(推荐)初一数学教案15篇
作为一名人民教师,常常需要准备教案,借助教案可以有效提升自己的教学能力。教案应该怎么写才好呢?下面是小编帮大家整理的初一数学教案,欢迎阅读与收藏。
初一数学教案1
教学目标
1,通过对数“零”的意义的探讨,进一步理解正数和负数的概念;
2,利用正负数正确表示相反意义的量(规定了指定方向变化的量)
3,进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。
教学难点:深化对正负数概念的理解
知识重点:正确理解和表示向指定方向变化的量
教学过程:(师生活动)设计理念
知识回顾与深化回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.这就是说:数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负数的数呢?
问题1:有没有一种既不是正数又不是负数的数呢?
学生思考并讨论.
(数0既不是正数又不是负数,是正数和负数的分
界,是基准.这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)
例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的最高温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数 .
那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数
问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类?“数0耽不是正数,也不是负数”也应看作是负数定义的一部分.在引入
负数后,0除了表示一个也没有以外,还是正数和负数的分界.了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理毅概念的建立都有帮助。
所举的例子,要考虑学生的可接受性.“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明.这个问题只要初步认识即可,不必深究.
分析问题
解决问题问题3:教科书第6页例题
说明:这是一个用正负数描述向指定方向变化情况的例子, 通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。
归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页).
类似的例子很多,如:
水位上升-3m,实际表示什么意思呢?
收人增加-10%,实际表示什么意思呢?
可视教学中的实际情况进行补充.
这种用正负数描述向指定方向变化情况的例子,在实际生活中有广泛的应用,按题意找准哪种意义的量应该用正数表示是解题的关健.这种描述具有相反数的影子,例如第(1)题中小明的体重可说成是减少-2kg,但现在不必向学生提出.
巩固练习教科书第6页练习
阅读思考
教科书第8页阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流
小结与作业
课堂小结以问题的形式,要求学生思考交流:
1,引人负数后,你是怎样认识数0的,数0的意义有哪些变化?
2,怎样用正负数表示具有相反意义的量?
(用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.)
本课作业
1,必做题:教科书第7页习题1.1第3,6,7,8题
2,选做题:教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指定方向变化的量。
2,“数0既不是正数,也不是负数,’(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的.一部分.在引人负数后,除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助.由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课.
3,教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解.
4,本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识.通过实际例子的学习激发学生学习数学的兴趣.
初一数学教案2
学习目标:
(1)了解运用公式法分解因式的意义;
(2)会用完全平方公式进行因式分解;
(3)清楚优先提取公因式,然后考虑用公式
中考考点:正向、逆向运用公式,特别是配方法是必考点。
预习作业:
1、完全平方公式字母表示:、
2、形如或的式子称为
3、结构特征:项数、次数、系数、符号
填空:
(1)(a+b)(a—b)=;
(2)(a+b)2=;
(3)(a–b)2=;
根据上面式子填空:
(1)a2–b2=;
(2)a2–2ab+b2=;
(3)a2+2ab+b2=;
结论:形如a2+2ab+b2与a2–2ab+b2的式子称为完全平方式、
a2–2ab+b2=(a–b)2 a2+2ab+b2=(a+b)2
完全平方公式特点:首平方,尾平方,积的2倍在中央,符号看前方。
例1:把下列各式因式分解:
(1)x2–4x+4(2)9a2+6ab+b2
(3)m2–(4)
例2、将下列各式因式分解:
(1)3ax2+6axy+3ay2(2)–x2–4y2+4xy
注:优先提取公因式,然后考虑用公式
例3:分解因式
(1)(2)
(3)(4)
点拨:把分解因式时:
1、如果常数项q是正数,那么把它分解成两个同号因数,它们的符号与一次项系数P的符号相同
2、如果常数项q是负数,那么把它分解成两个异号因数,其中绝对值较大的`因数与一次项系数P的符号相同
3、对于分解的两个因数,还要看它们的和是不是等于一次项的系数P
变式练习:
(1)(2)
(3)
借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,叫做十字相乘法
口诀:首尾拆,交叉乘,凑中间。
拓展训练:
若把代数式化为的形式,其中m,k为常数,求m+k的值
已知,求x,y的值
当x为何值时,多项式取得最小值,其最小值为多少?
回顾与思考
学习目标:
(1)提高因式分解的基本运算技能
(2)能熟练进行因式分解方法的综合运用、
学习准备:
1、把一个多项式化成的形式,叫做把这个多项式分解因式。要弄清楚分解因式的概念,应把握如下特点:
(1)结果一定是的形式;
(2)每个因式都是;
(3)各因式一定要分解到为止。
2、分解因式与是互逆关系。
3、分解因式常用的方法有:
(1)提公因式法:
(2)应用公式法:①平方差公式:②完全平方公式:
(3)分组分解法:am+an+bm+bn=
(4)十字相乘法:=
4、分解因式步骤:
(1)首先考虑提取,然后再考虑套公式;
(2)对于二次三项式联想到平方差公式因式分解;
(3)对于二次三项式联想到完全平方公式,若不行再考虑十字相乘法分解因式;
(4)超过三项的多项式考虑分组分解;
(5)分解完毕不要大意,检查是否分解彻底。
辨析题:
1、下列哪些式子的变形是因式分解?
(1)x2–4y2=(x+2y)(x–2y)
(3)4m2–6mn+9n2 =2m(2m–3n)+9n2
(4)m2+6mn+9n2=(m+3n)2
2、把下列各式分解因式:
(1)7x2–63(2)(x+y)2–14(x+y)+49
(3)(4)(a2+4)2–16a2
(5)(6)
(7)(8)
想一想
计算:
1、32004–32003 2、(–2)101+(–2)100
3、已知,求的值、
例1:把下列各式因式分解(分组后能提公因式)
(1)a2—ab+ac—bc(2)2ax—10ay+5by—bx
(3)3ax +4by+4ay+3bx(4)m2+5n—mn—5m
点拨:1、用分组分解法时,一定要想想分组后能否继续进行,完成因式分解,由此合理选择分组的方法
2、运算律(如加法交换律、分配律)在因式分解中起着重要的作用
初一数学教案3
一、教学目的
让学生通过独立思考,积极探索,从而发现;初步体会数形结合思想的作用。
二、重点、难点
1、重点:通过分析图形问题中的数量关系,建立方程解决问题。
2、难点:找出“等量关系”列出方程。
教学过程
三、复习提问
1、列一元一次方程解应用题的步骤是什么?
