八年级数学教案15篇(精品)
作为一名默默奉献的教育工作者,时常要开展教案准备工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么应当如何写教案呢?下面是小编收集整理的八年级数学教案,欢迎阅读与收藏。
八年级数学教案1
【教学目标】
1.了解分式概念.
2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.
【教学重难点】
重点:理解分式有意义的条件,分式的值为零的条件.
难点:能熟练地求出分式有意义的条件,分式的值为零的条件.
【教学过程】
一、课堂导入
1.让学生填写[思考],学生自己依次填出:,,,.
2.问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的`流速为多少?
设江水的流速为x千米/时.
轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,所以=.
3.以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是A÷B的形式.分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母.
[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B≠0时,分式才有意义.
二、例题讲解
例1:当x为何值时,分式有意义.
【分析】已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围.
(补充)例2:当m为何值时,分式的值为0?
(1);(2);(3).
【分析】分式的值为0时,必须同时满足两个条件:①分母不能为零;②分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.
三、随堂练习
1.判断下列各式哪些是整式,哪些是分式?
9x+4,,,,,
2.当x取何值时,下列分式有意义?
3.当x为何值时,分式的值为0?
四、小结
谈谈你的收获.
五、布置作业
课本128~129页练习.
八年级数学教案2
学习目标:
1. 在同一直角坐标系中,感受点的坐标变化与图形的变化之间的关系,并能找出变化规律。
2. 通过坐标的变化探索新旧图形之间的变化。
重点:
1. 对称轴的对称图形,并且能写出所得图形各点的坐标。
2. 根据轴对称图形的特点,已知轴一边的图形或坐标确定另一边的图形或坐标。
难点:
1. 理解并应用直角坐标与极坐标。
2. 解决一些简单的问题。
学习过程:
第一课时
一、旧知回顾:
1. 平面直角坐标系定义:在平面内,两条垂直且有公共端点的数轴组成平面直角坐标系。
2. 坐标平面内点的坐标的表示方法是(x,y)。
3. 各象限点的坐标的特征:
第一象限:x和y坐标都是正数。第二象限:x坐标为负数,y坐标为正数。第三象限:x和y坐标都是负数。第四象限:x坐标为正数,y坐标为负数。
二、新知检索:
1. 在方格纸上描出下列各点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)并用线段依次连接,观察形成了什么图形。
三、典例分析:
例1、
(1) 将鱼的顶点的纵坐标保持不变,横坐标分别加5画出图形,分析所得图形与原来图形相比有什么变化?如果纵坐标保持不变,横坐标分别减2呢?
(2)将鱼的顶点的横坐标保持不变,纵坐标分别加3画出图形,分析所得图形与原来图形相比有什么变化?如果横坐标保持不变,纵坐标减2呢?
例2、
(1)将鱼的顶点的纵坐标保持不变,横坐标分别变为原来的2倍画出图形,分析所得图形与原来图形相比有什么变化?
(2) 将鱼的顶点的横坐标不变,纵坐标变成原来的一半,并绘制图形。分析得到的图形和原图形之间有什么不同?
四、习题组训练
1、在平面直角坐标系中,将点(0,0)、(2,4)、(2,0)和(4,4)连接形成一个图案。
(1)将这四个点的'纵坐标保持不变,横坐标变成原来的一半,然后依次连接得到新图形。得到的图形和原图形之间有什么变化?
(2)将纵坐标和横坐标都增加3,所得到的图形会发生怎样的变化?
(3)将纵坐标和横坐标都乘以2,所得到的图形会发生怎样的变化?
归纳得出:图形坐标变化的规律
1、平移规律
2、图形伸缩规律
第二课时
一、已学内容回顾:
1、轴对称图形的定义:如果一个图形能够沿着某条轴翻折成重合的两部分,那么这个图形就是轴对称图形。
2、中心对称图形的定义:如果一个图形绕着某个点旋转一定的度数后与原图形完全重合,那么这个图形就是中心对称图形。
二、新学内容引入:
1、如下图所示,左边的鱼和右边的鱼是关于y轴对称的。
(1) 左边的鱼可以通过平移、压缩或拉伸来得到右边的鱼吗?
(2) 左边鱼和右边鱼的顶点坐标之间有怎样的关系?
(3) 如果将右边的鱼沿着x轴正方向平移1个单位长度,然后通过不改变关于y轴对称的条件,那么左边的鱼的顶点坐标会发生怎样的变化?
三、典型例题解析:
1、如下图所示,右边的鱼是通过何种变换得到左边的鱼的?
2、如果将右边鱼的横坐标保持不变,纵坐标变成原来的一倍,绘制得到的图形与原图形之间有何不同?
3、如果将右边鱼的纵坐标和横坐标都变成原来的一倍,所得到的图形和原图形之间有何不同?
四、习题组练习:
1、当坐标发生如下变化时,图形会做出怎样的变化?
1、已知点位移的矩阵:
① (x,y) → (x,y + 4)
② (x,y) → (x,y - 2)
③ (x,y) → (1/2x,y)
④ (x,y) → (3x,y)
⑤ (x,y) → (x,1/2y)
⑥ (x,y) → (3x,3y)
2、在第一象限内有一只蝴蝶,现在在第二象限内画出一个与它形状大小完全一样的蝴蝶,并标出它们的各个顶点坐标。
3、以图中的字母M为轮廓,在y轴上作出与它关于轴对称图形,并标出相应端点的坐标。
4、简要描绘图示中枫叶图案关于x轴对称的轴对称图形。
学习笔记:
八年级数学教案3
教学目标
1、理解并掌握等腰三角形的判定定理及推论
2、能利用其性质与判定证明线段或角的相等关系。
教学重点:
等腰三角形的判定定理及推论的运用
教学难点:
正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系。
教学过程:
一、复习等腰三角形的性质
二、新授:
I提出问题,创设情境
出示投影片。某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得∠ACB为30°,这时,地质专家测得AC的长度就可知河流宽度。
学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”。
II引入新课
1、由性质定理的题设和结论的变化,引出研究的内容——在△ABC中,苦∠B=∠C,则AB= AC吗?
