数学四年级下册教案(精选)
作为一名辛苦耕耘的教育工作者,通常会被要求编写教案,教案是教学活动的总的组织纲领和行动方案。我们该怎么去写教案呢?下面是小编整理的数学四年级下册教案,欢迎大家分享。
数学四年级下册教案1
教学目标:
1.通过观察、讨论等数学活动,经历探索、归纳积的变化规律的过程。
2.知道扩大几倍、缩小几倍的意义,理解积的变化规律,会运用积的变化规律进行简便计算。
3.在探索、归纳积的变化规律的过程中,感受数学思考过程的条理性。
课前准备:口算卡片、小黑板。多媒体课件
教学过程:
一、创设情景
师:同学们,咱们来做几道口算题,看谁算的又对又快!
教师用卡片出示口算题,学生抢答。
56+34= 68+25= 73-42=
100-57= 3×4= 6×7=
42÷6= 81÷9=
二、扩大、缩小
1、教学扩大
师:再看下面几道口算题。不但要口算出结果,还要说一说是怎样算的。
课件出示课本第一组乘法算式:
37×10=
生:37×10=370,37乘1等于37,然后在末尾添上一个0,就是370。
教师显示结果:37×10=370
师:很好!下面看这道题:
出示37×100=
生:37×100=3700,37乘1等于37,然后在末尾添上两个0,就是3700。
师:同学们的想法都挺好的。在数学上,37×10还可以说成把37扩大10倍,37×100可以说把37扩大100倍。
教师显示:扩大几倍
师:37×10=370可以说37扩大10倍等于370,37×100=3700可以说37扩大100倍等于3700。同桌像老师这样互相说一说。
学生互相说一说。
师:谁能举出一个乘法算式,并用扩大几倍描述一下?
2、教学缩小
师:下面,我们再来口算两道除法题,说说你是怎样算的?
幻灯片出示:400 ÷10=
生1:400 ÷10=40。因为400里面有40个十。
生2:400 ÷10=40。因为40乘10等于400。
教师显示答案:400 ÷10=40。
师:在数学上,两个数相除也有另一种说法——缩小。400 ÷10可以说把400缩小10倍。
教师显示:缩小几倍
师:400 ÷10=40,可以说400缩小10倍等于40。
师:再看这道题,计算结果是多少。
出示:400 ÷100=
生:400 ÷100=4。因为400里有4个100。
教师显示:400 ÷100=4
师:谁能用“缩小几倍”这个词描述一下400 ÷100=4?
生:400 ÷100可以说把400缩小100倍等于4。
师:谁能举出一个除法算式,并试着用“缩小几倍”描述一下?
三、探索规律:
师:同学们已经会用扩大几倍描述两个数相乘,用缩小几倍来描述除法。下面,我们就用扩大和缩小来描述乘法计算中的一些规律。请看下面这组题。
出示幻灯片:4×2=8
40×2=80
400×2=800
师:同学们,看这几个算式,请你用刚学的名词描述一下。
生1:4扩大2倍等于8。
生2:40扩大2倍等于80。
生3:400扩大2倍等于800。
师:说的很好!大家再来看这几个算式的因数,你发现了什么共同点?
生1:每个算式中有一个2。
师:就是说,三个算式中,因数2没变。观察算式中另一个因数和积,你发现了什么?
生2:第一个和第二个算式比,因数4扩大了10倍,积也扩大10倍。
师:就是说,因数2不变,因数4扩大10倍,积8也扩大10倍。
生3:第三个算式和第一个算式比较,因数4扩大100倍,积也扩大100倍。
师:观察的很认真,就是说,因数2不变,因数4扩大多少倍,积也就扩大多少倍。
生4:第三个算式和第二个算式比较,因数40扩大10倍,积也扩大10倍。
师:很好!因数2不变,另一个因数4扩大多少倍,积也扩大相同的倍数。同学们,分别找出了这几个乘法算式中因数和积的变化规律。谁能用一句话来概括一下这个规律呢?
生:因数2不变,另一个因数扩大多少倍,积也扩大相同的倍数。
教师总结归纳出规律,幻灯片显示:
在乘法里,一个因数不变,另一个因数扩大若干倍,积也扩大相同的倍数。
师:通过刚才的三个算式,我们发现了,在乘法里,一个因数不变,另一个因数扩大若干倍,积也扩大相同的倍数。再来看这组算式。
出示:25×40=1000
25×20=500
25×10=250
师:观察这组算式的因数,你发现了什么共同点?
生1:三个算式中第一个因数都是25。
生2:有一个因数不变,都是25。
师:对!这组算式中,也有一个因数不变。再看另一个因数,你发现了什么?
生1:另一个因数一个比一个小。
生2:另一个因数越来越小。
师:对!另一个因数一个比一个小。再认真看一看,它们之间有什么关系呢?
生:40除以2等于20,还可以说40缩小2倍等于20。
师:也就是说,第二个算式和第一个算式比,一个因数不变,另一个因数40缩小了2倍,对吗?
取得全班共识。
师:那请同学们比较一下,第二个算式和第一个算式的积,你发现了什么?
生1:500比1000也缩小了2倍。
生2:第二个算式的积也缩小了2倍。
师:谁能用一句完整的话,说一说第二个算式和第一个算式的变化。
生1:第二个算式和第一个算式比较,一个因数25不变,另一个因数40缩小2倍,积也缩小2倍。
生2:第二个算式和第一个算式比,一个因数不变,另一个因数缩小2倍,积也缩小2倍。
教师肯定学生的不同说法。
师:把其他算式进行比较,并说一说因数和积的变化规律。
学生可能会说:
生1:第三个算式和第二个算式比较,一个因数25不变,另一个因数20缩小2倍,积也缩小2倍。
生2:第三个算式和第一个算式比较,一个因数25不变,另一个因数40缩小4倍,积也缩小4倍。
……
师:通过这组算式同学们发现了“在乘法算式里,一个因数不变,另一个因数缩小,积也缩小”的变化规律。谁能总结一下这个缩小的变化规律?
生:在乘法里,一个因数不变,另一个因数缩小几倍,积也缩小相同的倍数。
师:(指着上面两组算式)刚才通过这两组算式我们发现了因数扩大、积也扩大,因数缩小、积也缩小的规律,这两条规律可以概括在一起。
教师边说边整理规律.
幻灯片显示:在乘法里,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数。
请同学自己读一读。
师:刚才我们发现的规律是乘法计算中一条特别重要的性质叫做积的变化规律。
板书课题:积的变化规律
四、尝试练习
师:应用积的变化规律,可以使许多乘法计算变得简便。下面我们看,(出示幻灯片)仔细读题目的要求,并自己完成。
学生自己做,教师巡视,个别指导。
师:谁说说你是怎样想的?怎样做的`?
生1:第(1)组算式中,因数15不变,第二个算式中的另一个因数24比6扩大4倍,所以积也应扩大4倍。90×4=360
生2:第(1)组算式中,第三个算式的另一个因数30比6扩大5倍,积也要扩大5倍。90×5=450
生3:第(1)组算式中,第四个算式的另一个因数60比6扩大了10倍,积也要扩大10倍。90×10=900
生4:第(2)组算式中,第二个算式和第一个算式比较,因数4不变,因数23比230缩小10倍,积也缩小10倍,920÷10=92
生5:第三个算式和第一个算式比较,因数40比4扩大10倍,积也扩大10倍,920×10=9200
生6:第四个算式和第三个算式比较,因数40不变,因数23比230缩小10倍,积也缩小10倍,9200÷10=920。
生7:第四个算式和第一个算式比较,因数230缩小10倍,因数40又扩大10倍,积不变,是920。
五、课堂练习
师:这道题同学们做得很好,现在我们来完成表格:(出示幻灯片)
教师巡视,个别指导。
交流计算的过程和结果,(出示课件)重点说一说是怎样想的。
师:我们再来当一次小法官,判断各题是否正确并说明理由。
先让学生独立思考,再全班交流。
学生根据积的变化规律判断,说对意思即可。
师:下面还有一道生活中的题,(出示课件)我们来看一看。
学生读题后,指名回答。重点说一说第(2)题是怎样想的。
生1:210÷30=7(分),小明每分钟走210米,他走路的速度不变,要走420米,比210米扩大了2倍,需要的时间也要扩大2倍。
7×2=14(分)
生2:速度不变,路程扩大2倍,时间也要扩大2倍。
六、拓展练习
师:刚才大多数的同学都非常棒,在挑战一下自己吧
课件:一种货物每包重40千克,一辆卡车最多可以运120包。如果把货物改为每包重20千克,一辆卡车最多可以运多少包?改为每包重10千克呢?(列出表格计算)
师:谁来说一说这道题。
指名读题。
师:在这道题中,什么没变?什么变化了?
生:货物总千克数没变,每包的质量变化了。
师:货物的总质量是多少?你是怎么知道的?
生:货物的总质量是4800千
克,根据每包重40千克,一辆卡车最多可拉120包计算出来的。
师:那么,如果改为每包20千克或每包10千克,这批货物有多少包呢?请同学们列出表格,并计算出结果。同学可以商量。
学生独立计算。教师巡视,对有困难的进行指导。
师:谁愿意把你列的表格和计算的结果告诉大家?