2、长方形的`周长公式、面积公式。
四、新授
问题3、用一根长60厘米的铁丝围成一个长方形。
(1)使长方形的宽是长的专,求这个长方形的长和宽。
(2)使长方形的宽比长少4厘米,求这个长方形的面积。
(3)比较(1)、(2)所得两个长方形面积的大小,还能围出面积更大的长方形吗?
实际上,如果两个正数的和不变,当这两个数相等时,它们的积,通过以后的学习,我们就会知道其中的道理。
五、巩固练习
教科书第14页练习1、2。
六、小结
运用方程解决问题的关键是抓住等量关系,有些等量关系是隐藏的,不明显,要联系实际,积极探索,找出等量关系。
七、作业
教科书第16页,习题6.3.1第1、2、3。
初一数学教案4
一、教学目标
1.通过七巧板的制作,拼摆等活动,进一步丰富对平行,垂直及角等有关内容的认识,积累数学活动经验。
2.能用适当的图形和语言表示自己的思考结果。
二、教学重点和难点
本堂内容的重点是七巧板的制作和拼摆,难点是拼图所要表现的几何图形,对已学过的平行,垂直及角等有关内容的有机联系和语言表达。
三、教学手段
引导活动讨论
引导:意在教师讲解七巧板的历史,七巧板制作的方法。
活动:人人参与制作七巧板,拼摆七巧板的图案。
讨论:对自己所拼摆的图形与同伴交流,与全班同学交流(利用多媒体工具)与老师进行交流。
四、教学方法
启发式教学
五、教学过程
1 创设情景,引入新课
先用多媒体显示各种已拼摆好的动物,交通工具,植物等等然后介绍它是由怎样的一副拼板拼摆而成的(不一定要七巧板)。紧接着就介绍七巧板的历史,制作方法,让学生制作一副七巧板,并涂上不同的颜色。
2 合作交流,探索新知
利用所做的七巧板拼出两个不同的图案,并与同伴交流,与全班同学交流,与老师交流。
(1) 你的拼图用了什么形状的板?你想表现什么?
(2) 在你的拼出的图案中,指出三组互相平行或垂直的线段,并将它们间的关系表示出来。
(3) 在你拼出的图案中,找出一个锐角、一个直角、一个钝角,并将它们表示出来,它们分别是多少度。
通过学生的展示,教师作适时的评价,树立榜样,培养学生之间的竞争意识。
3 范例教学
介绍老师制作的3副游戏板,并用多媒体显示十几种的拼摆图案,通过生动有趣的图案,激发学生的创造欲望,提出你还有材料吗?有信心凭自己的智慧制作一副游戏板吗?意在充分发挥学生的创造能力、想象能力、合作交流能力(可由附近的同学四人小组制作完成)。
4 反馈练习
由四人小组制作的游戏板,拼摆二个不同图案,利用多媒体,展示给全体同学,用语言表示拼图所表现的.内容,与所学的知识的联系,呈现平行,垂直及角的有关知识。
5 归纳小结
通过制作七巧板及游戏板进一步学会了画平行线段、垂线段、找线段中点的方法,通过拼摆丰富了对平行、垂直及角等有关内容的认识,积累数学活动的经验,提高了空间观念和观察、分析、概括表达的能力。
六、练习设计
利用20cm20cm的硬纸板做一副游戏板,利用它拼出5个自己喜欢的图案,并把它画下来,布置教室的环境。
七、板书设计
4.7有趣的七巧板
(一)知识回顾 (三)例题解析 (五)课堂小结
(二)观察发现 (四)课堂练习 练习设计
初一数学教案5
学习目标:
1、从实际生活中感受有序数对的意义,并会确定平面内物体的位置。
2、通过有序数对确定位置,让学生感受二维空间观,发展符号感及抽象思维能力,让学生体会具体-抽象-具体的数学学习过程。
3、培养学生的合作交流意识和探索精神,创造性思维意识。体验数学来源于生活及应用于生活的意识,更好的激发学习兴趣。
学习重点:理解有序数对的概念,用有序数对来表示位置。
学习难点:理解有序数对是有序的并用它解决实际问题,
学习过程:
一、 学前准备
预习疑难: 。
二、 探索与思考
1、 观察思考:观察下图,什么时候气温最低?什么时候气温最高?你是如何发现的?
2、想一想:你看过电影吗?在电影院内,确定一个座位一般需要几个数据,为什么?
(1)如何找到6排3号这个座位呢?
(2)在电影票上6排3号与3排6号有什么不同?
(3)如果将6排3号简记作(6,3),那么3排6号如何表示?
(4)(5,6)表示什么含义?(6,5)呢?
3、结论:①可用排数和列数两个不同的数来确定位置;
②排数和列数的先后顺序对位置有影响。
4、概念:
有序数对:用含有 的词表示一个 位置,其中各个数表示不同的含义,我们把这种 两个数a与b组成的数对,叫做有序数对,记作(a,b)。
三、 理解与运用
(一)用有序数对来表示位置的情况是很常见的.如人们常用经纬度来表示地球上的地点.你有没有见过用其他的方式来表示位置的?
(二)应用
例1 如图,点A表示3街与5大道的十字路口,点B表示5街与3大道的十字路口,如果用(3,5)(4,5)(5,5)(5,4)(5,3)表示由A到B的一条路径,那么你能用同样的方法写出由A到B的其他几条路径吗?