作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?
2、引导学生根据图形,写出已知、求证。
3、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称)。
强调此定理是在一个三角形中把角的`相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”。
4、引导学生说出引例中地质专家的测量方法的根据。
III例题与练习
1、如图2
其中△ABC是等腰三角形的是[ ]
2、①如图3,已知△ABC中,AB=AC。∠A=36°,则∠C______(根据什么?)。
②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?)。
③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______。
④若已知AD=4cm,则BC______cm。
3、以问题形式引出推论l______。
4、以问题形式引出推论2______。
例:如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形。
分析:引导学生根据题意作出图形,写出已知、求证,并分析证明。
练习:
5、(l)如图6,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DE//BC,交AB于点D,交AC于E。问图中哪些三角形是等腰三角形?
(2)上题中,若去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗?
练习:P53练习1、2、3。
IV课堂小结
1、判定一个三角形是等腰三角形有几种方法?
2、判定一个三角形是等边三角形有几种方法?
3、等腰三角形的性质定理与判定定理有何关系?
4、现在证明线段相等问题,一般应从几方面考虑?
V布置作业:P56页习题12.3第5、6题
八年级数学教案4
一、教学目标
1.使学生理解并掌握分式的概念,了解有理式的概念;
2.使学生能够求出分式有意义的条件;
3.通过类比分数研究分式的教学,培养学生运用类比转化的思想方法解决问题的能力;
4.通过类比方法的教学,培养学生对事物之间是普遍联系又是变化发展的辨证观点的再认识.
二、重点、难点、疑点及解决办法
1.教学重点和难点 明确分式的分母不为零.
2.疑点及解决办法 通过类比分数的意义,加强对分式意义的理解.
三、教学过程
【新课引入】
前面所研究的因式分解问题是把整式分解成若干个因式的积的问题,但若有如下问题:某同学分钟做了60个仰卧起坐,每分钟做多少个?可表示为,问,这是不是整式?请一位同学给它试命名,并说一说怎样想到的?(学生有过分数的经验,可猜想到分式)
【新课】
1.分式的定义
(1)由学生分组讨论分式的定义,对于“两个整式相除叫做分式”等错误,由学生举反例一一加以纠正,得到结论:
用、表示两个整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母.
(2)由学生举几个分式的例子.
(3)学生小结分式的概念中应注意的问题.
①分母中含有字母.
②如同分数一样,分式的分母不能为零.
(4)问:何时分式的值为零?[以(2)中学生举出的`分式为例进行讨论]
2.有理式的分类
请学生类比有理数的分类为有理式分类:
例1 当取何值时,下列分式有意义?
(1);
解:由分母得.
∴当时,原分式有意义.
(2);
解:由分母得.
∴当时,原分式有意义.
(3);
解:∵恒成立,
∴取一切实数时,原分式都有意义.
(4).
解:由分母得.
∴当且时,原分式有意义.
思考:若把题目要求改为:“当取何值时下列分式无意义?”该怎样做?
例2 当取何值时,下列分式的值为零?
(1);
解:由分子得.
而当时,分母.
∴当时,原分式值为零.
小结:若使分式的值为零,需满足两个条件:①分子值等于零;②分母值不等于零.
(2);
解:由分子得.
而当时,分母,分式无意义.
当时,分母.
∴当时,原分式值为零.
(3);
解:由分子得.
而当时,分母.
当时,分母.
∴当或时,原分式值都为零.
(4).
解:由分子得.
而当时,,分式无意义.
∴没有使原分式的值为零的的值,即原分式值不可能为零.
(四)总结、扩展
1.分式与分数的区别.
2.分式何时有意义?
3.分式何时值为零?
(五)随堂练习
1.填空题:
(1)当时,分式的值为零
(2)当时,分式的值为零
(3)当时,分式的值为零
2.教材P55中1、2、3.
八、布置作业
教材P56中A组3、4;B组(1)、(2)、(3).
九、板书设计
课题 例1
1.定义例2
2.有理式分类
八年级数学教案5
教学内容
本节课主要介绍全等三角形的概念和性质.
教学目标
1.知识与技能
领会全等三角形对应边和对应角相等的有关概念.
2.过程与方法
经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角.
3.情感、态度与价值观
培养观察、操作、分析能力,体会全等三角形的应用价值.
重、难点与关键
1.重点:会确定全等三角形的对应元素.
2.难点:掌握找对应边、对应角的方法.
3.关键:找对应边、对应角有下面两种方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)对应边所对的角是对应角,?两条对应边所夹的角是对应角.教具准备
四张大小一样的纸片、直尺、剪刀.
教学方法
采用“直观──感悟”的教学方法,让学生自己举出形状、大小相同的实例,加深认识.教学过程
一、动手操作,导入课题
1.先在其中一张纸上画出任意一个多边形,再用剪刀剪下,?思考得到的图形有何特点?
2.重新在一张纸板上画出任意一个三角形,再用剪刀剪下,?思考得到的图形有何特点?
【学生活动】动手操作、用脑思考、与同伴讨论,得出结论.
【教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形.