生1:生2:
每包重包数总质量总质量每包重包数
40 120 4800 4800 40 120
20 240 4800 4800 20 240
10 480 480 4800 10 480
师:观察表(2)中的数据,说一说在货物总重量不变的情况下,每包的质量和包数是怎样变化的?
生1:货物总质量不变,每包质量由40千克改为20千克,缩小了2倍,而包数由120包变为240包,扩大了2倍。
生2:每包质量由40千克改为10千克,缩小了4倍,包数却由120变成了480,扩大了4倍。
师:从上面的例子中,我们发现一个因数扩大若干倍,另一个因数缩小相同的倍数,它们的积不变。
师:做后看数学冲浪的题,你发现了什么?
生:第一个因数没变,都是12345678。
生:第一个算式的积是9个1。
师:利用积不变的规律自己试着写出“数学冲浪”中算式的积。并用计算器验证一下。
学生完成后,交流学生写出的结果,并说一说是怎样想的。
数学四年级下册教案2
【教学内容】
人教版四年级下册第一单元四则运算--有括号的混合运算
【教材分析】
本课是在学生已经初步掌握四则混合运算顺序的基础上进行学习的。例4主要学习含有小括号和中括号的四则混合运算,让学生了解小括号、中括号意义,通过具体操作,体会含有小括号、中括号的算式的运算顺序。
【教学目标】
1、了解括号的产生,掌握含有小括号、中括号算式的运算顺序。
2、能准确规范计算带有括号的整数四则混合运算,感受数学符号的奇妙。
3、能灵活运用所学的知识解决生活中的简单问题,并能准确表达解决问题时的思考过程。
【教学重点】理解带中括号的四则混合运算的运算顺序 。
【教学难点】灵活运用学过的知识解决实际生活中的简单问题。
【教法】
教师通过创设情境,设疑诱导,解决问题,指导学生理解和掌握有括号的四则混合运算的运算顺序。
学法:
学生在独立思考的基础上进行合作交流,灵活运用学过的知识解决实际生活中的问题。
【教具】多媒体课件。
【教学过程】
一、 复习导入
1、问:我们学过那几种运算?
师:加法、减法、乘法和除法统称四则运算。我们以前学习的混合运算就是四则运算。
2、学生独立完成下面3题。
72-28+32 69÷3×10 37+11×5
让学生总结我们以前学过的四则运算的运算顺序
四则运算的运算顺序:
1、只有乘除或只有加减,要从左到右
2、有乘除也有加减,先算乘除,后算加减,3、有括号的先算括号里面的,再算括号外的。
【设计意图】通过复习四则混合运算的运算顺序,很自然地引入新课的学习,同时为新课的学习奠定必要的学习基础。
二、新知探究
1、教学例4
(1)出示教材第9页例4的算式:96÷12+4×2
①观察算式,让学生说说这个算式中包括几种运算,运算顺序是怎样的。
②学生独立进行计算。
学生板演: 96÷12+4×2
=8+8
=16
③引导学生思考:如果要先算加法,再算除法,最后算乘法,应该怎么办?
(2)学习计算带有小括号的算式。
①如果在96÷12+4×2的基础上加上小括号,变成96÷(12+4)×2,运算顺序怎样?(先算小括号里面的)
学生独立进行计算
②学生板演: 96÷(12+4)×2
=96÷16×2
=6×2
=12
③引导:在这个算式中,小括号起什么作用?(改变运算顺序)
④练习
先说一说下面各题的运算顺序,再计算。
﹙72-4﹚×6÷4 600÷﹙75-60﹚-10
【设计意图】讲完小括号的运算顺序之后,马上通过练习来把知识进行巩固和深化,促使学生应用所学的知识解决问题。起到学生学了知识就用上知识。
2、学习才有带有中括号的算式。
①如果在96÷(12+4)×2的基础上加上中括号“[ ]”,变成另一个算式96÷[(12+4)×2],运算顺序怎样?(说明:一个算式里既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的)
②学生独立计算,汇报结果。
指明板演:96÷[(12+4)×2]
=96÷[16×2]
=96÷32
=3
③小结:在含有括号的算式里,要按照从里到外的顺序,先算小括号里面的,再算中括号里面的,最后算括号外面的。括号内的运算,要按“先乘、除后加、减,同级运算依次算”的顺序进行。
【设计意图】通过学生的独立计算,能够深刻的`体会到有括号算式的运算顺序与没有括号算式的运算顺序之间的区别,能够更深的理解有括号算式的运算顺序。最后的小结能够很好的、系统的把四则混合运算的的运算顺序整理出来,更方便学生的记忆。
④练习
先说一说下面各题的运算顺序,再计算。
940×[128-﹙154-31﹚] 6000÷[75-﹙60-10﹚]
【设计意图】讲完中括号的运算顺序之后,马上通过练习来把算式中既有小括号又有中括号的运算顺序这一知识点进行巩固和深化,促使学生应用所学的知识解决问题。起到学生学了知识就用上知识。
3、对比中强化认识。
比较96÷12+4×2、96÷(12+4)×2和96÷[(12+4)×2]这三个算式,你发现了什么?
通过比较,引导学生发现:这两个算式中的数学和包含的运算都相同,但运算的顺序不同,导致计算的结果也不相同。
强调:在计算时,一定要先弄明白算式的运算顺序,再进行计算。
【设计意图】在学生理解了括号在四则混合运算中的作用后,通过对比教学,让学生更深刻地理解“小括号”“中括号”的作用。
4、阅读教材第9页的“你知道吗?”
通过阅读材料,学生知道了小括号、中括号和大括号的首次使用时间与相应的地点、人名等,扩充了学生的视野,增加了学生的课外知识。
5、总结四则运算的运算顺序:
学生讨论交流,汇报讨论结果。
归纳运算顺序:
①在没有括号的算式里,如果只有加、减法或者只乘、 除法,都要从左往右按顺序计算。
②在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法。
③算式里有括号的,要先算括号里面的。
【设计意图】通过讨论交流,把四则运算的运算顺序进行归纳总结,形成知识点,更加的便于学生记忆,与应用。
三、巩固练习
1、 完成教材第9页“做一做”。
360÷(70-4×16) 158-[(27+54)÷9]
指明几位学生板演,其余学生独立计算,教师巡视,个别辅导。完成后,集体订正。
集体订正时,让学生说说每题的计算顺序。
2、选择题:
(1)47与33的和,除以36与16的差,商是多少?正确列式是( )
A、47+33÷36-16
B、(47+33)÷(36-16)
C、(36-16)÷(47+33)
(2)750减去25的差,去乘20加上13的和,积是多少?正确列式是( )
A、(750-25)×(20+13)
B、(20+13)×(750-25)
C、750-25×20+13
3、先说一说下列各题的运算顺序,再计算。
25×[(470-320)÷15]
[35+(62-15)]×32
四、课堂总结
师:这节课,我们知道了小括号、中括号有什么作用?在含有括号的算式里应按怎样的顺序进行计算?
明确:小括号、中括号能改变运算的顺序;在既有小括号又有中括号的运算中,要先算小括号里面的,在算中括号里面的,最后算中括号外面的。
五、板书设计
有括号的混合运算
例4:
96÷12+4×2 96÷(12+4)×2 96÷[(12+4)×2]
=8+8 =96÷16×2 =96÷[16×2]
=16 =6×2 =96÷32
=12 =3
归纳:一个算式里,既有小括号又有中括号,要先算小括号里面的,再算中括号里面的,最后算中括号外面的。
【教学反思】
本节课的主要教学内容为“含有括号的四则运算”。在教学中没有创设生活情境引入括号的教学,而是直接的利用教学情境,呈现“在96÷12+4×2的基础上,加上小括号,变成96÷(12+4)×2,运算顺序怎样?在96÷(12+4)×2的基础上,加上中括号,变成96÷[(12+4)×2],运算顺序怎样?怎么算呢?”等一系列的问题,然后通过师生交流探讨,理解和掌握小括号、中括号在运算中的作用。通过这样的教学设计,不仅使学生认识到括号的作用,而且有利于学生理解、掌握含有小括号、中括号的混合运算的运算顺序。
数学四年级下册教案3
【课时安排】
1课时
【预习导航】
预习要求
☆上节课我们学习了有关乘法的两个定律。在有乘法和加法或者乘法和减法的算式里是否也藏着一些规律呢?现在让我们一起来探索吧!
旧知回顾
玩具厂每小时可以生产70个玩具。按每天工作8小时算,一星期(两天休息日除外)能完成3000个玩具吗?
【新知探究】
1.探一探
(1)完成例题中的要求。
为了丰富同学们的生活,学校组织同学们外出烧烤,中级部一共有20个小组,每组有3名同学负责准备烧烤的食物,有2名同学负责生火。一共有多少名同学参加了这次的烧烤活动?(用两种方法解决)
(1)思考:
根据两种方法的解题思路,说说分别先求什么,再求什么?
(2)观察例7和上面的两组算式,你发现了什么?
(3)你能再举一个这样的.例子吗?
