七年级数学优秀教案
作为一名教学工作者,常常需要准备教案,借助教案可以让教学工作更科学化。如何把教案做到重点突出呢?下面是小编为大家收集的七年级数学优秀教案,希望能够帮助到大家。
七年级数学优秀教案1
教 案
第一章 有理数
(1)本周小张一共用掉了多少钱?存进了多少钱?
根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?
夯实基础
(1)序号为几的零件最接近标准?
④-(-) 0.025.
第2课时 加法运算律
教学目标:
1.能运用加法运算律简化加法运算.
2.理解加法运算律在加法运算中的作用,适当进行推理训练.
教学重点:如何运用加法运算律简化运算.
教学难点:灵活运用加法运算律.
教与学互动设计:
(一)情境创设,导入新课
思考:在小学里,我们学过的加法运算有哪些运算律?它们的内容是什么?能否举一两个例子来?那这些加法运算律还适用于有理数范围吗?今天,我们一起来探究这个问题.
(二)合作交流,解读探究
计算:20+(-30)与(-30)+20两次得到的和相同吗?
得出结论:20+(-30)=(-30)+20
换几组数去试:得到加法交换律:a+b= (学生填).
其实,学生在小学中就已经接触到运算律,此时,可以让学生回忆在小学中除了学习了加法的交换律,还学习了加法的哪种运算律?(结合律)
计算:(1)[8+(-5)]+(-4);
(2)8+[(-5)+(-4)].
得出结论:加法结合律:(a+b)+c= .
【例1】计算:
16+(-25)+24+(-35)
【例2】课本P20例3
说明:把互为相反数的一对数结合起来相加,可以使运算简化,这种方法是使用加法交换律和加法结合律.
总结:在进行多个有理数相加时,在下列情况下一般可以用加法交换律和加法结合律简化运算:①有些加数相加后可以得到整数时,可以先行相加;②有相反数可以互相消去,和为0,可以先行相加;③有许多正数和负数相加时,可以先把符号相同的数相加,即正数和正数相加,负数和负数相加,再把一个正数和一个负数相加.
(三)应用迁移,巩固提高
【例3】 利用有理数的加法运算律计算,使运算简便.
(1)(+9)+(-7)+(+10)+(-3)+(-9)
(2)(+0.36)+(-7.4)+(+0.03)+(-0.6)+(+0.64)
(3)(+1)+(-2)+(+3)+(-4)+…+(+20xx)+(-20xx)
【例4】某出租司机某天下午营运全是在东西走向的人民大道上进行的,如果规定向东为正,向西为负,他这天下午行车里程如下:(单位:千米)+15,+14,-3,-11,+10,-12,+4,-15,+16,-18.
(1)他将最后一名乘客送到目的`地,该司机与下午出发点的距离是多少千米?
(2)若汽车耗油量为a公升/千米,这天下午汽车共耗油多少公升?
(四)总结反思,拓展升华
本节课我们探索了有理数的加法交换律和结合律.灵活运用加法的运算律会使运算简便.一般情况下,我们将互为相反数的数相结合,同分母的分数相结合,能凑整数的数相结合,正数负数分别相加,从而使计算简便.
(五)课堂跟踪反馈
夯实基础
1.运用加法的运算律计算(+6)+(-18)+(+4)+(-6.8)+18+(-3.2)最适当的是( )
A.[(+6)+(+4)+18]+[(-18)+(-6.8)+(-3.2)]
B.[(+6)+(-6.8)+(+4)]+[(-18)+18+(-3.2)]
C.[(+6)+(-18)]+[(+4)+(-6.8)]+[18+(-3.2)]
D.[(+6)+(+4)]+[(-3.2)+(-6.8)]+[(-18)+18)]
2.计算:(-2)+4+(-6)+8+…+(-98)+100.