学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意整个过程要细心.
【互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合.这样的两个图形叫做全等形,用“≌”表示.
概念:能够完全重合的两个三角形叫做全等三角形.
【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的'三角形会全等吗?
【学生活动】动手操作,实践感知,得出结论:两个三角形全等.
【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边.
【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重在一起?(2)此时它们的顶点、边、角有何特点?
【交流讨论】通过同桌交流,实验得出下面结论:
1.任意放置时,并不一定完全重合,?只有当把相同的角旋转到一起时才能完全重合.
2.这时它们的三个顶点、三条边和三个内角分别重合了.
3.完全重合说明三条边对应相等,三个内角对应相等,?对应顶点在相对应的位置.
八年级数学教案6
第11章平面直角坐标系
11。1平面上点的坐标
第1课时平面上点的坐标(一)
教学目标
【知识与技能】
1。知道有序实数对的概念,认识平面直角坐标系的相关知识,如平面直角坐标系的构成:横轴、纵轴、原点等。
2。理解坐标平面内的点与有序实数对的一一对应关系,能写出给定的平面直角坐标系中某一点的坐标。已知点的坐标,能在平面直角坐标系中描出点。
3。能在方格纸中建立适当的平面直角坐标系来描述点的位置。
【过程与方法】
1。结合现实生活中表示物体位置的例子,理解有序实数对和平面直角坐标系的作用。
2。学会用有序实数对和平面直角坐标系中的点来描述物体的位置。
【情感、态度与价值观】
通过引入有序实数对、平面直角坐标系让学生体会到现实生活中的问题的解决与数学的发展之间有联系,感受到数学的价值。
重点难点
【重点】
认识平面直角坐标系,写出坐标平面内点的坐标,已知坐标能在坐标平面内描出点。
【难点】
理解坐标系中的坐标与坐标轴上的数字之间的关系。
教学过程
一、创设情境、导入新知
师:如果让你描述自己在班级中的位置,你会怎么说?
生甲:我在第3排第5个座位。
生乙:我在第4行第7列。
师:很好!我们买的电影票上写着几排几号,是对应某一个座位,也就是这个座位可以用排号和列号两个数字确定下来。
二、合作探究,获取新知
师:在以上几个问题中,我们根据一个物体在两个互相垂直的方向上的数量来表示这个物体
的位置,这两个数量我们可以用一个实数对来表示,但是,如果(5,3)表示5排3号的话,那么(3,5)表示什么呢?
生:3排5号。
师:对,它们对应的不是同一个位置,所以要求表示物体位置的这个实数对是有序的。谁来说说我们应该怎样表示一个物体的位置呢?
生:用一个有序的实数对来表示。
师:对。我们学过实数与数轴上的点是一一对应的,有序实数对是不是也可以和一个点对应起来呢?
生:可以。
教师在黑板上作图:
我们可以在平面内画两条互相垂直、原点重合的数轴。水平的数轴叫做x轴或横轴,取向右为
正方向;竖直的数轴叫做y轴或纵轴,取向上为正方向;两轴交点为原点。这样就构成了平面直角坐标系,这个平面叫做坐标平面。
师:有了平面直角坐标系,平面内的点就可以用一个有序实数对来表示了。现在请大家自己动手画一个平面直角坐标系。
学生操作,教师巡视。教师指正学生易犯的错误。
教师边操作边讲解:
如图,由点P分别向x轴和y轴作垂线,垂足M在x轴上的坐标是3,垂足N在y轴上的坐标是5,我们就说P点的横坐标是3,纵坐标是5,我们把横坐标写在前,纵坐标写在后,(3,5)就是点P的坐标。在x轴上的点,过这点向y轴作垂线,对应的坐标是0,所以它的纵坐标就是0;在y轴上的点,过这点向x轴作垂线,对应的坐标是0,所以它的横坐标就是0;原点的横坐标和纵坐标都是0,即原点的坐标是(0,0)。
教师多媒体出示:
师:如图,请同学们写出A、B、C、D这四点的坐标。
生甲:A点的坐标是(—5,4)。
生乙:B点的坐标是(—3,—2)。
生丙:C点的坐标是(4,0)。
生丁:D点的坐标是(0,—6)。
师:很好!我们已经知道了怎样写出点的坐标,如果已知一点的坐标为(3,—2),怎样在平面直角坐标系中找到这个点呢?
教师边操作边讲解:
在x轴上找出横坐标是3的点,过这一点向x轴作垂线,横坐标是3的点都在这条直线上;在y轴上找出纵坐标是—2的点,过这一点向y轴作垂线,纵坐标是—2的点都在这条直线上;这两条直线交于一点,这一点既满足横坐标为3,又满足纵坐标为—2,所以这就是坐标为(3,—2)的点。下面请同学们在方格纸中建立一个平面直角坐标系,并描出A(2,—4),B(0,5),C(—2,—3),D(—5,6)这几个点。
学生动手作图,教师巡视指导。
三、深入探究,层层推进
师:两个坐标轴把坐标平面划分为四个区域,从x轴正半轴开始,按逆时针方向,把这四个区域分别叫做第一象限、第二象限、第三象限和第四象限。注意:坐标轴不属于任何一个象限。在同一象限内的点,它们的横坐标的符号一样吗?纵坐标的符号一样吗?
生:都一样。
师:对,由作垂线求坐标的过程,我们知道第一象限内的点的横坐标的符号为+,纵坐标的符号也为+。你能说出其他象限内点的`坐标的符号吗?