用字母表示这个规律:
2.试一试
(1)判断题:(A档)
56×(19+28)=56×19+28 ( )
32×(7×3)=32×7+32×3 ( )
64×64+36×64=(64+36)×64 ( )
(2)简便计算,并进行比较 (B档)
3×4×25 (3+ 4)×25
观察以上的两题,比较乘法结合律和乘法分配律的区别。
3.小结
①乘法分配律的特点
②乘法分配律和乘法结合律的区别
【精练反馈】
1.计算大比拼(怎样简便就怎样计算) (A档)
125×(8+4) 49×51-49×49 65×99 +65
2.联系生活:完成书P28第8题(写出过程) (B档)
【学习小结】
通过这节课学习,你收获了什么?还有什么疑问吗?
【拓展延伸】
试着用乘法运算定律计算。(C档)
99×72 37×102
【易错收集】
数学四年级下册教案4
一、谈话导入。
1、上周我们学习了小数乘法的计算,学得怎么样,老师出几道题考考你,敢不敢接受挑战!
2、复习确定积的小数位数和列竖式计算小数乘法
卡片出示:
0.12×50 2.6×0.5 1.2×60 2.13×4
0.02×7 4.8×0.33 1.3×2.2 9.6×0.8
3、快速说出下面小数乘法的积是几位小数,并列竖式计算2.13×4和 9.6×0.8
4、看来同学们学得不错,今天我们继续来研究小数乘法计算。(板书课题:小数乘法)
二、创设情境
1、收集信息,生成问题
师:课前老师让同学们收集有关地球上动物爬行速度的资料,下面请同学们汇报一下你的收集情况。
学们汇报,教师向学生介绍动物的相关知识。同学们想不想知道世界上爬行最慢的哺乳动物是什么吗?
老师课前收集的资料,同学们看一看。
出示信息:南美赤道地带的三趾蛞蝓是世界上爬行最慢的哺乳动物,它在地面上每分大约爬行2.2米,在树上的.爬行速度是地面的2.15倍。
师:资料中有哪些数学信息?生答,根据以上信息,你能提出哪些用乘法解决的数学问题?
教师板书三趾蛞蝓在树上的爬行速度大约是每分多少米?和三蛞蝓在地面上每小时大约爬行多少米?两个数学问题。
2.自主探究,解决问题
师:根据板书的问题,你会列式吗?自己在练习本上列出算式。
(1)三趾蛞蝓在树上的爬行速度大约是每分多少米?
①列出算式:2.2×2.15=
②学生独立估计每分钟大约爬行多少米?并说出估计的方法。
然后再全班交流
③探索计算方法
独立列竖式计算,小组交流,重点交流以下内容:
(1)独立计算时遇到的问题
(2)如何确定积的小数点的位置
(3)竖式的书写格式
一人板演并介绍用竖式计算的方法
师:积为什么有三位的小数?与估算的结果进行比较。
得出:三趾蛞蝓在树上的爬行速度大约是每分米4.73米。答:
2. 三趾蛞蝓在地面上每小时大约爬行多少米?
(1)列式:2 .2×60=
(2)估计得数的大致范围并进行交流。
(3)独立列竖式计算,同时一人板演。
(4)由学生评价,并说一说计算时要注意什么?
(5)检查得数是否在估计的范围内。
得出:三趾蛞蝓在地面上每小时大约爬行132米。
三、巩固应用,拓展提高
1、做课本47页第四题。
学生读题,独立列式解答,班内回报交流,集体订正。
2、做课本47页第五题
学生读题,独立列式解答,班内回报交流,集体订正。
3、做课本47页第三题
请你给下列得数点上小数点,使计算正确。
4.8×1.3=624 9.32×1.4=13048 1.87×2.3=4301
4.8×0.9=432 9.32×0.7=6524 0.15×0.63=945
学生独立解答,集体订正,说一说做题方法,同时观察前两组算式,你有什么发现?
4、在Ο里填上“?”“?”“=”
0.3×1.2〇0.3 0.5×1.8〇1.8
0.3×0.2〇0.3 1.5×1.8〇1.8
0.3×1〇0.3 1×1.8〇1.8
(通过计算这两组题,你发现了什么)
四、内化提高
通过今天的学习,你有什么收获?
数学四年级下册教案5
教学内容:人教版义务教育课程标准实验教科书四年级《数学》下册第三单元《加法运算定律》
教材分析:
本册教材的安排是通过一个生活中的常见的数学问题,先教学交换律,再教学结合律;先教学运算律的含义,再教学运算律的应用。这样安排有三个好处:首先是由易到难,便于教学。交换律的内容比结合律简单,学生对交换律的感性认识比结合律丰富,先教学比较容易的交换律,有利于引起学生探索的兴趣。其次是能提高教学效率。交换律的教学方法和学习活动可以迁移到结合律,迁移能促进学生主动学习。再次是符合认识规律。先理解运算律的含义,再应用运算律使一些计算简便,体现了发现规律是为了掌握和利用规律。学好加法交换律和结合律,不仅有利于提高学生的计算能力、解决实际问题的能力,而且也为以后学生学好乘法交换律、乘法结合律、乘法分配律打下坚实的学习基础。
学情分析:
本节课的学习之前,学生对加法的交换律已有了一些感性认识。例如:在10以内的加法中,学生看一个图可以列出两道加法算式。在以前的教学中,教材对加法结合律也作了一些于孕伏。例如:通过100以内加法中出现小括号的学习,对加法结合律也有了一些感性的认识。这些都是学习加法交换律和加法结合律的基础。对于四年级的小学生来说,运算定律的概括具有一定的抽象性。好在学生通过第一学段的学习,对加法和乘法的一些运算规律已经有所了解,这是搞好本单元教学的有利条件。在此基础上,本单元的.教学应着重帮助学生把这些零散的感性认识上升为理性认识。
教学目标:
1、使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
2、使学生经历探索加法交换律和结合律的过程,进行举例、观察、发现、验证并概括出运算定律。
3、使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。
教学重点:
理解、掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。
教学难点:
使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。
教学过程:
教学环节
一、教师讲述故事《朝三暮四》,引导学生发现故事中的数学问题,初步感知加法交换律。
(课件呈现)
《朝三暮四》故事主题图
师:同学们想听故事吗?老师今天给大家讲个《朝三暮四》的故事。
古时候,有个老人养了一群猴子,这一天,老人对猴子说:“现在粮食不多了,要省着点吃。以后每天早上吃3颗栗子,晚上吃4颗栗子,怎么样?”猴子一听,怎么早上吃的比晚上还要少,不干,抗议!老人眼珠一转计上心头,马上改口说:“那么早上4颗,晚上3颗,好不好?”猴子一听早上多了一颗,自己占便宜了,这才开心的答应了。
师:猴子占到便宜了吗?为什么?也就是什么没变,只是什么变了?
2、引出等式:
师:早上吃3颗,板书3,晚上吃4颗,板书4,一共吃了3+4颗,也就是7颗。早上吃4颗,晚上吃3颗,一共吃4+3颗也是7颗,所以3+4=4+3。猴子占到便宜了吗?
3、猜想规律,引出课题
师:观察等号两边的算式,你发现什么?(数不变,符号不变,和不变,位置交换)
师:是不是任意两数相加,交换位置,和都不变呢?
这只是我们的猜想,很多著名的理论、定律、公式最初都是由猜想开始的,猜想怎样才能变成真理呢,需要验证。怎样来验证呢?
下面我们跟着李叔叔一起出去旅行一趟,相信不但可以锻炼身体,开阔视野,还能找到其中的奥秘呢。(课件演示:李叔叔骑车旅行的场景。)
二、学生自主探究加法交换律
1、获得信息。
师:从中你可以得到哪些信息?(学生同桌交流,然后全班汇报。)
2、解决问题。
师:能列式计算解决这个问题吗?(学生自己列式并口答。) 根据学生回答板书:
40+56=96(千米)
56+40=96(千米)
3、观察发现
观察这两个算式,说说它们有什么联系?(两个加数相同,只是加数位置发生了变化,和不变,因此两个算式应该是相等的)
根据学生回答板书:40+56=56+40
4、举例验证
我们可以用举例子的方式来验证一下。你还能再举出几个这样的例子吗?自己在本上写几个。(学生在练习本上举例,教师巡视。指名板演)
5、揭示定律。
师:像这样各种类型的例子越多,验证的猜想也就越可靠。比如,我们还可以用生活中的事例来证明。
同学们真聪明,想到了这么多的验证方法。给自己发现的规律起个名字,这句话中有“交换”两个字,我们就把这个定律叫做加法交换律。(板书)
6、用自己喜欢的方式表示定律
数学的魅力在于它的简洁和有效,数学简化了思维过程并使之更可靠!你能不能用最简单的字母或者符号表示加法交换律呢?(指名板演)
a+b=b+a
☆+○=○+☆
同学们所写的公式都可以很好的表示加法交换律,我们比较常用的是a+b=b+a。
三、巩固练习
1、运用加法交换律填上
合适的数
300+600=__ +__
____+65=____+35 b+_=_+_
2、计算并验算
325+562
四、学习加法结合律
1、多媒体展示:李叔叔三天骑车的路程统计。
(1)找出信息解决问题。
问:你能解决李叔叔提出的问题吗?