分析:图中确定点用前一个数表示大街,后一个数表示大道。
解:其他的路径可以是:
(3,5)(4,5)(4,4)(5,4)(5,3);
(3,5)( ,5)(4,4)( , )(5,3);
(3,5)( , )( , )( , )(5,3);
四、学习体会:
1、 本节课你有哪些收获?你还有哪些疑惑?
2、 预习时的疑难解决了吗?
五、自我检测
1、小游戏:
怪兽吃豆豆是一种计算机游戏,图中的标志表示怪兽先后经过的几个位置. 如果用(1,2)表示怪兽按图中箭头所指路线经过的第3个位置. 那么你能用同样的方表示出图中怪兽经过的其他几个位置吗?
2、如图,马所处的位置为(2,3).
(1) 你能表示出象的位置吗?
(2) 写出马的下一步可以到达的位置。
3、右图是国际象棋的棋盘,E2在什么位置?又如何描述A、B、C的位置?
4、有趣玩一玩:
中国象棋中的马颇有骑士风度,自古有马踏八方之说,如图六(1),按中国象棋中马的行棋规则,图中的马下一步有A、B、C、D、E、F、G、H八种不同选择,它的走法就象一步从日字形长方形的对角线的一个端点到另一个端点,不能多也不能少。
要将图六(2)中的马走到指定的位置P处,即从(四,6)走到(六,4),现提供一种走法:(四,6)(六,5)(四,4)(五,2)(六,4)
(1) 下面提供另一走法,请填上所缺的一步:(四,6)(五,8)(七,7)___(六,4)
(2)请你再给出另一种走法(要与前面的两种走法不完全相同即可,步数不限),你的走法是:
六、方法归类
常见的确定平面上的点位置常用的方法
(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。
(2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。
如图,以灯塔A为观测点,小岛B在灯塔A北偏东45,距灯塔3km 处。
1、如图是某次海战中敌我双方舰艇对峙示意图,对我方舰艇来说:
(1)北偏东方向上有哪些目标?要想确定敌舰B的位置,还需要什么
数据?
(2)距我方潜艇图上距离为1cm处的敌舰有哪几艘?
(3)要确定每艘敌舰的位置,各需要几个数据?
2、如图是某城市市区的一部分示意图,对市政府来说:
(1) 北偏东60的方向有哪些单位?要想确定单位的位置。还需要哪些数据?
(2) 火车站与学校分别位于市政府的什么方向,怎样确定他们的'位置?
课题:6.1.2平面直角坐标系(第一课时) 课型:新授
学习目标:1.理解平面直角坐标系,以及横轴、纵轴、原点、坐标等的概念.
2.认识并能画出平面直角坐标系.
3.能在给定直角坐标系中,由点的位置确定点的坐标,由点的坐标确定点的位置
学习重点:根据点的坐标在直角坐标系中描出点的位置。
学习难点:探索特殊的点与坐标之间的关系。
学具准备:坐标纸,三角板
学习过程:
一、学前准备
1、预习疑难: 。
2、填空:①规定了 、 、 的直线叫做数轴。
②数轴上原点及原点右边的点表示的数是 ;原点左边的点表示的数是 。
③画数轴时,一般规定向 (或向 )为正方向。
二、探索与思考
(一)平面直角坐标系
1、观察:在数轴上,点A的坐标为 ,点B的坐标为 。
即:数轴上的点可以用一个 来表示,这个数叫做这个点的 。
反过来,知道数轴上的一个点的坐标,这个点在数轴上的位置也就确定了。
2、思考:能不能有一种办法来确定平面内的点的位置呢?
3、平面直角坐标系概念:
平面内画两条互相 、原点 的数轴,组成平面直角坐标系.
水平的数轴称为 或 ,习惯上取向 为正方向;
竖直的数轴为 或 ,取向 为正方向;
两个坐标轴的交点为平面直角坐标系的 。
4、点的坐标:
我们用一对 表示平面上的点,这对数叫 。表示方法为(a,b).a是点对应 上的数值,b是点在 上对应的数值。
(二)如何在平面直角坐标系中表示一个点
1、以A(2,3)为例,表示方法为:
A点在x轴上的坐标为 ,A点在y轴上的坐标为 ,
A点在平面直角坐标系中的坐标为(2,3),记作:A(2,3)
2、方法归纳:由点A分别向X轴和 作垂线。
3、强调:X轴上的坐标写在前面。
4、活动:你能说出点B、C、D的坐标吗?
注意:横坐标和纵坐标不要写反。
5、思考归纳:原点O的坐标是( , ),
x轴上的点纵坐标都是 , y轴上的横坐标都是 。
横轴上的点坐标为(x,0) ,纵轴上的点坐标为(0,y)
(三)象限:
1、 建立平面直角坐标系后,平面被坐标轴分成四部分,分别叫第一象限,第二象限,第三象限和第四象限。
第二象限(,+) 第一象限(+,+)
第三象限(,) 第四象限(+,)
2、注意:坐标轴上的点不属于任何一个象限
3、你能说出上面例子中各点在第几象限吗?
三、理解与运用
1、在游戏中学数学:以某同学为原点,以他所在的横排为x轴,以这一组为y轴,相邻两个同学之间的距离为单位长度建立坐标系.
(1)下面大家一起找一找自己在坐标系中的坐标分别是什么?
(2)下面这些坐标分别表示谁的位置? A(2,1);B(2,-1);C(-1,1);D(0,3);E(0,-1)
2、例 写出图中的多边形ABCDEF各个顶点的坐标.
(1)点B与点C的纵坐标相同,线段BC的位置有什么特点?
(2)线段CE的位置有什么特点?
(3)坐标轴上点的坐标有什么特点?
3、归纳:点的位置及其坐标特征:
①.各象限内的点;
②.各坐标轴上的点;
③.各象限角平分线上的点;
④.对称于坐标轴的两点;
⑤.对称于原点的两点。
4、对应练习:教材43页1、2题(在书上完成)。
四、学习体会:
1、本节课你有哪些收获?你还有哪些疑惑?