生:能。第二象限内的点的坐标的符号为(—,+),第三象限内的点的坐标的符号为(—,—),第四象限内的点的坐标的符号为(+,—)。
师:很好!我们知道了一点所在的象限,就能知道它的坐标的符号。同样的,我们由点的坐标也能知道它所在的象限。一点的坐标的符号为(—,+),你能判断这点是在哪个象限吗?
生:能,在第二象限。
四、练习新知
师:现在我给出几个点,你们判断一下它们分别在哪个象限。
教师写出四个点的坐标:A(—5,—4),B(3,—1),C(0,4),D(5,0)。
生甲:A点在第三象限。
生乙:B点在第四象限。
生丙:C点不属于任何一个象限,它在y轴上。
生丁:D点不属于任何一个象限,它在x轴上。
师:很好!现在请大家在方格纸上建立一个平面直角坐标系,在上面描出这些点。
学生作图,教师巡视,并予以指导。
五、课堂小结
师:本节课你学到了哪些新的知识?
生:认识了平面直角坐标系,会写出坐标平面内点的坐标,已知坐标能描点,知道了四个象限以及四个象限内点的符号特征。
教师补充完善。
教学反思
物体位置的说法和表述物体的位置等问题,学生在实际生活中经常遇到,但可能没有想到这些问题与数学的联系。教师在这节课上引导学生去想到建立一个平面直角坐标系来表示物体的位置,让学生参与到探索获取新知的活动中,主动学习思考,感受数学的魅力。在教学中我让学生由生活中的实例与坐标的联系感受坐标的实用性,增强了学生学习数学的兴趣。
第2课时平面上点的坐标(二)
教学目标
【知识与技能】
进一步学习和应用平面直角坐标系,认识坐标系中的图形。
【过程与方法】
通过探索平面上的点连接成的图形,形成二维平面图形的概念,发展抽象思维能力。
【情感、态度与价值观】
培养学生的合作交流意识和探索精神,体验通过二维坐标来描述图形顶点,从而描述图形的方法。
重点难点
【重点】
理解平面上的点连接成的图形,计算围成的图形的面积。
【难点】
不规则图形面积的求法。
教学过程
一、创设情境,导入新知
师:上节课我们学习了平面直角坐标系的概念,也学习了已知点的坐标,怎样在平面直角坐标系中把这个点表示出来。下面请大家在方格纸上建立一个平面直角坐标系,并在上面标出A(5,1),B(2,1),C(2,—3)这三个点。
学生作图。
教师边操作边讲解:
二、合作探究,获取新知
师:现在我们把这三个点用线段连接起来,看一下得到的是什么图形?
生甲:三角形。
生乙:直角三角形。
师:你能计算出它的面积吗?
生:能。
教师挑一名学生:你是怎样算的呢?
生:AB的长是5—2=3,BC的长是1—(—3)=4,所以三角形ABC的面积是×3×4=6。
师:很好!
教师边操作边讲解:
大家再描出四个点:A(—1,2),B(—2,—1),C(2,—1),D(3,2),并将它们依次连接起来看看形成的是什么
图形?
学生完成操作后回答:平行四边形。
师:你能计算它的面积吗?
生:能。
教师挑一名学生:你是怎么计算的呢?
生:以BC为底,A到BC的垂线段AE为高,BC的长为4,AE的长为3,平行四边形的面积就是4×3=12。师:很好!刚才是已知点,我们将它们顺次连接形成图形,下面我们来看这样一个连接成的图形:
教师多媒体出示下图:
八年级数学教案7
教学目标:
【知识与技能】
1、理解并掌握等腰三角形的性质。
2、会用符号语言表示等腰三角形的性质。
3、能运用等腰三角形性质进行证明和计算。
【过程与方法】
1、通过观察等腰三角形的对称性,发展学生的形象思维。
2、通过实践、观察、证明等腰三角形的性质,积累数学活动经验,感受数学思考过程的条理性,发展学生的合情推理能力。
3、通过运用等腰三角形的性质解决有关问题,提高学生运用几何语言表达问题的,运用知识和技能解决问题的能力。
【情感态度】
引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中取得成功的体验。
【教学重点】
等腰三角形的性质及应用。
【教学难点】
等腰三角形的证明。
教学过程:
一、情境导入,初步认识
问题1什么叫等腰三角形?它是一个轴对称图形吗?请根据自己的理解,利用轴对称的知识,自己做一个等腰三角形。要求学生独立思考,动手作图后再互相交流评价。
可按下列方法做出:
作一条直线l,在l上取点A,在l外取点B,作出点B关于直线l的对称点C,连接AB,AC,CB,则可得到一个等腰三角形。
问题2每位同学请拿出事先准备好的长方形纸片,按下图方式折叠剪裁,再把它展开,观察并讨论:得到的△ABC有什么特点?
教师指导:上述过程中,剪刀剪过的两条边是相等的,即△ABC中AB=AC,所以△ABC是等腰三角形。
把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角。由这些重合的线段和角,你能发现等腰三角形的性质吗?说说你的猜想。
在一张白纸上任意画一个等腰三角形,把它剪下来,请你试着折一折。你的猜想仍然成立吗?