学生独立完成后交流。
88+104+96
=192+96
=288(千米)
88+(104+96)
=88+200
=288(千米)
师:第二道算式为什么要先算104+96呢?(后两个加数先相加,正好能凑成整百数。)
出示:(88+104)+96○88+(104+96)
怎么填?
(2)你能再举几个这样的例子吗?
问:观察、比较这些算式,说一说你发现了什么秘密?(鼓励学生用自己的话来说。)
(3)揭示规律。
三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,这就是加法结合律。
(4)用字母表示。(学生独立完成,集体核对。)
(a+b)+c=a+(b+c)
(5)问:①用语言表达与用字母表示,哪一种更一目了然?
②这里的a、b、c可以表示哪些数?
五、练习巩固
1、连一连
83+315
87+42+58
64+(73+37)
315+83
64+73+37
87+(42+58)
56+78+44
78+(56+44)
2、观察每组中的两个算式,从中选择一道快速算出得数并说说你的理由。
(1) (56+88)+12
56+(88+12)
(2) 48+(75+25)
(48+75)+25
六、课堂小结
师:通过本节课的学习,你有什么收获?
数学四年级下册教案6
教学目标:
1、经历探索间隔排列的两种物体个数之间的关系,渗透“一一对应”的数学思想。
2、初步体会和认识这种关系和其中的简单规律,初步学会应用这种规律解决简单的实际问题。
教学重点:
学生经历间隔排列规律的探索过程,找到“两种物体间隔排列时,两端的物体比中间的物体多1,中间的物体比两端的物体少1”这一规律。
教学难点:
圆周问题的规律。
教学流程:
一、创设情境,探索规律。
1、设疑引入
师:我们先做一个猜谜游戏。
老师板书
师:猜测老师在三角形后会写什么图形。
学生猜测,答案不唯一。
师转身又写
部分学生有意识猜测后面是三角形。
师接着写,黑板上出现
学生会异口同声地说后面是
由学生说出规律。
师:这样一组一组的往下写(边写边板书),谁能说说这两种图形的个数有什么关系。
生:一样多。
生:因为每组里面正好是一个三角形和一个正方形。
生:正好一个三角形对着一个正方形
师:我们可以说三角形和正方形是一一对应着的。板书“一一对应”
师在省略号后继续添一个
由生说这时的个数关系。
生:三角形多一个。
生:因为前面的三角形和正方形都是一一对应着的,但最后一个三角形没有正方形和它对应了。
2、揭示课题
师:它们都是一个物体隔着另一个物体依次排列的,像这样的排列现象我们称为一一间隔排列。(板书:一一间隔排列)
二、探究规律
1、研究场景图中的三种排列。
师:现在请同学们仔细看一看,从图中找一找,能发现和黑板上一样的间隔排列吗?
学生汇报自己的发现。
师:这三组间隔排列中两种物体是怎样排列的?同桌互相研究。
指出:夹子、白兔、树桩都可以看成两端的物体(板书:两端的物体),手帕、蘑菇、篱笆都可以看成中间的另一种物体(板书:中间的另一种物体)。排在两端的物体相同。(板书:两端相同)
师:这属于两端物体相同的间隔排列。
讨论:两端物体相同的间隔排列有什么规律?你还想知道些什么呢?
小组合作研究。
小组汇报。
课件出示:
夹子比手帕多一个。
小兔比蘑菇多一个,木桩比篱笆多一个。
在教师的引导下学生总结出“两种物体间隔排列时,两端的物体如果相同,两端的物体就比中间的多1,中间的物体比两端的少1”这一规律。
2、学生自选一组把实物图抽象成图形,并在黑板上板书。
3、进一步形成规律。
4、选中其中的任一组图形,并擦掉中间的物体。
师:你们想到了什么?
生:一个图形一个间隔,间隔数少一。
生:因为最后一个图形没有间隔和它对应,所以间隔数少了一。
三、动手操作,验证规律。
师:是不是这样间隔排列的两种物体都有这样的规律呢?下面我们动手验证一下。
课件出示要求:任意拿几根小棒和圆片,在桌上沿直线方向间隔排列成一排,数数小棒的根数与圆片的个数,看看有什么关系?
学生动手操作,集体交流。
师:谁来和大家说说你是怎样摆的?你发现了什么?
小结:其实这里的小棒就可以代表一切两端的物体,圆片就可以代表一切中间的物体。像这样排列,它们都有这样的规律:两端的物体比中间的物体多1。
四、联系实际,应用规律。
1、列举规律:
师:其实,在我们的教室中,有些事物之间的排列也具有这样的规律。你能通过自己的'观察来说一说吗?(学生先观察,再回答)
2、欣赏老师找到的规律。
3、应用规律:
(1)“电线杆和广告牌”
仔细看这幅图,在这条马路边,有25根电线杆,那么中间会有多少块广告牌呢?为什么?
(2)锯木料问题:想想做做第2题
把一根木料锯3次,能锯成多少段?
引导学生结合所学的规律来分析。
(3)栽树问题
如果在河的一边栽15棵柳树,每两棵柳树中间栽一棵桃树,可以栽桃树多少棵?如果在河的一边栽15棵柳树,每两棵柳树中间栽两棵桃树,可以栽桃树多少棵
引导学生结合所学的规律来分析比较。
(4)规律延伸。
请10位女同学在讲台前站成一排。
师:请男同学站在每两个女同学之间形成一一间隔排列。
有9位男同学站在列中。
师:有请两端的两位女同学慢慢把队伍拉成一圈,你有什么新的发现。
生:这时没形成一一间隔排列了。
生:因为原来两端的女同学之间又出现了一个间隔。
生:还得在这之间站进一个男同学。
生:男女生一样多了。
(5)对比练习:
如果在圆形池塘的一周栽15棵柳树,每两棵柳树中间栽两棵桃树,可以栽桃树多少棵?
a:质疑:有的同学说14棵,有的同学说15棵,还有的说16棵,那像这样栽柳树和桃树,它们的棵数之间到底有什么关系呢?
b:发现规律
c:汇报小结,和刚才男女生站队一个道理。
小结:把桃树和柳树像这样栽成一周,桃树和柳树的棵数一样多
(5)提高练习。
小军从一楼走到三楼用了6分钟,照这样计算,他从一楼走到九楼要多少分钟?
时钟6时敲了6下,5秒敲完。那么,这只钟12时敲12下,几秒敲完?
五、总结评价
师:今天我们一起研究了一些间隔排列的规律,大家有什么收获?
今后当我们面对新的事物或者更复杂的情况时,要学会寻求方法来探索规律解决问题。
数学四年级下册教案7
教材分析:
教材以王老师买羽毛球拍和羽毛球为情境,提出了两个问题。第一个问题求一共有多少个羽毛球,教材给出了部分答案,留白部分让学生完成;第二个问题求每支羽毛球拍多少钱,教材给出两种解法。即连续除以两个数的积,通过小精灵的提示引导学生比较这两个数的积,通过小精灵的提示引导学生比较这两种算法,并说出其中的运算定律。
学情分析:
在学生学习了乘法的运算定律后来教学本节课的内容,相信学生有自己独立解决的能力,只要能使计算简便,符合算理,就要鼓励学生的算法。在连除的运算中,学生要注意到两个除法如果相乘的话能否凑成整十,整百,整千的数。
教学目标:
1、通过学习使学生能够根据具体的情况,选择合适的方法使计算简便,并能运用所学知识来解决有关乘除计算的实际问题。
2、通过讨论,对比的方法进行简便计算。
3、培养学生灵活、合理地选择计算方法的习惯和能力。
教学重难点:
重点:灵活应用定律进行简便计算。
难点:理解算理。
教学准备:
多媒体课件。
教学流程:
一、导入:
师:同学们,经过了前面的学习,我们大家都知道了,数字与数字也有好朋友,比如5和2,25和?(生:4)125和(生:8)
师:当然他们的好朋友不止这几个数字,有了这些好朋友对于我们的运算有很大的帮助,可以使我们的运算,更加的(生:简便)
下面请同学们帮助这几个数字找朋友:
出示口算:12=4×()32=4×()
25=100÷()125=1000 ÷()
生:指名回答。
师:朋友是用来牵挂的,朋友是用来想念的,如果朋友不在,我们要想办法把它找出来,你能把这些数字变成和它相等的算是吗?你有几种变法?
出示填空:15=()×()24=()×()
30=()×()36=()×()
生:只要符合要求即可。
师:同学们做的都很好,今天我们继续学习简便运算的知识,不过今天学习的要比以前学习的'灵活一点。
揭示课题:乘法和除法的灵活运用。
二、探求新知:
(一)、教学例8、
课件出示:王老师买了5副羽毛球拍,花了330元。还买25筒一打装的羽毛球,每筒32元。
问题1、王老师一共买了多少个羽毛球?
(1)学生齐读题,分析题意。
(2)提问:“一打装”是什么意思?
根据问题找条件。
问:要求王老师一共买了多少羽毛球,需要知道哪些条件?
生1:买了几筒。
生2:一筒多少个?
(3)学生尝试列式。
生:12×25
师:12×25不列竖式可以怎样简便计算呢?