2、预习时的疑难解决了吗?
五、自我检测:
(一)选择题:
1、若点M(x,y)满足x+y=0,则点M位于( )。
(A)第一、三象限两坐标轴夹角的平分线上; (B)x轴上;
(C) x轴上; (D)第二、四象限两坐标轴夹角的平分线上。
2、第四象限中的点P(a,b)到x轴的距离是( )
(A)a (B)-a (C)-b (D)b
3、点A(-m,1-2m)关于原点对称的点在第一象限,那么m的取值范围是( )。
(A)m(B)m (C)m (D)m0 。
(二)填空题:
1、点P(3,-4)关于原点的对称点的坐标为___________;关于x轴的对称点的坐标为___________;关于y轴的对称点的坐标为____________
2、已知A(a,6),B(2,b)两点。
①当A、B关于x轴对称时,a=_____;b=_____。
②当A、B关于y轴对称时,a=_____;b=_____。
③当A、B关于原点对称时,a=_____;b=_____。
六、解答题
1.在下图中,分别写出八边形各个顶点的坐标.
2.下图是画在方格纸上的某岛简图.
(1)分别写出地点A,L,O,P,E的坐标;
(2)(4,7)(5,5)(2,5)所代表的地点分别是什么?
初一数学教案6
教学目标1,整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;
2,能区分两种不同意义的量,会用符号表示正数和负数;
3,体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。
教学难点正确区分两种不同意义的量。
知识重点两种相反意义的量
教学过程(师生活动)设计理念
设置情境
引入课题上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生
活中仅有这些“以前学过的数”够用了吗?下面的例子
仅供参考。
师:今天我们已经是七年级的学生了,我是你们的数学老师。下面我先向你们做一下自我介绍,我的名字是——,身高1。73米,体重58。5千克,今年40岁。我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…
问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?
学生活动:思考,交流
师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数)。
问题2:在生活中,仅有整数和分数够用了吗?
请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。
(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)
学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“—”的新数。先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严
密性,但对于学生来说,更多
地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴
趣,所以创设如下的问题情境,以尽量贴近学生的实际。
这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。
以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。
分析问题
探究新知问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?
这些问题都必须要求学生理解。
教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流。
这阶段主要是让学生学会正数和负数的表示。
强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量。这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。
举一反三思维拓展经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维。
问题4:请同学们举出用正数和负数表示的例子。
问题5:你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明。
能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性
课堂练习教科书第5页练习
小结与作业
课堂小结围绕下面两点,以师生共同交流的方式进行:
1,0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了;
2,正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“—”。
本课作业教科书第7页习题1。1第1,2,4,5(第3题作为下节课的'思考题。
作业可设必做题和选做题,体现要求的层次性,以满足不同学生的需要
本课教育评注(课堂设计理念,实际教学效果及改进设想)
密切联系生活实际,创设学习情境。本课是有理数的第一节课时。引人负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的为了接受这个新的数,就必须对原有的数的结构进行整理,引人币的举例就是这个目的
负数的产生主要是因为原有的数不够用了(不能正确简洁地表示数量),书本的例子
或图片中出现的负数就是让学生去感受和体验这一点。使学生接受生活生产实际中确实
存在着两种相反意义的量是本课的教学难点,所以在教学中可以多举几个这方面的例
子,并且所举的例子又应该符合学生的年龄和思维特点。当学生接受了这个事实后,引入负数(为了区分这两种相反意义的量)就是顺理成章的事了。
这个教学设计突出了数学与实际生活的紧密联系,使学生体会到数学的应用价值,
体现了学生自主学习、合作交流的教学理念,书本中的图片和例子都是生活生产中常见
的事实,学生容易接受,所以应该让学生自己看书、学习,并且鼓励学生讨论交流,教师作适当引导就可以了。
初一数学教案7
一、 学情分析:
在此之前,本班学生已有探索有理数加法法则的经验,多数学生能在教师指导下探索问题。由于学生已了解利用数轴表示加法运算过程,不太熟悉水位变化,故改为用数轴表示乘法运算过程。
二、 课前准备
把学生按组间同质、组内异质分为10个小组,以便组内合作学习、组间竞争学习,形成良好的学习气氛。
三、 教学目标
1、 知识与技能目标
掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、 能力与过程目标
经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、 情感与态度目标
通过学生自己探索出法则,让学生获得成功的喜悦。
四、 教学重点、难点
重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
五、 教学过程
1、 创设问题情景,激发学生的求知欲望,导入新课。
教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?
学生:26米。
教师:能写出算式吗?
学生:……
教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题(教师板书课题)
2、 小组探索、归纳法则
(1)教师出示以下问题,学生以组为单位探索。
以原点为起点,规定向东的方向为正方向,向西的方向为负方向。
a. 2 ×3
2看作向东运动2米,×3看作向原方向运动3次。
结果:向 运动 米
2 ×3=
b. -2 ×3
-2看作向西运动2米,×3看作向原方向运动3次。
结果:向 运动 米
-2 ×3=
c. 2 ×(-3)
2看作向东运动2米,×(-3)看作向反方向运动3次。
结果:向 运动 米
2 ×(-3)=
d. (-2) ×(-3)
-2看作向西运动2米,×(-3)看作向反方向运动3次。
结果:向 运动 米
(-2) ×(-3)=
e.被乘数是零或乘数是零,结果是人仍在原处。
(2)学生归纳法则
a.符号:在上述4个式子中,我们只看符号,有什么规律?