教学说明:通过学生的动手操作与观察发现,加深学生对等腰三角形性质的理解。
二、思考探究,获取新知
教师依据学生讨论发言的情况,归纳等腰三角形的性质:
①∠B=∠C→两个底角相等。
②BD=CD→AD为底边BC上的中线。
③∠BAD=∠CAD→AD为顶角∠BAC的平分线。
∠ADB=∠ADC=90°→AD为底边BC上的高。
指导学生用语言叙述上述性质。
性质1等腰三角形的两个底角相等(简写成:“等边对等角”)。
性质2等腰三角形的顶角平分线、底边上的中线,底边上的高重合(简记为:“三线合一”)。
教师指导对等腰三角形性质的证明。
1、证明等腰三角形底角的性质。
教师要求学生根据猜想的结论画出相应的图形,写出已知和求证。在引导学生分析思路时强调:
(1)利用三角形全等来证明两角相等。为证∠B=∠C,需证明以∠B,∠C为元素的两个三角形全等,需要添加辅助线构造符合证明要求的两个三角形。
(2)添加辅助线的方法可以有多种方式:如作顶角平分线,或作底边上的中线,或作底边上的高等。
2、证明等腰三角形“三线合一”的性质。
【教学说明】在证明中,设计辅助线是关键,引导学生用全等的方法去处理,在不同的辅助线作法中,由辅助线带来的条件是不同的,重视这一点,要求学生板书证明过程,以体会一题多解带来的体验。
三、典例精析,掌握新知
例如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的.度数。
解:∵AB=AC,BD=BC=AD,
∴∠ABC=∠C=∠BDC,∠A=∠ABD(等边对等角)。
设∠A=x,则∠BDC=∠A+∠ABD=2x,
从而∠ABC=∠C=∠BDC=2x。
于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,
解得x=36°
于是在△ABC中,有∠A=36°,∠ABC=∠C=72°。
【教学说明】等腰三角形“等边对等角”及“三线合一”性质,可以实现由边到角的转化,从而可求出相应角的度数。要在解题过程中,学会从复杂图形中分解出等腰三角形,用方程思想和数形结合思想解决几何问题。
四、运用新知,深化理解
第1组练习:
1、如图,在下列等腰三角形中,分别求出它们的底角的度数。
如图,△ABC是等腰直角三角形,AB=AC,∠BAC=90°,AD是底边BC上的高,标出∠B,∠C,∠BAD,∠DAC的度数,指出图中有哪些相等线段。
2、如图,在△ABC,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数。
第2组练习:
1、如果△ABC是轴对称图形,则它一定是( )
A、等边三角形
B、直角三角形
C、等腰三角形
D、等腰直角三角形
2、等腰三角形的一个外角是100°,它的顶角的度数是( )
A、80° B、20°
C、80°和20° D、80°或50°
3、已知等腰三角形的腰长比底边多2cm,并且它的周长为16cm。求这个等腰三角形的边长。
4、如图,在△ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E。求证:AE=CE。
【教学说明】
等腰三角形解边方面的计算类型较多,引导学生见识不同类型,并适时概括归纳,帮学生形成解题能力,注意提醒学生分类讨论思想的应用。
【答案】
第1组练习答案:
1、(1)72°;(2)30°
2、∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD
3、∠B=77°,∠C=38、5°
第2组练习答案:
1、C
2、C
3、设三角形的底边长为xcm,则其腰长为(x+2)cm,根据题意,得2(x+2)+x=16。解得x=4。∴等腰三角形的三边长为4cm,6cm和6cm。
4、延长CD交AB的延长线于P,在△ADP和△ADC中,∠PAD=∠CAD,AD=AD,∠PDA=∠CDA,∴△ADP≌△ADC。∴∠P=∠ACD。又∵DE∥AP,∴∠CDE=∠P。∴∠CDE=∠ACD,∴DE=EC。同理可证:AE=DE。∴AE=CE。
四、师生互动,课堂小结
这节课主要探讨了等腰三角形的性质,并对性质作了简单的应用。请学生表述性质,提醒每个学生要灵活应用它们。
学生间可交流体会与收获。
八年级数学教案8
一、教学目标
①经历探索整式除法运算法则的过程,会进行简单的整式除法运算(只要求单项式除以单项式,并且结果都是整式),培养学生独立思考、集体协作的能力。
②理解整式除法的算理,发展有条理的思考及表达能力。
二、教学重点与难点
重点:整式除法的运算法则及其运用。
难点:整式除法的运算法则的推导和理解,尤其是单项式除以单项式的运算法则。
三、教学准备
卡片及多媒体课件。
四、教学设计
(一)情境引入
教科书第161页问题:木星的质量约为1。90×1024吨,地球的质量约为5。98×1021吨,你知道木星的质量约为地球质量的多少倍吗?
重点研究算式(1。90×1024)÷(5。98×1021)怎样进行计算,目的是给出下面两个单项式相除的模型。
注:教科书从实际问题引入单项式的除法运算,学生在探索这个问题的过程中,将自然地体会到学习单项式的除法运算的必要性,了解数学与现实世界的联系,同时再次经历感受较大数据的过程。
(二)探究新知
(1)计算(1。90×1024)÷(5。98×1021),说说你计算的根据是什么?
(2)你能利用(1)中的方法计算下列各式吗?
8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。
(3)你能根据(2)说说单项式除以单项式的运算法则吗?