(4)学生自己探究学习。
(5)汇报。方法多样。
(6)教师引导学生思考:为什么可以这样算?乘法简便运算的方法是什么?
(7)生回答。
(8)师小结:乘法简便计算的方法:都是想办法先乘得整十或整百的,再继续乘,使计算简便。
(9)做练习,课件出示:16×125 125×26×8
71×4×25 24×25
出示问题2:每支羽毛球拍多少钱?
(1)分析题目中的已知条件和问题,想一想,怎样列式?
(2)自由列式
(3)集体反馈交流。
方法一:330÷5÷2
方法二:330÷(5×2)
说一说每种方法表示的意义。
生分析回答。
师:想一想一个数连续除以两个数,等于这个数除以什么?
生齐说:一个数连续除以两个数,等于这个数除以这两个数的积。
(4)做练习题,课件出示:
20xx÷125÷8 3500÷25÷4
490÷35÷2 700÷4÷25
以小组为单位,做题,评判,讲解。
找同学板演。评价,订正。
二、总结
师:通过今天的学习,我们对乘法和除法的灵活运用有了一定的认识,练习题做的也很好。希望同学们在课后,多做练习,争取能更灵活的掌握运用。
三、板书设计:乘法和除法的灵活应用。
数学四年级下册教案8
教学目标:
1、联系生活实际,创设情境。让学生自主探究小数加减法的计算方法,解决实际问题。
2、自主探究、合作交流,让学生掌握小数加减法笔算的一般方法,理解小数点对齐的道理。
3、感受新知识源于生活,又服务于生活的思想。
教学重点:
掌握小数加减法的计算方法
教学难点:
理解小数点对齐的道理
教具准备:
多媒体课件。
教学过程
(课前预习题)
计算:213-87= 274+7680=
教学思考:
1、整数加减法为什么要数位对齐?
2、怎样才能保证数位对齐?
3、对照竖式说一说是怎样计算的?
4、怎样证实计算的结果正确的?
一、创设情境,激发兴趣。
同学们喜欢体育运动吗?让我们一起来看一看2004年雅典奥运会上,我国女子10米跳台双人跳水的决赛情况。(播放视频)
师:(课件出示95页图片)我国体育健儿在雅典奥运会上为国争光,在世界人民面前展现自我和勇于拼搏的精神,她们是我们学习的榜样。
大家知道运动员的成绩是用什么数表示的吗?
你知道选手的最后的成绩是怎么算出来的吗?
生:将选手的五轮成绩加起来。
师:对,运动会上计算各选手的成绩要用到“小数的加减法”知识。
二、学习新知。
1、学习小数减法。
(1)课件出示例1的图一,了解信息,提出问题。
课件出示例1图一的部分情景。
师:奥运会期间,全国人民都在关注比赛情况,瞧,小明和爸爸也在看比赛。请大家仔细观察这幅图,从中你知道了哪些信息?
(引导学生有序说出:
a、父子二人正在看2004年雅典奥运会跳水比赛;
b、表格的意思是我国和加拿大女子10米跳台的决赛的第一轮得分情况;
c、父子对话的内容)
师:你能根据这些信息提出一个数学问题吗?(中国队领先多少分?
父亲说“中国队领先3.6分是怎么计算的”)(板书:一个问题)
师:怎样列式呢?
生:53.40-49.80(板书算式)
(2)学生尝试计算小数减法。
师:这就是小数减法,该得多少呢?请每位同学在课堂练习本上列竖式计算。不会的同学可以问小组内同学,也可以看书。
学生独立计算,教师巡视,指名正确的学生板演。板书:
(3)整理小数减法的计算方法。
①师:(指板演)你同意他这样写竖式吗?你是这样写的吗?
②师:同学们,像这样一位对照一位减,你们感觉陌生吗?什么时候用过?
生:整数减法。
③师:那这个小数减法与整数减法,哪儿一样?
(计算方法,数位对齐)
哪儿不一样呢?(小数有小数点)
师:如果我们将这里的小数点盖住(黑色纸片盖住小数点),大家看,这不就是我们学习过的整数减法吗?
大家真了不起,用联系的眼光发现了小数减法与整数减法的联系。
④归纳数位对齐。
师:大家会计算小数的减法了吗?那老师再写一道题大家做一做。出示:0.78-0.2=
指名正确的学生板演,板书:
订正后,师:我们做过许多整数的加减法,无一例外的都是将末尾对齐(出示整数竖式卡片),怎么这次你们没有将末尾的两数字对齐呢?
生:要把小数点对齐。
师:大家听明白了吗?把什么对齐?(板书:小数点对齐。)
师:只有把小数点对齐,才能保证什么?
(生:相同的数位对齐。)如果学生不能回答,师引导:大家看,小数点对齐了,那么,被减数的个位对着减数的……,十分位对着减数的……,百分位对着……;也就保证了什么?
(板书:相同数位对齐)
⑤理解“计数单位相同”。
师:你们这种方法很好。可是为什么一定要相同的数位对齐,才能减呢?
如果学生不能说出,教师用来说明:百分位上的8表示多少?十分位上的2表示多少?那就是说这俩个的数的什么不同?它们能减吗?再看:7表示多少?2表示多少?它们能减吗?所以,计数单位相同才能相减。(板书:计数单位相同)
⑥小结计算方法。
师:在小数减法中,看似和整数不一样的小数点对齐(画框),其实就是为了确保相同数位对齐(画框)因为只有在相同计数单位下,才能直接相减(画框)
(整理成板书:如图)
师:同学们不仅探索到了小数减法的计算方法,还理解了计算方法背后的算理,真是了不起。
⑦计算结果要化简。
师:我们计算出第一轮比赛中国队领先多少分?(3.60)
(课件显示)可是爸爸说:中国队领先3.6分,怎么结果不一样呢?
引导学生说出:根据小数的性质,计算结果末尾的0要去掉,这样结果更简洁。2、学习小数加法。
(1)课件出示例1图二,提出用加法解决的问题。
师:第二轮比赛的成绩出来了,小明和爸爸对比赛结果又进行了计算,小明是怎么计算的?谁会列式?这就是小数加法。
请你用竖式计算。
指名学生板演:
(2)集体订正。
(3)让演板的学生说一说小数加法你是怎样计算的?(重点是小数点对齐,满十向前进一,结果化简)
(4)用不同的策略解决问题。
爸爸的结果是怎样计算的呢?请大家先独立列式并用竖式计算,然后在小组内交流解答方法,看一看有没有不同的解答方法。将小组统一的解答方法的算式和竖式写在这张大纸上面。
教师巡视,收集不同的解答方法。
(视频)展示学生不同的解答方法:
方法一:
①99.00的结果怎样化简?如果小数部分是0,不仅可以去掉末尾的.0,而且小数点也可以省写。
②的数位对齐了吗?说一说你的看法。
③可以这样计算吗?为什么?这样计算有什么好处?
所以,计算小数的加减法时,我们可以根据小数的性质将结果的化简,也可以根据需要在小数的末尾添上0,然后计算,这样很清楚知道这个数位上是多少在计算。
方法二:
小结两种解法:师,同学们真不错,可以用不同的策略去解决问题,大家觉得这两种解法,哪种比较简便?
师:对,方法二比较简便,它的数据简洁,而且我们在方法二中充分的利用了已经获取的一个条件(3.6),这样就使解答步骤更少。
3、小结小数加减法的计算方法
师:同学们,我们已经会计算小数加减法了,说一说:小数加、减法要注意什么?
4、学习小数加减法的验算。
我们怎样知道结果是否正确的呢?
师生共同验算例1的第一问。
三、巩固练习
大家学得非常认真,老师这里有几道练习题要大家完成,有没有信心?
1、数位对齐的练习。
卡车运动,对齐小数点(课件显示)
5.36+0.7= 12-0.36=
2、口算(练习相同的数位对齐)
课件显示:5.55+0.02= 5.55+0.2= 5.55+2=
3、数学小医生,看看谁的医术高。
4、完成做一做第一题。
视频展台上展示学生的练习情况。
订正后提问:12.53+4.67结果要怎么样?5-0.41我们可以怎样计算?
5、“做一做”第二题。(课件显示)
亮亮是个很爱运动的孩子,星期天爸爸带着亮亮到体育商店买东西,买了什么呢?
指名学生说题意,尤其要解决什么问题。
学生独立解答。
小组汇报。
学习用计算器验算。我还可以用计算器来验算。小数加减法计算时要用到一个新键,(课件显示)大家找到了吗?谁会用计算器验算?(电子白板验算)其它同学自己操作。
四、课堂小结:今天我们学习了小数加减法,你有什么收获?你这节课学得开心吗?
五、课后延伸:老师有一个问题留给大家课外思考:整数加减法也是将小数点对齐,这句话对吗?
数学四年级下册教案9
教学目标:
1.使学生理解小数加减法的意义
2.探究小数加减法的计算法则,能正确地计算小数加减法,能初步运用小数加减法解决一些实际问题。
3.让学生感受到生活中处处有数学,增强数学意识。培养学生主动探索、合作交流的良好习惯。提高获取信息、整理信息及处理信息的能力。
教学重点:
小数加减法的计算方法
教学难点:
归纳小数加减法计算法则、整数减小数的计算方法
教学过程:
一、调查学习用品的价格获取学习的材料
师:课前老师布置了调查你所用书的价格,老师已经将其中三本列在上面,谁来汇报一下?