(+)×(+)= 同号得
(-)×(+)= 异号得
(+)×(-)= 异号得
(-)×(-)= 同号得
b.积的绝对值等于 。
c.任何数与零相乘,积仍为 。
(3)师生共同用文字叙述有理数乘法法则。
3、 运用法则计算,巩固法则。
(1)教师按课本P75 例1板书,要求学生述说每一步理由。
(2)引导学生观察、分析例1中(3)(4)小题两因数的关系,得出两个有理数互为倒数,它们的积为 。
(3)学生做 P76 练习1(1)(3),教师评析。
(4)教师引导学生做P75 例2,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。多个因数相乘,积的'符号由 决定,当负因数个数有 ,积为 ; 当负因数个数有 ,积为 ;只要有一个因数为零,积就为 。
4、 讨论对比,使学生知识系统化。
有理数乘法 | 有理数加法 | |
同号 | 得正 | 取相同的符号 |
把绝对值相乘 (-2)×(-3)=6 | 把绝对值相加 (-2)+(-3)=-5 | |
异号 | 得负 | 取绝对值大的加数的符号 |
把绝对值相乘 (-2)×3= -6 | (-2)+3=1 用较大的绝对值减小的绝对值 | |
任何数与零 | 得零 | 得任何数 |
5、 分层作业,巩固提高。
初一数学教案8
教学目标:
了解总体、个体、样本及样本容的概念以及抽样调查的意义,明确在什么情况下采用抽样调查或全面调查,进一步熟悉对数据的收集、整理、描述和分析。
教学重点:
对概念的理解及对数据收集整理。
教学难点:
总体概念的理解和随机抽样的合理性。
教学过程:
一、情景创设,引入新课
上节课我们对全班同学对自己所喜爱的学科进行了调查,那么如果要对某校20xx名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,怎样进行调查?
二、新课
1.抽样调查的意义
在上述问题中,由于学生人数比较多,全面调查花费的时间长,消耗的人力、物力大,因此需要寻求既省时又省力又能解决问题的方法,这就是抽样调查。
抽样调查:抽取一部分对象进行调查的方法,叫抽样调查。
2.总体、个体、样本、样本容量的意义
总体:所要考察对象的全体。
个体:总体的每一个考察对象叫个体。
样本:抽取的部分个体叫做一个样本。
样本容量:样本中个体的数目。
3.抽样的注意事项
①抽样调查要具有广泛性和代表性,即样本容量要恰当.样本容量过少,那么不能很好地反映总体的情况,比如要调查20xx名学生对电视节目的喜爱情况,若抽取的样本容量为几名学生就不能反映20xx名学生的喜爱情况;如果抽取的学生人数过多,必然花费大量的时间、精力,达不到省时省力的目的.再如要调查60岁以上的老人的生病情况,在医院去抽取一些60岁以上的住院病人,它又不具有代表性,则应从60岁以上的老人册中任意抽取部分老人的生病情况来反映总体的60岁老人的.生病情况,才能达到目的.
②抽取的样本要有随机性.为了使样本能较好地反映总体的情况,除了有合适的样本容量外,抽取时还要尽量使每一个个体都有相等的机会被抽到,所谓随机就是机会相等.例如在20xx名学生的注册学号中,随意抽取100个学号,调查这些学号对应的100名学生.当然还可以在上学或放学时,在学校门口随机进行调查;或则每隔10个人调查一个,直到调查满确定的样本容量.
总体说来抽样调查最大的优点就是在抽样过程中避免了人为的干扰和偏差,因此随机抽样是最科学、应用最广泛的抽样方法,一般情况下,样本容量越大,估计精确度就越高.
下面是某同学抽取样本数量为100的调查节目统计表:
表中的数据信息也可以用条形统计图或扇形统计图来描述。
初一数学教案9
一、学习与导学目标:
知识与技能:借助数轴理解相反数的意义,懂得数轴上表示相反数的两个点关于原点对称,会求有理数的相反数;
过程与方法:经历概念的生成、应用,体会相反数的意义,简化数的符号,学习观察、归纳、概括的策略与方法;
情感态度:通过师生、生生合作学习,促进交流,激发兴趣。
二、学程与导程活动:
A、准备活动:
1、师生游戏“唱反调”:我们知道在小学学过的0以外的数前面加上负号“-”的数就是负数。现在我说一个正数,你们给它添上“-”号说出来,我如果说一个负数,你们反过来说出对应的正数。+3、+1、-1/2、-18.4、0.75,学生很快说出-3、-1、1/2、18.4、-0.175。
2、上述“唱反调”的两个数3与-3,1与-1,-1/2与1/2……,在数轴上对应的点的位置如何?可建议生择两组在数轴上表示以后作答(在原点两侧到原点的距离相等,真可谓从原点背道而驰“唱反调”)。
提问:数轴上与原点距离是4的点有几个?这些点表示的数是多少?
归纳:设a是一个正数,数轴上与原点距离是a的点有两个,分别在原点左右表示-a和a,我们说这两点关于原点对称。
B、学习概念:
1、像3和-3,1和-1,-1/2和1/2这样,只有负号不同的两个数给它一个什么样的关系名称合适呢?生:互为相反数,师:很好,我们把上述只有负号不同的两个数叫做互为相反数(oppositenumber)。也就是说3的相反数是-3,-3的相反数是3。可见:相反数是成对出现的,不能单独存在。
一般地,a和-a互为相反数。“-a”可读成“a的相反数”。
2、在数轴上看,表示相反数的两个点和原点有什么关系?(关于原点对称)
3、从上述意义上看,你看如何规定0的`相反数更为合理?
商讨得:0的相反数仍是0,即0的相反数等于它本身。
C、应用举例:
1、两人一组,一人任说一个有理数,请同伴说出它的相反数。
2、如果a=-a,那么表示数a的点在数轴上的什么位置?a=?(a=0)。
3、在正数前面添上“-”号,就得到这个数的相反数,同样地,在任意一个数前面添上“-”号,新的数就表示原数的相反数,如:-(+5)=-5,-(-5)=5,-0=0。
结合前面相反数意义的量的学习,还可赋予-(-5)怎样的意义,从而帮助自己理解-(-5)=5吗?
4、化简下列各数P124练习,你愿意继续尝试化简下列各式吗?