注:教师可以鼓励学生自己发现系数、同底数幂的底数和指数发生的变化,并运用自己的语言进行描述。
单项式的除法法则的'推导,应按从具体到一般的步骤进行。探究活动的安排,是使学生通过对具体的特例的计算,归纳出单项式的除法运算性质,并能运用乘除互逆的关系加以说明,也可类比分数的约分进行。在这些活动过程中,学生的化归、符号演算等代数推理能力和有条理的表达能力得到进一步发展。重视算理算法的渗透是新课标所强调的。
(三)归纳法则
单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
注:通过总结法则,培养学生的概括能力,养成用数学语言表达自己想法的数学学习习惯。
(四)应用新知
例2计算:
(1)28x4y2÷7x3y;
(2)—5a5b3c÷15a4b。
首先指明28x4y2与7x3y分别是被除式与除式,在这儿省去了括号。对本例可以采用学生口述,教师板书的形式完成。口述和板书都应注意展示法则的应用,计算过程要详尽,使学生尽快熟悉法则。
注:单项式除以单项式,既要对系数进行运算,又要对相同字母进行指数运算,同时对只在一个单项式里含有的幂要加以注意,这些对刚刚接触整式除法的学生来讲,难免会出现照看不全的情况,所以更应督促学生细心解答问题。
巩固新知教科书第162页练习1及练习2。
学生自己尝试完成计算题,同桌交流。
注:在独立解题和同伴的相互交流过程中让学生自己去体会法则、掌握法则,印象更为深刻,也有助于培养学生良好的思维习惯和主动参与学习的习惯。
(五)作业
1、必做题:教科书第164页习题15。3第1题;第2题。
2、选做题:教科书第164页习题15。3第8题
八年级数学教案9
一、教学目的
1.使学生进一步理解自变量的取值范围和函数值的意义.
2.使学生会用描点法画出简单函数的图象.
二、教学重点、难点
重点:1.理解与认识函数图象的意义.
2.培养学生的看图、识图能力.
难点:在画图的三个步骤的列表中,如何恰当地选取自变量与函数的对应值问题.
三、教学过程
复习提问
1.函数有哪三种表示法?(答:解析法、列表法、图象法.)
2.结合函数y=x的图象,说明什么是函数的图象?
3.说出下列各点所在象限或坐标轴:
新课
1.画函数图象的方法是描点法.其步骤:
(1)列表.要注意适当选取自变量与函数的对应值.什么叫“适当”?——这就要求能选取表现函数图象特征的几个关键点.比如画函数y=3x的图象,其关键点是原点(0,0),只要再选取另一个点如M(3,9)就可以了.
一般地,我们把自变量与函数的对应值分别作为点的横坐标和纵坐标,这就要把自变量与函数的对应值列出表来.
(2)描点.我们把表中给出的有序实数对,看作点的坐标,在直角坐标系中描出相应的点.
(3)用光滑曲线连线.根据函数解析式比如y=3x,我们把所描的两个点(0,0),(3,9)连成直线.
一般地,根据函数解析式,我们列表、描点是有限的几个,只需在平面直角坐标系中,把这有限的几个点连成表示函数的曲线(或直线).
2.讲解画函数图象的三个步骤和例.画出函数y=x+0.5的图象.
小结
本节课的重点是让学生根据函数解析式画函数图象的三个步骤,自己动手画图.
练习
①选用课本练习(前一节已作:列表、描点,本节要求连线)
②补充题:画出函数y=5x-2的图象.
作业
选用课本习题.
四、教学注意问题
1.注意渗透数形结合思想.通过研究函数的图象,对图象所表示的`一个变量随另一个变量的变化而变化就更有形象而直观的认识.把函数的解析式、列表、图象三者结合起来,更有利于认识函数的本质特征.
2.注意充分调动学生自己动手画图的积极性.
3.认识到由于计算器和计算机的普及化,代替了手工绘图功能.故在教学中要倾向培养学生看图、识图的能力.
八年级数学教案10
一、内容和内容解析
1.内容
二次根式的性质。
2.内容解析
本节教材是在学生学习二次根式概念的基础上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和思考得到二次根式的两个基本性质.
对于二次根式的性质,教材没有直接从算术平方根的意义得到,而是考虑学生的年龄特征,先通过 “探究”栏目中给出四个具体问题,让学生学生根据算术平方根的意义,就具体数字进行分析得出结果,再分析这些结果的共同特征,由特殊到一般地归纳出结论.基于以上分析,确定本节课的教学重点为:理解二次根式的性质.
二、目标和目标解析
1.教学目标
(1)经历探索二次根式的性质的过程,并理解其意义;
(2)会运用二次根式的性质进行二次根式的化简;
(3)了解代数式的概念.
2.目标解析
(1)学生能根据具体数字分析和算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质;
(2)学生能灵活运用二次根式的性质进行二次根式的化简;
(3)学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.
三、教学问题诊断分析
二次根式的性质是二次根式化简和运算的重要基础.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,重在能灵活运用二次根式的性质进行二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的灵活运用存在一定的困难,突破这一难点需要教师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵活运用的能力.
本节课的教学难点为:二次根式性质的灵活运用.
四、教学过程设计
1.探究性质1
问题1 你能解释下列式子的含义吗?
师生活动:教师引导学生说出每一个式子的含义.
【设计意图】让学生初步感知,这些式子都表示一个非负数的算术平方根的平方.
问题2 根据算术平方根的意义填空,并说出得到结论的.依据.
师生活动 学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.
【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质1作铺垫.
问题3 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?
师生活动:引导学生归纳得出二次根式的性质: ( ≥0).
【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力.
例2 计算
(1) ;(2) .
师生活动:学生独立完成,集体订正.
【设计意图】巩固二次根式的性质1,学会灵活运用.
2.探究性质2
问题4 你能解释下列式子的含义吗?
师生活动:教师引导学生说出每一个式子的含义.
【设计意图】让学生初步感知,这些式子都表示一个数的平方的算术平方根.
问题5 根据算术平方根的意义填空,并说出得到结论的依据.
师生活动 学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.
【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质2作铺垫.
问题6 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?
师生活动:引导学生归纳得出二次根式的性质: ( ≥0)
【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的能力.
例3 计算
(1) ;(2) .
师生活动:学生独立完成,集体订正.