(学生汇报调查结果)
师将表格补充完整
书名单价(元)
语文书6.63
数学书6.09
《亲近母语》 10.9
师:根据这些信息,你想提出哪些数学问题?
生1:语文书和数学书一共多少元?语文书和《亲近母语》共多少元?
生2:亲近母语比语文书贵多少元?语文书比数学书贵多少元?
生3:三本书共多少元?
生4:两书总价比第三本书贵多少?……
师:刚才大家提了许多可以用加法或减法来解决的问题,下面我们具体来看看这两个问题。
①一本数学书和一本语文书一共多少元?
②亲近母语比语文书贵多少元?师:根据问题,怎样列算式?
师根据学生回答板书:6.09+6.63= 10.9-6.63=
师:这2个算式是小数加法和小数减法。小数加减法的计算方法就是我们今天要研究的内容。
板书课题:小数加减法
二、自主探索构建新知
1、师:怎样计算6.09+6.63=的和与10.9-6.63=的差呢?
①独立研究:学生在课堂练习本上试做。完成后可和组内伙伴讨论研究。
(学生练习,师巡视参与)
②交流算法:师:谁来介绍自己怎样列竖式和你的想法(实物投影演示算法)
生:列竖式时9分和3分对齐相加满十进一,进上去的1和6角对齐相加,然后6元和6元相加……
师:对刚才同学的算法有没有其他的想法?
(谁还能照着**的说法再来说说小数加法该怎样来计算?) (生讲师板书竖式)
生:百分位的'9和百分位的3对齐相加,得十二进一,百分位上写2;十分位的0和6相加,再加进上来的1,得7,个位6加6……
师:(讲算理)9和3相加得12,这个12表示多少?……
师:你能说清楚这个过程了吗?跟你的同桌说一说。
③小数加法的计算方法:笔算小数加法,先把相同数位上的数对齐,再按照整数加法的法则进行计算。得数的小数点要和横线上的小数点对齐。
④出示减法的对错2种竖式,(先错后对)请生评价,说明相同数位对齐只要把小数点对齐(板书)就可以了。
对的学生说过程,师板书竖式,并问算理(如:百分位上的7是怎么得来的?)
⑤小数减法的计算方法:笔算小数减法,先把相同数位上的数对齐,再按照整数加法的法则进行计算。得数的小数点要和横线上的小数点对齐。
2、巩固练习师:你会计算小数加减法了吗?独立完成:语文书和《亲近母语》共多少元?语文书比数学书贵多少元?6.63+10.9= 6.63-6.09=
3、师:(归纳算法)谁能来说一说小数加减法的笔算方法?计算时先把各数的小数点对齐,其实也就做到了相同数位对齐,再按照整数加减法的法则进行计算。得数的小数点,要和横线上的小数点对齐。
师:一起把这个方法来读一遍
三、加强训练巩固算理算法
1.师:知道小数加减的方法后,下面老师要来考考大家,列竖式计算:
0.87+5.68= 14-0.014= 25.09+0.524= 3.15-2.851=
每2大组做一组,请4名学生板演反馈学生的练习,在评价中巩固算法。
2.师:大多数同学都掌握得不错,现在要求大家直接写出得数,有没有信心写对?
生:有
师:好,仔细看题,快速算出得数
0.7+0.3= 2.6+0.8= 5 +0.5= 0+6.3= 15.6+7= 5-1.6= 4.5-0.5= 2.61-1.31=
集体反馈,及时纠正错误。
3.改错
师:这两个同学是这样计算的,你们帮忙看看他们算的对吗?错的请改正。
四、应用新知展示算法培养个性
师:大家已经掌握了小数加减法的计算方法,其实小数加减法的计算在日常生活中用处可大了。
这是菁菁校园“迎六一歌咏比赛”时,4位评委给3个年级打的分。
(课件显示)
三年级9.9 10 10 9.2
四年级10 9.8 9.9 9.9
五年级9.8 9.9 9.8 10
师:请你当当小评委,要颁这个奖,得先知道什么呀?
生:要算总分,看看谁第一名就是一等奖
师:好,小组合作,拿出草稿本,分别算出三个年级的总分。
生交流算法,师及时展示学生中的不同算法:
如计算四年级的总分:10+9.8+9.9+9.9=39.6
10×4-0.2-0.1-0.1=39.6
9×4+1+0.8+0.9×2=39.6
师:你们有结果了吗?(将结果填在领奖台上)师:想一想,五年级的分数至少再多几分可争得第一名?
数学四年级下册教案10
一、教学目标:
1、知识与技能 理解掌握十进制计数法的含义,认识含有三级数位的数位顺序表及相应的计数单位。
2、过程与方法 通过探索、思考、总结等活动,让学生体验到数的产生过程中去。
3、情感、态度与价值观 使学生了解中国古代数学的伟大成就,激发学生的民族自豪感。
二、教学重点:
理解十进制计数法的意义。
三、教学难点:
理解十进制计数法的意义。
四、教具准备:
计数器、数位顺序表
五、教学过程:
(一)新授。
(1)了解其他进制。
出示十进制计数法。古代有十进制计数法,还有十二进制计数法、十六进制计数法等等。由于十进制计数法比较方便,最后逐渐统一采用十进制计数法。21世纪教育网21世纪教育网版权所有
(2)认识十进制计数法。
①板书课题:十进制计数法。
看到这个标题你有什么问题要问吗?什么是“十进制计数法”,十进制怎么计数的?让生先试着说一说。
②出示已学的计数单位。
至今为止,我们学习的最大的`计数单位是什么?(亿)
那还有没有比亿更大的计数单位?你猜猜什么?(十亿)
多少个一亿是十亿?数一数。
有没有比十亿更大的计数单位?你猜猜什么?(百亿)
多少个十亿是一百亿?数一数。
有没有比百亿更大的计数单位?你猜猜什么?(千亿)
多少个百亿是一千亿?数一数。
③出示新的计数单位。
有没有比千亿更大的计数单位?每相邻的两个计数单位之间的关系是什么?(进率都是十)“进率都是十”是什么意思?
相邻的两个计数单位之间有十倍的关系。
小结:像这种每相邻的两个计数单位之间进率都是十的计数方法叫做“十进制计数法”。
(3)学生独立补充完整课本数位顺序表。
①填写数位和计数单位。
按照我国的计数习惯,为读写方便,把数位分级,学过的亿以内的数是怎样分级的?
数位……
数级……
计数单位……
(小组合作完成)填写完整并回答下面的问题。
①10个一是多少?10个十是多少? ……10个千万是多少?
②10个亿是多少?10个十亿是多少?10个百亿是多少?
③亿位、十亿位、百亿位、千亿位叫什么级?每级各表示什么?
(2)个、十、百、千、万……千亿都是用来计数的,叫什么?(计数单位)直到现在我们一共学了哪些计数单位?
亿以内每相邻两个计数单位之间的关系是怎样的?(小组讨论)
每相邻两个单位之间的进率是10,即十进关系。
写数的时候,把计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
(二)练习。
1、填一填。
①一百亿有( )个十亿,( )个百亿是一千亿。
②从个位起,第( )位是万位,第( )位是亿位。
③和亿位相邻的两个数位是( )和( )。
④( )个一百亿是一千亿,10个( )是一百亿、10个亿是( )。
⑤4在十亿位,表示( )个( )。
2、写出一些多位数,说说每个数字所在的数位和表示的意义。
(三)全课总结。
通过今天的学习,你有什么收获?
数学四年级下册教案11
教学内容:
p.85、86
教学目标:
1、让学生探索笔算被除数和除数末尾都有0的除法的简便算法,掌握这种计算方法,并加深对商不变的规律的理解。
2、让学生通过学习体会解决问题方法的多样性,培养优化方法的意识,增加学习数学的兴趣。
教学重点:
被除数和除数末尾有0的除法的简便计算
教学难点:
有余数的除法
教学过程:
一、复习商不变性质:
分别指名说说商不变性质,强调“同时”、“相同的数”。
最后是集体说。
二、学习例题:
1、出示问题:买过篮球吗?多少钱一个?
请几个说一说。(有便宜的20元左右的,也有贵的100多的)
老师板书:篮球单价50元。
体育老师用900元去买篮球,可以买多少个?(板书:900元)
你想到哪个数量关系式?(总价÷单价=数量)
根据这个数量关系式列出算式:900÷50
2、学生在自己的本子上计算,指名板演。
讲评,注意书写是否规范等。
观察该算式,被除数和除数有什么共同的地方呢?
(末尾都有0)
考虑一下,能否利用商不变的性质,使它的计算更为简便呢?