提升能力
3.小李到银行共办理了四笔业务,第一笔存入了120元,第二笔支取了85元,第三笔支取了70元,第四笔存入了130元.如果将这四笔业务合并为一笔,请你替他策划一下这一笔业务该怎样做?
4.某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负.某天自A地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5.
(1)问收工时距A地多远?
(2)若每千米路程耗油0.2升,问从A地出发到收工共耗油多少升?
第3课时 有理数的减法
教学目标:
1.经历探索有理数减法法则的过程,理解有理数减法法则.
2.会熟练进行有理数减法运算.
教学重点:有理数减法法则和运算.
教学难点:有理数减法法则的推导.
教与学互动设计
(一)创设情景,导入新课
观察温度计:
你能从温度计看出4℃比-3℃高出多少度吗?
学生普遍能直观地看出4℃比-3℃高7℃,进一步地假定某地一天的气温是-3~4℃,那么温差(减最低气温,单位℃)如何用算式表示?
按照刚才观察到的结果,可知4-(-3)=7 ①,而4+(+3)=7 ②,∴由①②可知:4-(-3)=4+(+3) ③,上述结论的获得应放手让学生回答.
(二)动手实践,发现新知
观察、探究、讨论:从③式能看出减-3相当于加哪个数吗?
结论:减去-3等于加上-3的相反数+3.
(三)类比探究,总结提高
如果将4换成-1,还有类似于上述的结论吗?
先让学生直观观察,然后教师再利用“减法是与加法相反的运算”引导学生换一个角度去验算.
计算(-1)-(-3)就是要求一个数x,使x与-3相加得-1,因为2与-3相加得-1,所以x应是2,即(-1)-(-3)=2 ①,
又因为(-1)+(+3)=2 ②,
由①②有(-1)-(-3)=-1+(+3) ③,
即上述结论依然成立.
试一试:如果把4换成0、-5,用上面的方法考虑0-(-3),(-5)-(-3),这些数减-3的结果与它加上+3的结果相同吗?
让学生利用“减法是加法的相反运算”得出结果,再与加法算式的结果进行比较,从而得出这些数减-3的结果与它们加+3的结果相同的结论.
再试:把减数-3换成正数,结果又如何呢?
计算9-8与9+(-8);15-7与15+(-7)
从中又能有新发现吗?
让学生通过计算总结如下结论:减去一个正数等于加上这个正数的相反数.
归纳:由上述实验可发现,有理数的减法可以转化为加法来进行.
减法法则:减去一个数,等于加上这个数的相反数.
用字母表示:a-b=a+(-b).
(在上述实验中,逐步渗透了一种重要的数学思想方法——转化)
(四)例题分析,运用法则
【例】计算:
(1)(-3)-(-5); (2)0-7;
(3)7.2-(-4.8);(4)-3-5.
(五)总结巩固,初步应用
总结这节课我们学习了哪些数学知识和数学思想?你能说一说吗?
教师引导学生回忆本节课所学内容,学生回忆交流,教师和学生一起补充完善,使学生更加明晰所学的知识.
七年级数学优秀教案2
一、教学目标
1、在了解相反意义量的基础上,使学生了解正负数的概念和学习正负数的意义。
2、使学生能正确判断一个数是正数还是负数,明确零既不是正数也不是负数。
3、学会用正负数表示实际问题中具有相反意义的量。
二、教学重点和难点
重点:正负数的概念
难点:负数的概念
三、教具
投影片、实物投影仪
四、教学内容
(一)引入
师:我们知道,为了表示物体的个数和事物的顺序,产生了1,2,3,4……这些数,我们把它叫做什么数?
生:自然数
师:为了表示“没有”,又引入了一个什么数?
生:自然数0
师:当测量和计算的结果不是整数时,又引进了什么数?