【设计意图】巩固二次根式的性质2,学会灵活运用.
3.归纳代数式的概念
问题7 回顾我们学过的式子,如, ( ≥0),这些式子有哪些共同特征?
师生活动:学生概括式子的共同特征,得出代数式的概念.
【设计意图】学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括能力.
4.综合运用
(1)算一算:
【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,第(2)、(3)、(4)小题要特别注意结果的符号.
(2)想一想: 中, 的取值范围是什么?当 ≥0时, 等于多少?当 时, 又等于多少?
【设计意图】通过此问题的设计,加深学生对 的理解,开阔学生的视野,训练学生的思维.
(3)谈一谈你对 与 的认识.
【设计意图】加深学生对二次根式性质的理解.
5.总结反思
(1)你知道了二次根式的哪些性质?
(2)运用二次根式性质进行化简需要注意什么?
(3)请谈谈发现二次根式性质的思考过程?
(4)想一想,到现在为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识.
6.布置作业:教科书习题16.1第2,4题.
五、目标检测设计
1. ; ; .
【设计意图】考查对二次根式性质的理解.
2.下列运算正确的是( )
A. B. C. D.
【设计意图】考查学生运用二次根式的性质进行化简的能力.
3.若 ,则 的取值范围是 .
【设计意图】考查学生对一个数非负数的算术平方根的理解.
4.计算: .
【设计意图】考查二次根式性质的灵活运用.
八年级数学教案11
教学目标:
1、了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。
2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。
教学重点:
算术平方根的概念。
教学难点:
根据算术平方根的概念正确求出非负数的算术平方根。
教学过程
一、情境导入
请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?如果这块画布的面积是?这个问题实际上是已知一个正数的平方,求这个正数的问题?
这就要用到平方根的概念,也就是本章的主要学习内容。这节课我们先学习有关算术平方根的概念。
二、导入新课:
1、提出问题:(书P68页的问题)
你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)
这个问题相当于在等式扩=25中求出正数x的值。
一般地,如果一个正数x的平方等于a,即=a,那么这个正数x叫做a的算术平方根。a的算术平方根记为,读作根号a,a叫做被开方数。规定:0的算术平方根是0。
也就是,在等式=a(x0)中,规定x = 。
2、试一试:你能根据等式:=144说出144的算术平方根是多少吗?并用等式表示出来。
3、想一想:下列式子表示什么意思?你能求出它们的值吗?
建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值。例如表示25的`算术平方根。
4、例1求下列各数的算术平方根:
(1)100;(2)1;(3);(4)0。0001
三、练习
P69练习1、2
四、探究:(课本第69页)
怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?
方法1:课本中的方法,略;
方法2:
可还有其他方法,鼓励学生探究。
问题:这个大正方形的边长应该是多少呢?
大正方形的边长是,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?
建议学生观察图形感受的大小。小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究。
五、小结:
1、这节课学习了什么呢?
2、算术平方根的具体意义是怎么样的?
3、怎样求一个正数的算术平方根
六、课外作业:
P75习题13.1活动第1、2、3题
八年级数学教案12
数据的波动
教学目标:
1、经历数据离散程度的探索过程
2、了解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数值。
教学重点:会计算某些数据的极差、标准差和方差。
教学难点:理解数据离散程度与三个差之间的关系。
教学准备:计算器,投影片等
教学过程:
一、创设情境
1、投影课本P138引例。
(通过对问题串的解决,使学生直观地估计从甲、乙两厂抽取的20只鸡腿的平均质量,同时让学生初步体会平均水平相近时,两者的离散程度未必相同,从而顺理成章地引入刻画数据离散程度的一个量度极差)
2、极差:是指一组数据中最大数据与最小数据的差,极差是用来刻画数据离散程度的一个统计量。
二、活动与探究
如果丙厂也参加了竞争,从该厂抽样调查了20只鸡腿,数据如图(投影课本159页图)
问题:1、丙厂这20只鸡腿质量的平均数和极差是多少?
2、如何刻画丙厂这20只鸡腿质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与对应平均数的差距。
3、在甲、丙两厂中,你认为哪个厂鸡腿质量更符合要求?为什么?
(在上面的情境中,学生很容易比较甲、乙两厂被抽取鸡腿质量的极差,即可得出结论。这里增加一个丙厂,其平均质量和极差与甲厂相同,此时导致学生思想认识上的矛盾,为引出另两个刻画数据离散程度的量度标准差和方差作铺垫。
三、讲解概念:
方差:各个数据与平均数之差的平方的平均数,记作s2
设有一组数据:x1, x2, x3,,xn,其平均数为
则s2= ,
而s= 称为该数据的标准差(既方差的算术平方根)
从上面计算公式可以看出:一组数据的`极差,方差或标准差越小,这组数据就越稳定。
四、做一做
你能用计算器计算上述甲、丙两厂分别抽取的20只鸡腿质量的方差和标准差吗?你认为选哪个厂的鸡腿规格更好一些?说说你是怎样算的?
(通过对此问题的解决,使学生回顾了用计算器求平均数的步骤,并自由探索求方差的详细步骤)
五、巩固练习:课本第172页随堂练习
六、课堂小结:
1、怎样刻画一组数据的离散程度?
2、怎样求方差和标准差?
七、布置作业:习题5.5第1、2题。
八年级数学教案13
教学目标:
1. 掌握三角形内角和定理及其推论;
2. 弄清三角形按角的分类, 会按角的大小对三角形进行分类;
3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。
4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态
5. 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。
教学重点:
三角形内角和定理及其推论。
教学难点:
三角形内角和定理的证明
教学用具:
直尺、微机
教学方法:
互动式,谈话法
教学过程:
1、创设情境,自然引入
把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。
问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?