+(-2/3),-(-2/3),-(+2/3),+(+2/3)
你能试着总结规律吗?(括号内外同号结果为正,括号内外异号结果为负)。
5、若a=-5,则-a=;若-x=7,则x=。
三、笔记与板书提纲:
课题应用举例中的2
活动引例应用举例中的4(学生练习),5
概念
四、练习与拓展选题:
1、教科书P18/3;
2、如图是正方形纸盒的侧面展示图,请你在正方形内分别填上6个不同的数,使折成正方体后相对的面上的两个数互为相反数(写出满足条件的一种情形即可)。
初一数学教案10
教学目标
(一)教学知识点
1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.
(二)能力训练要求
1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.
2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.
3.通过学生共同观察和讨论,培养大家的合作交流意识.
(三)情感与价值观要求
1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.
2.具有初步的创新精神和实践能力.
教学重点
1.体会方程与函数之间的联系.
2.理解何时方程有两个不等的实根,两个相等的实数和没有实根.
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.
教学难点
1.探索方程与函数之间的联系的过程.
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.
教学方法
讨论探索法.
教具准备
投影片二张
第一张:(记作§2.8.1A)
第二张:(记作§2.8.1B)
教学过程
Ⅰ.创设问题情境,引入新课
[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的'横坐标即为一元一次方程kx+b=0的解.
现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题。
通过学生的讨论,使学生更清楚以下事实:
(1)分解因式与整式的乘法是一种互逆关系;
(2)分解因式的结果要以积的形式表示;
(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式的次数;
(4)必须分解到每个多项式不能再分解为止。
活动5:应用新知
例题学习:
P166例1、例2(略)
在教师的引导下,学生应用提公因式法共同完成例题。
让学生进一步理解提公因式法进行因式分解。
活动6:课堂练习
1.P167练习;
2.看谁连得准
x2-y2 (x+1)2
9-25 x 2 y(x -y)
x 2+2x+1 (3-5 x)(3+5 x)
xy-y2 (x+y)(x-y)
3.下列哪些变形是因式分解,为什么?
(1)(a+3)(a -3)= a 2-9
(2)a 2-4=( a +2)( a -2)
(3)a 2-b2+1=( a +b)( a -b)+1
(4)2πR+2πr=2π(R+r)
学生自主完成练习。
通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。
活动7:课堂小结
从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?
学生发言。
通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解。
活动8:课后作业
课本P170习题的第1、4大题。
学生自主完成
通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。
板书设计(需要一直留在黑板上主板书)
15.4.1提公因式法例题
1.因式分解的定义
2.提公因式法
初一数学教案11
一、学习目标:
1.添括号法则.
2.利用添括号法则灵活应用完全平方公式
二、重点难点
重点:理解添括号法则,进一步熟悉乘法公式的合理利用
难点:在多项式与多项式的.乘法中适当添括号达到应用公式的目的
三、合作学习
Ⅰ.提出问题,创设情境
请同学们完成下列运算并回忆去括号法则.
(1)4+(5+2)
(2)4-(5+2)
(3)a+(b+c)
(4)a-(b-c)
去括号法则:
去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不变号;
如果括号前是负号,去掉括号后,括号里的各项都要变号。
1.在等号右边的括号内填上适当的项:
(1)a+b-c=a+( )
(2)a-b+c=a-( )
(3)a-b-c=a-( )
(4)a+b+c=a-( )
2.判断下列运算是否正确.
(1)2a-b- =2a-(b- )
(2)m-3n+2a-b=m+(3n+2a-b)
(3)2x-3y+2=-(2x+3y-2)
(4)a-2b-4c+5=(a-2b)-(4c+5)
添括号法则:添上一个正括号,扩到括号里的不变号,添上一个负括号,扩到括号里的要变号。
四、精讲精练
例:运用乘法公式计算
(1)(x+2y-3)(x-2y+3)
(2)(a+b+c)2
(3)(x+3)2-x2
(4)(x+5)2-(x-2)(x-3)
随堂练习:教科书练习
五、小结:去括号法则
六、作业:教科书习题
初一数学教案12
一、教学目的
通过分析储蓄中的数量关系、商品利润等有关知识,经历运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型。
二、重点、难点
1、重点:探索这些实际问题中的等量关系,由此等量关系列出方程。
2、难点:找出能表示整个题意的等量关系。
三、教学过程
(一)、复习
1、储蓄中的利息、本金、利率、本利和等含义,关系:利息=本金×年利率×年数
本利和=本金×利息×年数+本金
2、商品利润等有关知识。
利润=售价—成本; =商品利润率
(二)、新授
问题4:小明爸爸前年存了年利率为2.43%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.6元的.计算器,问小明爸爸前年存了多少元?
四、巩固练习
教科书第15页,练习1、2。
五、小结
当运用方程解决实际问题时,首先要弄清题意,从实际问题中抽象出数学问题,然后分析数学问题中的等量关系,并由此列出方程;求出所列方程的解;检验解的合理性。应用一元一次方程解决实际问题的关键是:根据题意首先寻找“等量关系”。
六、作业
教科书第16页,习题6.3.1,第4、5题。
初一数学教案13
第一章 有理数
1.1 正数与负数
①正数:大于0的数叫正数。(根据需要,有时在正数前面也加上“+”)
②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。与正数具有相反意义。
③0既不是正数也不是负数。0是正数和负数的分界,是唯一的中性数。
注意搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等
1.2 有理数
1、有理数
(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。
2、数轴
(1)定义 :通常用一条直线上的点表示数,这条直线叫数轴;
(2)数轴三要素:原点、正方向、单位长度;
(3)原点:在直线上任取一个点表示数0,这个点叫做原点;
(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不全表示有理数。
3、相反数
只有符号不同的两个数互为相反数。(如2的相反数是-2,0的相反数是0)
4、绝对值
(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。从几何意义上讲,数的绝对值是两点间的距离。
(2) 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
1.3 有理数的加减法
有理数加法法则:
1、同号两数相加,取相同的符号,并把绝对值相加。
2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3、一个数同0相加,仍得这个数。
加法的交换律和结合律。
有理数减法法则:减去一个数,等于加这个数的相反数。
1.4 有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
乘法交换律、结合律、分配律。
②有理数除法法则:
除以一个不等于0的数,等于乘这个数的倒数;
两数相除,同号得正,异号得负,并把绝对值相除;
0除以任何一个不等于0的数,都得0。
1.5 有理数的乘方
1、求n个相同因数的.积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
2、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
3、把一个大于10的数表示成a×10的n次方的形式,使用的就是科学记数法,注意a的范围为1≤a<10。
第二章 整式的加减
2.1 整式
1、单项式
由数字和字母乘积组成的式子。系数,单项式的次数. 单项式指的是数或字母的积的代数式.单独一个数或一个字母也是单项式.因此,判断代数式是不是单项式,关键要看代数式中数与字母是不是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,也不是单项式.