启发学生分别划去被除数和除数末尾的一个0。
思考:这分别划去一个0是什么意思?(被除数和除数同时除以10,商不变。)
能不能把9后面的2个0都划去?为什么?(如果都划去,那就是被除数除以100,除数除以10,除的不是“同一个数”,所以不行。)
算完算式。
比较两个算式:后面的算式更简便。但要注意开始写的时候是一样的,分别划去一个0后,商所写的位置不同了
3、店老板看体育老师买的篮球多,愿意降价为每个40元。
现在请大家用新学的办法来算一算,指名板演。
估计很多学生都会把余数写成是“2”
补充要求:验算(老师示范写验算的竖式。)
发现问题:880+2=882,应该是880+20=900(元)
寻找原因:
除法竖式是没错的,但是在写横式上的余数时,因为余数2是写在十位上的,所以要写成“20”
我们前面学习的是“被除数和除数同时除以同一个数,商不变”,不变的`是“商”,并没有说“余数”,看来余数是会变的。
三、完成想想做做:
1、根据450÷30=15,直接写出下面各题的商
指名分别说所是怎么想的?(如第一题:被除数和除数同时除以10,商不变,是15。力求让每个学生都能熟练地表达。)
2、口算下面各题。
要求学生用今天学的简便算法进行计算。(如第一题:想32÷8=4,分别把后面的1个0划掉。)
3、下面的计算对吗?把不对的改正过来。
分别让学生说说理由:
第一题:被除数除以100,除数除以10,没有除以同一个数,所以商变了。重新计算得:190
第二题:竖式是对的,有余数,要注意余数所在的位置是十位,所以写在横式上的时候要写成“30”
四、学生作业:
完成第4题
解决问题的策略(画图)
数学四年级下册教案12
教学内容: 教科书91~92页例1~例4,完成相应的做一做及练习二十第1~6题。
教学要求:使学生初步理解小数的性质,会应用小数的性质把末尾有0的小数化简,把一个数改写成含有指定位数的小数;加深对小数意义的理解;培养学生运用知识进行判断的能力。
教学重点:让学生理解和掌握小数的性质
教学难点:让学生抽象概括小数的性质。
教具学具准备:投影仪、米尺。
教学过程
一、 设情景引入课题
师在黑板上板书:5, 并指着5问它表示什么意思?待学生回答后师述:如果在“5”的末尾添上一个“0”它变成多少了?(50),这时5发生了什么变化?(变大了)
师述:在整数的末尾添上“0”整数的大小就变了.那么在小数里会怎样呢?今天我们就来研究这个问题。随后板书课题:小数的性质
二、 授新课
1.教学例1:
师让生在米尺上找出1分米、10厘米、100毫米的`长度?然后问:它们用的单位一样吗?你能否把这三个数量分别化成以米为单位的小数?这三个小数之间是什么关系?你是怎么看出来的?板书如下:
1分米 10厘米 100毫米
0.1米 0.10米 0.100米
师问:1分米、10厘米、100毫米这三着有什么关系?待生回答后师用等号把1分米、10厘米、100毫米用等号连接起来。 师引生思考0.1米、0.10米、0.100米这三着有什么关系?待生口答后师用等号把0.1米、0.10米、0.100米连接起来。
师引生从左向右观察这三个相等的小数问:小数部分有什么变化?把这种变化与整数对比你能发现什么?再引生从右向左观察,你又发现什么?
师生共同小结:从左向右观察0.1米的末尾添上“0”,数的大小不变;从右向左观察0.1 00米末尾去掉“0”,数的大小也不变。
师问:这种现象在小数中是不是普遍规律呢?再来看一组小数.
2. 教学例2 比较0.3和0.30的大小。
师出示两个同样大小的正方形投影,把其中一个平均分成10份取3份,让学生用小数表示;把另一个正方形平均分成100份取30份,让学生用小数表示,引生观察0.3和0.30的联系,即①0.30是在0.3末尾添上一个0,0.3是 0.30的末尾去掉一个0。②用0.30和0.3各表示的面积有什么关系?③这两个小数有什么关系?。
小结:通过对以上几组小数的研究,说明我们发现的小数的这个现象确实是个普遍的规律。
3.概括小数的性质:
师问;在小数里存在着一个什么规律?谁来说一说?师结合学生的口答板书小数的性质:小数的末尾添上“0”或者去掉“0”小数的大小不变。这就叫做小数的性质。
练习:判断下面哪组数相等:并说说为什么
(1)0.500和0.5 (2)2.8和2.80
3)5和500 (4)0.7和0.007
师:为什么非在“小数”,而且是小数“末尾”添上“0”或去掉“0”,小数的大小才不变呢?
师在黑板书板书5。然后在5的后面添写一个0,问:原来的5变成多少了?大小变了吗?师在黑板板书0.7,问:它表示什么意思?然后在0和7之间添上一个0。让生观察大小变了没有。
小结:通过以上几个数课知只有在小数的末尾添上“0”或去掉“0”,才能保证原数大小不变,三、练习
1.下面各数中,哪些“0”可以去掉,哪些“0”不能去掉。为什么?
4.30 900 3.200 60.010
2.把相等的数用线连起来。
2.70 4.400
72.060 0.005
301.0100 2.07
0.0050 301.01
4.40 72.60
3.判断下面各题是否正确:
(1)80=80.000( )。
(2)数的末尾添上“0”或去掉“0”,数的大小不变.( )
(3)小数点后面添上“0”或去掉“0”,小数的大小不变.( )
四、分组学习 小数性质的应用。
1.教学例3:把0.70和105.0900化简。
师指出:根据小数的性质遇到小数末尾有“0”时,一般可以去掉“0”,这就叫把小数化简。请同学们试一试,订正时师问:105.0900中间两个“0”为什么不可以去掉?引起学生注意。
练习:教科书92页做一做第1题。
2.教学例4:不改变数的大小,把0.2、4.08、3改写成小数部分是三位小数。
师指着例4内容口述:有时根据需要不改变数的大小而把它改写成须要的几位小数,请同学们试一试。
五、课堂小节 师问:本节咱们学习了什么内容?小数的性质是什么?
六、作业练习二十一的第4、5题
七、板书设计
小数的性质
1分米 10厘米 100毫米
0.1米 0.10米 0.100米
小数的末尾添上“0”或者去掉“0”小数的大小不变。这就叫做小数的性质。
数学四年级下册教案13
设计说明
小数加减法的教学是在学生已经学习了整数加减法的基础上进行的,本课时学习的内容属于小数加减法的第2课时,学生已经掌握了小数点对齐的道理,旨在通过本节课的学习明确在小数加减法中不能遵循末位对齐的道理。因此,本节课的教学设计突出以下特点:
1.以旧引新,唤醒认知。
通过复习整数加减法的计算方法及小数点为什么要对齐的道理,唤醒学生的已有认知,在此基础上同化新知。
2.合作学习,探究新知。
根据例题的编写意图,在教学例2时,结合具体情境,巧妙运用知识迁移,引导学生在比较、分析中发现小数加减法和整数加减法的相同之处和不同之处,留给学生足够的探索空间,引导学生先尝试计算,再交流讨论,最后总结方法,培养学生的抽象概括能力。
课前准备
教师准备 多媒体课件 课堂活动卡
学生准备 收集的.生活中的小数
教学过程
⊙以旧引新,唤醒认知
回忆整数加减法的计算方法。
师:上节课我们初步了解了小数加减法,在计算小数加减法时要注意什么?(小数点要对齐)
师:这节课我们继续学习小数加减法。(板书课题)
设计意图:通过创设问题情境,唤醒学生已有的知识经验,为探究新知做好铺垫。
⊙探究新知
1.合作探究。
(1)课件出示例2中的两个问题,学生读题后,列出算式。
①6.45+8.3= ②8.3-6.45=
(2)引导学生根据课堂活动卡,先独立完成,再组内交流。(见课堂活动卡)
(3)学生汇报。
小组1:我们小组通过交流,发现在计算小数加减法的时候,不能像整数加减法那样只要末位对齐就说明数位对齐了,而是小数点一定要对齐。
小组2:我们小组也同意他们的说法,比如列竖式计算6.45+8.3的时候,如果只考虑末位对齐,那就出现8.3的十分位和6.45的百分位对齐了,这就错了,所以在计算小数加减法的时候一定要把小数点对齐,才能保证相同数位对齐。
小组3:我们小组在计算第二道题的时候发现,当被减数百分位上没有数,而减数百分位上有数的时候,要先在被减数的百分位上添0占位再进行计算,根据小数的基本性质可知这样并不影响小数的大小。
2.总结方法。
小数加减法在计算的时候要注意什么呢?
(1)小数点要对齐,也就是要把相同数位对齐。
(2)得数的小数部分末尾有0,可以省略不写。
设计意图:先根据问题直接列式,然后引导学生借助已有的知识经验进行计算,在交流讨论中得出小数加减法的计算方法。在这一过程中充分发挥了学生的主体作用,在知识加工的过程中逐步接纳了新知识,改变了原有的认知结构。
数学四年级下册教案14
教学目的
1、使学生理解什么是名数、单名数和复名数,会利用单位间的进率把高级单位的名数改写成低级单位的名数,把低级单位的名数改写成高级的名数。
2、培养学生的分类能力、比较能力、分析能力和归纳概括能力。
教学重点:
会进行名数的改写。
教学难点:
会进行名数的改写。
教学用具
教学过程
一、复习
1千米=( )米1千克=( )克
1米=( )厘米 1吨=( )千克
1时=( )分 1分= ( )秒
1平方米= ( )平方分米
1平方分米=( )平方厘米
二、新课:
1、把你收集到的生活中的小数说给小组同学听,找一组同学汇报他们收集的数据。
2、我也收集了一些生活中的小数,我们一起来看一看:
水果糖的质量是0.5千克
小明的身高是1.35米
小红体操得分是9.25分
小丽的体温是38.5度
3、像这样我们把量得的数和单位名称合起来叫做名数
把哪两部分合起来叫名数?你能举出一些名数的例子吗?