生:分数(小数)
师:可见数的概念是随着生产和生活的需要而不断发展的。请同学们想一想,在现实生活中是否还存在着别类型的数呢?如吐鲁番盆地最低处低于海平面155米,世界最高峰珠穆朗玛高出海平面8848.13米,我市某天最高气温是零上8摄氏度。
请学生用数表示这些量,遭遇表示困难。
师:为了能表示这些量,我们需要引入一种新数这就是本节课所要学习的内容。[板书:1、1正数与负数]
(二)新课教学
1、相反意义的量
师:在现实生活中,我们常常遇到一些具有相反意义的量,比如:(投影片显示)
(1)汽车向东行驶2.5千米和向西行驶1.5千米;
(2)气温从零上6摄氏度下降到零下6摄氏度;
(3)风筝上升10米或下降5米。
引导学生明确具有相反意义的量的特征:(1)有两个量(2)有相反的意义
请学生举出一些相反意义的'量的实例。
教师归结:相反意义中的一些常用词有:盈利与亏损,存入与支出,增加与减少,运进与运出,上升与下降等。
2、正数与负数
师:用小学里学过的数能表示这些具有相反意义的量吗?如何来表示具有相反意义的量呢?
由师生讨论后得出:我们把一种意义的量规定为正的,用“+”(读作正)号来表示,同时把另一种与它相反意义的量规定为负的',用“-”(读作负)号来表示。
师:例如,如果零上6℃记作+6℃(读作正6摄氏度),那么零下6℃记作-6℃(读作负6摄氏度),请同学们用同样的方法表示(1)、(2)两题。
生:(1)如果向东行驶2.5千米记作+2.5千米(读作正2.5千米),那么向西行驶1.5千米记作-1.5千米(读作负1.5千米);(2)如果上升10米记作+10米(读作正10米),那么下降5米记作-5米(读作负5米)。
师:像+6,+10,+2.5等前面放有“+”号的数叫做正数,像-6,-5,-1.5等前面放有“-”号的数叫做负数。正号可以省略不写,如+5可以写成5,但负数的负号能省略不写吗?
生:(讨论后得出)不能。
师:(以温度计为例)温度计中的0不是表示没有温度,它通常表示水结成冰时的温度,是零上温度与零下温度的分界点,因此得出:零既不是正数也不是负数。
(三)、练习
1、学生完成课本第4页练习1,2,3
2、补充练习
(1)在-2,+2.5,0,-0.35,11中,正数是,负数是;
(2)如果向东为正,那么走-50米表示什么意思?如果向南为正,那么走-50米又表示什么意思?
(3)欧洲人以地面一层记为0,那么1楼、2楼、3楼……就表示为0,1,2……那么地下第二层表示为。
(四)小结
1、引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示。
2、在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定。
3、要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与小学里学过的数有很大的区别。
(五)作业
见作业1.1节作业。
七年级数学优秀教案3
认识三角形教学目标:
1.知识与技能
结合具体实例,进一步认识三角形的概念,掌握三角形三条边的关系。
2.过程与方法
通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理地表达能力。
3.情感、态度与价值观
联系学生的生活环境、创设情景,帮助学生树立几何知识源于实际、用于实际的观念,激发学生兴趣。
教学重点难点:
1.重点
让学生掌握三角形的概念及三角形的三边关系,并能运用三边关系解决生活中的实际问题。
2.难点
探究三角形的三边关系应用三边关系解决生活中的实际问题。
教学设计:
本节课件设计了以下几个环节:回顾与思考、情境引入、三角形的概念、探索三角形三边关系、题目应用、课堂小结、探究拓展思考、布置作业。
第一环节回顾与思考
1、如何表示线段、射线和直线?
2、如何表示一个角?
第二环节情境引入
活动内容:让学生收集生活中有关三角形的图片,课上让学生举例,并观察图片。
活动目的:让学生能从生活中抽象出几何图形,感受到我们生活在几何图形的世界之中。培养学生善于观察生活、乐于探索研究的品质,从而更大地激发学生数学的'兴趣
第三环节三角形概念的讲解
(1)你能从中找出四个不同的三角形吗?
