X<36 7 36≤X<38 9 38≤X<40 11 40≤X<42 2 3、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。 答案:1.约2.95万元2.约29岁3.60.54分贝 一、素质教育目标 (一)知识教学点 1.掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用. 2.使学生理解判定定理与性质定理的区别与联系. 3.会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理. (二)能力训练点 1.通过“探索式试明法”开拓学生思路,发展学生思维能力. 2.通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的分析方法,进一步提高学生分析问题,解决问题的.能力. (三)德育渗透点 通过一题多解激发学生的学习兴趣. (四)美育渗透点 通过学习,体会几何证明的方法美. 二、学法引导 构造逆命题,分析探索证明,启发讲解. 三、重点·难点·疑点及解决办法 1.教学重点:平行四边形的判定定理1、2、3的应用. 2.教学难点:综合应用判定定理和性质定理. 3.疑点及解决办法:在综合应用判定定理及性质定理时,在什么条件下用判定定理,在什么条件下用性质定理 (强调在求证平行四边形时用判定定理在已知平行四边形时用性质定理). 【八年级数学教案】相关文章: 八年级的数学教案12-14 八年级《函数》数学教案08-17 八年级数学教案06-18 八年级数学教案12-09 人教版八年级数学教案11-04 【热门】八年级数学教案11-29 八年级下册数学教案01-01 八年级的数学教案15篇12-14 八年级数学教案【热】11-29 【荐】八年级数学教案12-03八年级数学教案15