3分钟、7千米、6时15分、 78平方米、4吨50千克
5米6分米 20平方厘米 9年5千米60米
4、什么叫单名数?什么叫复名数?从刚才举出的例子中你能找出哪些是单名数哪些是复名数吗?
5、小组活动:
请你按高矮顺序,给下面的小朋友排排队
80厘米、1米45厘米、0.95米、1.32米
又有米又有厘米怎么比较它们的大小?
师:要想直接比较它们的大小可以把它们改成相同计量单位的数。
在实际生活和计算中,有时需要把不同计量单位的数据进行改写。
问:又有米又有厘米要想直接比现在你有什么想法?
生:把它们改写成以米为单位的数
把它们改写成以厘米为单位的数
6、请你们以小组为单位任选其一进行改写
(1)教学高级单位的名数改写成低级单位的名数。
(1)0.95米=( )厘米
你们会做吗?谁能说说你是怎样想的?(1米等于100厘米,0.95米=0.95乘100厘米。可以直接把0.95的小数点向右移两位。)
1.32米=()厘米
是米这个单位大些还是厘米这个单位大些?我们把较大的单位叫做高级单位,而把较小的单位叫做低级单位。这道题就是把高级单位“米”作单位的名数改称低级单位“厘米”作单位的名数。
请同学们接着做一做:
3.7吨=( )千克 0.86平方米=( )平方分米
0.3千克=( )克 2.63千米 =( )米
怎样把高级单位的单名数改写成低级单位的.单名数呢?
小组讨论后,汇报(用高级单位量得的数去乘进率)
(2)教学低级单位的名数改称高级单位的名数。
80厘米=( )米
谁能说说你的想法?
(因为1米=100厘米,80厘米=80/100米)
用这种改写方法改写下面各题
9020千克 =( )吨7450米=( )千米
23分米=( )米1350克=( )千克
像一想怎样把低级单位的单名数改写成高级单位的单名数?
(用低级单位量的的数去除以进率)
能用这种方法解答1米45厘米是多少米吗?小组讨论一下?
谁能说说你是怎么想的?
(引导学生说出:45厘米=0.45米,0.45米和1米合起来是1.45米)
三、巩固练习
1、71页6题
2、( )分米=1.5米( )千克=4.08吨
510米=( )千米 516厘米=( )米
4700克=( )千克
3在括号里填上﹤﹥或﹦
3.61米( )362厘米284克( )0.284千克
1480米( )1.5千米 532厘米( )5.3米
4、72页10题
数学四年级下册教案15
教学内容:
P32-33
教学目标:
1、在升生活情境中了解小数的产生,体会数学与生活的联系,了解数学的价值,增强对数学的理解和应用数学的信心。
2、探究小数与分数、整数的内在联系,理解小数的意义。
3、通过分析、对比、概括、小结培养学生的思维能力。
教学重难点:
在学生初步认识一位小数、两位小数的基础上,进一步把认识范围扩展到三位小数,分母是10,100,1000的的分数,写成小数是几个0.1,几个0.01,几个0.001,并了解小数的计数单位及单位间的进率。
教学准备:
PPT,小软尺,习题纸。
教学过程
一、谈话引入新课,激发学习兴趣
师:同学们,老师给大家准备了一些关于小数和分数的小书签,我想把它们送给上课积极发言的孩子,想得到它吗?想得到就积极发言吧。
二、创设情境,导入新课
1、同学们在前面的学习中,我们已经初步的认识了小数和分数,这节课,老师想让大家用小数表示自己所测量的物体,请大家拿出大家准备好的软尺,请第1组的同学测量课桌的长度;请第2,3组的同学测量笔袋的长度;请第4,5组的同学测量数学书的厚度,请将你的测量结果记录在老师发给你的纸里。
2、每生测量活动。
3、每组派代表汇报测量结果。
学生汇报预测:
学生1:我测量的课桌的长度是0.6米。
学生2:我测量的笔袋的长度是0.11米。
学生3:我测量的数学书的厚度是0.01米。
4、展示学生的汇报结果,有质疑的请举手。
5、根据同学们的测量结果你有什么发现?(都是小数)
6、在平常的生活中你还见过哪些这样的小数?请举例说明。
生例举一些常见的小数,师补充一些常见的小数。观察这些数你有什么发现?
根据学生的回答,师小结:在进行测量和计算时往往不能正好得到整数,这时候通常用小数来表示。
这节课我们就来学习《小数的意义》。
二、尝试探究,理解意义
1、认识一位小数
教师:出示一米长的纸条,把它平均分成10份,取其中的一份是多少分米?写成分数是多少米?写成小数的多少米?说出你的想法。
师小结:取其中一份1分米,分数表示:米,用小数表示:0.1米。
师:取其中的3份呢?取其中的6份呢?生独立思考。
生汇报:取其中的3份是3分米,分数表示:米,用小数表示:0.3米。
取其中的6份是6分米,分数表示:米,用小数表示:0.6米。
2、认识两位小数
我们都知道了一位小数表示十分之几,那么老师现在把这一米长的纸条平均分成100份,取其中的一份是多少厘米?写成分数是多少米?写成小数的多少米?说出你的想法。
师小结:取其中一份1厘米,分数表示:米,用小数表示:0.01米。
师:取其中的40份呢?取其中的75份呢?生独立思考。
生汇报:
取其中的40份是40厘米,分数表示:米,用小数表示:0.40米。
取其中的75份是75厘米,分数表示:米,用小数表示:0.75米。
3、认识三位小数
我们都知道了一位小数表示十分之几,两位小数表示一百分之一,那么老师现在把这一米长的纸条平均分成1000份,取其中的一份是多少毫米?写成分数是多少米?写成小数的多少米?说出你的想法。
生汇报:取其中一份1毫米,分数表示:米,用小数表示:0.001米。
师:取其中的.59份呢?取其中的125份呢?
生汇报:
取其中的59份是59毫米,分数表示:米,用小数表示:0.059米。
取其中的125份是125毫米,分数表示:米,用小数表示:0.125米。
4、对比直观描述,小数的意义
师:结合我们刚刚学过的一位小数、两位小数、三位小数完成表格
生独立思考,汇报研究结果,根据学生的回答进行板书。
通过研究,你有什么发现?
学生1:我发现,分母是10的可以写成一位小数,用分数表示是十分之几,用小数表示几个0.1.
师:这位同学总结的非常好,还有谁想来说一说?
学生2:我发现,分母是100可以写成两位小数,,用分数表示是百分之几,用小数表示几个0.01.
学生3:我发现,分母是1000的可以写成三位小数,用分数表示是千分之几,用小数表示几个0.001
师:同学们说的都非常的好,那小数点在这里表示什么意思?(表示想这样的小数和分数还有很多很多,等我们以后再学习)
5、小数之间的进率
1毫米→1厘米→1分米→1米,它们之间的进率发生什么变化?
0.001米→0.01米→0.1米→1米,它们之间的进率发生了什么变化?
师:在小数中,每相邻两个计数单位之间的进率是10.
三、课堂练习,巩固深化
1、把分数化小数(生独立完成,再汇报)。
2、填一填。
3、书本33页做一做。
4、找朋友(将老师发的小书签,根据书签上的小数或分数说出你的朋友小数或分数是几,请起立,展示给全班是不是朋友)。
5、生活中的数学,让数学贴近生活。
四、能力提高,聪明屋
用5,4,0,1,3这五张卡片摆出不同的数。
1、小于1且小数部分是三位的小数。
2、小于1且最大的三位小数。
3、小于1且最小的三位小数。
五、全课小结,今天你有什么收获?
板书设计
教学后记
本课结合具体的情境,进一步体会小数的意义及其与生活的广泛联系。在创设情境中,我尽量让学生多说说自己在生活中看到过的小数。如测量自己身边物体的长度,自己的身高、体重、物体的大小或长度等。让学生感受到小数实际在生活的应用是非常广的,因此我们有学习小数的必要性和重要性。
在掌握简单的小数和分数的基础上,体会十进分数与小数的关系并能进行转化,明确小数的计数单位,理解并掌握小数的意义。小数是十进分数的另一种表示形式,十分之几用一位小数表示,百分之几用两位小数表示,千分之几用三位小数表示。从一位小数入手,让学生经历具体分析一位小数的意义的过程,为后面理解二位、三位小数的意义作铺垫,在此基础上再实现对小数的整体意义的概括,降低了教学难度。
【数学四年级下册教案】相关文章:
数学下册教案03-16
四年级苏教版数学下册教案02-20
四年级数学下册教案03-02
数学四年级下册教案01-15
四年级人教版数学下册教案02-20
四年级下册数学的教案02-25
数学四年级下册教案05-27
四年级数学下册教案05-28
数学下册教案 15篇03-16