问题2 你能用几何推理来论证得到的关系吗?
对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线 ”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)
新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。
2、设问质疑,探究尝试
(1)求证:三角形三个内角的和等于
让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。
问题1 观察:三个内角拼成了一个
什么角?问题2 此实验给我们一个什么启示?
(把三角形的三个内角之和转化为一个平角)
问题3 由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?
其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的'关系,达到化难为易解决问题的目的。
(2)通过类比“三角形按边分类”,三角形按角怎样分类呢?
学生回答后,电脑显示图表。
(3)三角形中三个内角之和为定值
,那么对三角形的其它角还有哪些特殊的关系呢?问题1 直角三角形中,直角与其它两个锐角有何关系?
问题2 三角形一个外角与它不相邻的两个内角有何关系?
问题3 三角形一个外角与其中的一个不相邻内角有何关系?
其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。
这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。
3、三角形三个内角关系的定理及推论
引导学生分析并严格书写解题过程
八年级数学教案14
教学目标:
情意目标:
培养学生团结协作的精神,体验探究成功的乐趣。
能力目标:
能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。
认知目标:
了解梯形的'概念及其分类;掌握等腰梯形的性质。
教学重点、难点
重点:等腰梯形性质的探索;
难点:梯形中辅助线的添加。
教学课件:
PowerPoint演示文稿
教学方法:
启发法、
学习方法:
讨论法、合作法、练习法
教学过程:
(一)导入
1、出示图片,说出每辆汽车车窗形状(投影)
2、板书课题:5梯形
3、练习:下列图形中哪些图形是梯形?(投影)
4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。
5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)
6、特殊梯形的分类:(投影)
(二)等腰梯形性质的探究
【探究性质一】
思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影)
猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答)
如图,等腰梯形ABCD中,AD∥BC,AB=CD。求证:∠B=∠C
想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么?
等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。
【操练】
(1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,则腰AB=cm。(投影)
(2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E。(投影)
【探究性质二】
如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答)
如上图,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影)
等腰梯形性质:等腰梯形的两条对角线相等。
【探究性质三】
问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答)
问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)
等腰梯形性质:同以底上的两个内角相等,对角线相等
(三)质疑反思、小结
让学生回顾本课教学内容,并提出尚存问题;
学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。
八年级数学教案15
一、学习目标及重、难点:
1、了解方差的定义和计算公式。
2、理解方差概念产生和形成过程。
3、会用方差计算公式比较两组数据波动大小。
重点:掌握方差产生的必要性和应用方差公式解决实际问题。
难点:理解方差公式。
二、自主学习:
(一)知识详解:
方差:设有n个数据,各数据与它们的平均数的差的平方分别为
用它们的平均数表示这组数据的方差,即
给力小贴士:方差越小说明这组数据越稳定,波动性越低。
(二)自主检测小练习:
1、已知一组数据为2.0、-1.3、-4,则这组数据的方差为。
2、甲、乙两组数据如下:
甲组:10 9 11 8 12 13 10 7;
乙组:7 8 9 10 11 12 11 12。
分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小。
三、新课讲解:
引例:问题:从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下(单位:cm):
甲:9.10.10.13.7.13.10.8.11.8;
乙:8.13.12.11.10.12.7.7.10.10;
问:(1)哪种农作物的苗长较高(可以计算它们的平均数: = )?
(2)哪种农作物的苗长较整齐?(可以计算它们的极差,你可以发现)
归纳:方差:设有n个数据,各数据与它们的平均数的差的平方分别为
用它们的平均数表示这组数据的方差,即用来表示。
(一)例题讲解:
例1、段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,哪个人的成绩比较稳定?为什么?
测试次数第1次第2次第3次第4次第5次段巍1314131213金志强101291311
金志强 10 13 16 14 12
提示:先求平均数,然后使用公式计算方差。
(二)小试身手
1、甲、乙两名学生在相同条件下各射击靶10次,命中的环数如下:
甲:7.8.6.8.6.5.9.10.7.4
乙:9.5.7.8.7.6.8.6.7.7
经过计算,两人射击环数的平均数是,但 S = ,S = ,则 S S ,所以确定去参加比赛。
1、求下列数据的众数:
(1)3.2.5.3.1.2.3 (2)5.2.1.5.3.5.2.2
2.8年级一班有46个学生,其中13岁的有5人,14岁的有20人,15岁的有15人,16岁的`有6人。8年级一班学生年龄的平均数、中位数、众数分别是多少?
四、课堂小结
方差公式:
提示:方差越小,说明这组数据越集中。波动性越小。
每课一首诗:求方差,有公式;先平均,再求差;求平方,再平均;所得数,是方差。
五、课堂检测:
1、小爽和小兵在10次百米跑步练习中的成绩如下表所示:(单位:秒)
小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9
小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8
如果根据这些成绩选拔一人参加比赛,你会选谁呢?
六、课后作业:
必做题:教材141页练习1.2;选做题:练习册对应部分习题。
七、学习小札记:
写下你的收获,交流你的经验,分享你的成果,你会感到无比的快乐!
【八年级数学教案】相关文章:
八年级的数学教案12-14
八年级《函数》数学教案08-17
八年级数学教案06-18
八年级数学教案12-09
八年级上册人教版数学教案02-27
【热门】八年级数学教案11-29
【热】八年级数学教案12-07
八年级数学教案【荐】12-06
八年级的数学教案15篇12-14
八年级数学教案人教版01-03