2、单项式的系数
指单项式中的数字因数。
3、单项数的次数
指单项式中所有字母的指数的和。
4、多项式
几个单项式的和。判断代数式是不是多项式,关键要看代数式中的每一项是不是单项式.每个单项式称项,常数项,多项式的次数就是多项式中次数最高的次数。多项式的次数是指多项式里次数最高项的次数,这里是次数最高项,其次数是6;多项式的项是指在多项式中,每一个单项式.特别注意多项式的项包括它前面的性质符号。
5、它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。
6、单项式和多项式统称为整式。
2.2整式的加减
1、同类项
所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(不等于0)无关。
2、同类项必须同时满足两个条件
(1)所含字母相同;(2)相同字母的指数相同。二者缺一不可.
同类项与系数大小、字母的排列顺序无关。
3、合并同类项
把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。
4、合并同类项法则
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
5、去括号法则
去括号,看符号:是正号,不变号;是负号,全变号。
6、整式加减的一般步骤:一去、二找、三合
(1)如果遇到括号按去括号法则先去括号. (2)结合同类项. (3)合并同类项。
第三章 一元一次方程
3.1 一元一次方程
1、方程是含有未知数的等式。
2、方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。
注意:判断一个方程是否是一元一次方程要抓住三点:
(1)未知数所在的式子是整式(方程是整式方程);
(2)化简后方程中只含有一个未知数;
(3)经整理后方程中未知数的次数是1.
3、解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
4、等式的性质
(1)等式两边同时加(或减)同一个数(或式子),结果仍相等;
(2)等式两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。
注意:运用性质时,一定要注意等号两边都要同时变;运用性质2时,一定要注意0这个数.
3.2 、3.3解一元一次方程
在实际解方程的过程中,以下步骤不一定完全用上,有些步骤还需重复使用. 因此在解方程时还要注意以下几点:
①去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;去分母与分母化整是两个概念,不能混淆;
②去括号:遵从先去小括号,再去中括号,最后去大括号;不要漏乘括号的项;不要弄错符号;
③移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(移项要变符号) 移项要变号;
④合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写成连等的形式;
⑤系数化为1:字母及其指数不变,系数化成1,在方程两边都除以未知数的系数a,得到方程的解。不要把分子、分母搞颠倒。
3.4 实际问题与一元一次方程
一.概念梳理
列一元一次方程解决实际问题的一般步骤是:
①审题,特别注意关键的字和词的意义,弄清相关数量关系;
②设出未知数(注意单位);
③根据相等关系列出方程;
④解这个方程;
⑤检验并写出答案(包括单位名称)。
二、思想方法(本单元常用到的数学思想方法小结)
⑴建模思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立一元一次方程的思想.
⑵方程思想:用方程解决实际问题的思想就是方程思想.
⑶化归思想:解一元一次方程的过程,实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a的形式. 体现了化“未知”为“已知”的化归思想.
⑷数形结合思想:在列方程解决问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展示出来,体现了数形结合的优越性.
⑸分类思想:在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.
三、数学思想方法的学习
1. 解一元一次方程时,要明确每一步过程都作什么变形,应该注意什么问题.
2. 寻找实际问题的数量关系时,要善于借助直观分析法,如表格法,直线分析法和图示分析法等.
3. 列方程解应用题的检验包括两个方面:
⑴检验求得的结果是不是方程的解;
⑵是要判断方程的解是否符合题目中的实际意义.
四、应用(常见等量关系)
行程问题:s=v×t
工程问题:工作总量=工作效率×时间
盈亏问题:利润=售价-成本
利率率=利润÷成本×100%
售价=标价×折扣数×10%
储蓄利润问题:利息=本金×利率×时间
本息和=本金+利息
第四章 几何图形初步
4.1 几何图形
1、几何图形:从形形色色的物体外形中得到的图形叫做几何图形。
2、立体图形:这些几何图形的各部分不都在同一个平面内。
3、平面图形:这些几何图形的各部分都在同一个平面内。
4、虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。立体图形中某些部分是平面图形。
5、三视图:从左面看,从正面看,从上面看。
6、展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。这样的平面图形称为相应立体图形的展开图。
7、⑴几何体简称体;包围着体的是面;面面相交形成线;线线相交形成点;
⑵点无大小,线、面有曲直;
⑶几何图形都是由点、线、面、体组成的;
⑷点动成线,线动成面,面动成体;
⑸点是组成几何图形的基本元素。
4.2 直线、射线、线段
1、直线公理:经过两点有一条直线,并且只有一条直线。即:两点确定一条直线。
2、当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。
3、把一条线段分成相等的两条线段的点,叫做这条线段的中点。
4、线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
5、连接两点间的线段的长度,叫做这两点的距离。
6、直线的表示方法:直线可记作直线AB或记作直线m.
(1)用几何语言描述右面的图形,我们可以说:点P在直线AB外,点A、B都在直线AB上.
(2)点O既在直线m上,又在直线n上,我们称直线m、n 相交,交点为O.
7、在直线上取点O,把直线分成两个部分,去掉一边的一个部分,保留点0和另一部分就得到一条射线,记作射线OM或记作射线a.
注意:射线有一个端点,向一方无限延伸.
8、在直线上取两个点A、B,把直线分成三个部分,去掉两边的部分,保留点A、B和中间的一部分就得到一条线段.记作线段AB或记作线段a.
注意:线段有两个端点.
4.3 角
1. 角的定义:有公共端点的两条射线组成的图形叫角。这个公共端点是角的顶点,两条射线为角的两边。
2、角有以下的表示方法:
① 用三个大写字母及符号“∠”表示.三个大写字母分别是顶点和两边上的任意点,顶点的字母必须写在中间.
② 用一个大写字母表示.这个字母就是顶点.当有两个或两个以上的角是同一个顶点时,不能用一个大写字母表示.
③ 用一个数字或一个希腊字母表示.在角的内部靠近角的顶点处画一弧线,写上希腊字母或数字.如图的两个角,分别记作∠α、∠1。
3、以度、分、秒为单位的角的度量制,叫做角度制。角的度、分、秒是60进制的。1度=60分,1分=60秒,1周角=360度,1平角=180度。
4、角的平分线:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线。
5、如果两个角的和等于90度(直角),就说这两个叫互为余角,即其中每一个角是另一个角的余角;
如果两个角的和等于180度(平角),就说这两个叫互为补角,即其中每一个角是另一个角的补角。
6、同角(等角)的补角相等;同角(等角)的余角相等。
7、方位角:一般以正南正北为基准,描述物体运动的方向。
初一数学教案14
【教学内容】
第二章 2.1 正数与负数 2.2 数轴
【教学目标】
1、会判断一个数是正数还是负数,理解负数的意义。
2、会把已知数在数轴上表示,能说出已知点所表示的数。
3、了解数轴的原点、正方向、单位长度,能画出数轴。
4、会比较数轴上数的大小。
【知识讲解】
一、本讲主要学习内容
1、负数的意义及表示 2、零的位置和地位
3、有理数的分类 4、数轴概念及三要素
5、数轴上数与点的对应关系 6、数轴上数的比较大小
其中,负数的概念,数轴的概念及其三要素以及数轴上数的比较大小是重点。负数的意义是难点。
下面概述一下这六点的主要内容
1、负数的.意义及表示
把大于0的数叫正数如5,3,+3等。在正数前加上“-”号的数叫做负数如-5,-3,- 等。负数是表示相反意义的量,如:低于海平面-155米表示为-155m,亏损50元表示-50元。
2、零的位置和地位
零既不是正数,也不是负数,但它是自然数。它可以表示没有,也可以在数轴上分隔正数和分数,甚至可以表示始点,表示缺位,这将在下面详细介绍。
3、有理数的分类
正整数、零、负整数统称为整数,正分数、负分数统称为分数,整数和分数统称为有理数。
正整数
整数 零 正有理数
有理数 负整数 或 有理数 零
分数 正分数 负有理数
负分数
初一数学教案15
学习目标:
1、学会判断文字表述的表达是否正确,能判断一个事件属于什么事件;
2、可以判断一个游戏是否公平。
学习重点:
1、对不可能事件,必然事件和随机事件的概念的应用;
2、判断游戏公平与否。
学习难点:
1、对事件加以判断,并说明理由
2、对游戏策略和规律的分析以及游戏结果的预见性
学法指导:自主学习、小组讨论
学习过程:
1、下列说法正确吗?请说明理由。
(1)可能性很大的事情是必然发生的;
(2)可能性很小的事情是不可能发生的;
(3)掷一个普通的`正方体骰子,结果恰好是“3”是不可能发生的;
(4)小明的幸运数是“2”,所以他在掷正方体骰子时掷出“2”的机会比他掷出其他数字的机会大;
(5)爸爸买彩票又没中奖,我劝他要坚持,因为他从未中过奖,所以他现在中奖的机会比以前大了。
2、现有0、1、2、…、9十个数,在下列事件中,请说出哪些是确定事件,哪些是不确定事件?在确定事件中,哪些是必然事件,哪些是不可能事件?说说你的理由。
(1)、随机地从这十个数中选取两个数,它们的和为17;
(2)、随机地从这十个数中选取两个数,它们的和为123;
(2)、随机地从这十个数中选取两个数,它们的和为正整数;
(4)、随机地从这十个数中选取两个数,它们的差为-5。
3、对于第二题,你还能说出其他的可能事件、必然事件和不可能事件吗?
4、如果小明邀请你玩一个抛掷两枚硬币的游戏,游戏规则这样:
抛出两个正面——你赢1分;
抛出其他结果——小明赢1分;
谁先到10分,谁就得胜。
你会和小明玩这个游戏吗?这个游戏规则对你和小明公平吗?说说理由。如果你认为不公平,那么怎么修改游戏规则才对双方公平呢?
5、如果把“抢30”游戏改成“抢50”游戏,那么它是偏向于谁的游戏呢?说说你的理由。
作业:在一个不透明的口袋中装着大小、外形等一模一样的5个红球、3个蓝球和2个白球,它们已经在口袋中被搅匀了,请你判断下面哪些是不可能事件,哪些是必然事件,哪些是随机事件,并说明理由。
(1)从口袋中任意取出1个球,是一个白球;
(2)从口袋中一次任意取出5个球,全是蓝球;
(3)从口袋中一次任意取出5个球,只有蓝球和白球,没有红球;
(4)从口袋中一次任意取出6个球,恰好红、蓝、白三种颜色都齐了;
从口袋中一次任意取出9个球,恰好红、
【初一数学教案】相关文章:
初一数学教案04-27
初一数学教案(精选6篇)06-24
初一数学教案(15篇)06-10
初一级数学教案08-16
初一数学教案(通用15篇)06-10
初一数学教案集锦15篇06-12
初一数学教案集合15篇06-11
数学教案-初一数学《数据的收集》教学设计08-16
数学教案-数学教案08-16
数学教案05-16