(2)与你的同伴交流各自找到的三角形。
(3)这些三角形有什么共同的特点?
通过上题的分析引出三角形的概念、三角形的表示方法及三角形的边角的表示方法。并出两道题,从题目中归纳出三角形的三要素和注意事项。
第四环节探索三角形三边关系第一部分探索三角形的任意两边之和大于第三边
活动内容:在四根长度分别是8cm、10cm、15cm、20cm的小木棒中选三根木棒摆三角形。学生统计能否摆成三角形的情况。
第二部分探索三角形的任意两边之差小于第三边
活动内容:通过让学生测量任意三角形三边长度来比较两边之差与第三边的关系,教师通过几何画板验证,从而得出结论。
第五环节题目提高
活动内容:
1.有两根长度分别为5厘米和8厘米的木棒,用长度为2厘米的木棒与它们能摆成三角形吗?为什么?长度为13厘米的木棒呢?
2.如果三角形的两边长分别是2和4,且第三边是奇数,那么第三边长为.若第三边为偶数,那么三角形的周长.
3.有两根长度分别为5cm和8cm的木棒,用长度为2cm的木棒与它们能摆成三角形吗?为什么?长度为13cm的木棒呢?动手摆一摆。学生回答完上面问题后想一想能取一根木棒与原来的两根木棒摆成三角形吗?
第六环节课堂小结
活动内容:学生自我谈收获体会,说说学完本节课的困惑。教师做最终总结并指出注意事项。
学生对本节内容归纳为以下两点:
1.了解了三角形的概念及表示方法;
2.三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边。
注意事项为:判断a,b,c三条线段能否组成一个三角形,应注意:a+b>c,a+c>b,b+c>a三个条件缺一不可。当a是a,b,c三条线段中最长的一条时,只要b+c>a就是任意两条线段的和大于第三边。
第七环节探究拓展思考
1.若三角形的周长为17,且三边长都有是整数,那么满足条件的三角形有多少个?你可以先固定一边的长,用列表法探求。
2.在例1中,你能取一根木棒,与原来的两根木棒摆成三角形吗?
3.以三根长度相同的火柴为边,可以组成一个三角形,现在给你六根火柴,如果以每根火柴为边来组成三角形,最多可组成多少个三角形?试试看。
第八环节作业布置
七年级数学优秀教案4
[教学目标]
1.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力
2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题
[教学重点与难点]
重点:邻补角与对顶角的概念。对顶角性质与应用
难点:理解对顶角相等的性质的探索
[教学设计]
一。创设情境激发好奇观察剪刀剪布的过程,引入两条相交直线所成的角
在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。
观察剪刀剪布的过程,引入两条相交直线所成的角。
学生观察、思考、回答问题
教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的.口又怎么变化?
教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题,
二。认识邻补角和对顶角,探索对顶角性质
1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配
共能组成几对角?根据不同的位置怎么将它们分类?
学生思考并在小组内交流,全班交流。
当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用
几何语言准确表达;
有公共的顶点O,而且的两边分别是两边的反向延长线
2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?
(学生得出结论:相邻关系的两个角互补,对顶的两个角相等)
3学生根据观察和度量完成下表:
两条直线相交所形成的角分类位置关系数量关系
教师提问:如果改变的大小,会改变它与其它角的位置关系和数量关系吗?
4.概括形成邻补角、对顶角概念和对顶角的性质
三。初步应用
题目:
下列说法对不对
(1)邻补角可以看成是平角被过它顶点的一条射线分成的两个角
(2)邻补角是互补的两个角,互补的两个角是邻补角
(3)对顶角相等,相等的两个角是对顶角
学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象
四。巩固运用例题:如图,直线a,b相交,求的度数。
[巩固](教科书5页题目)已知,如图,求:的度数
[小结]
邻补角、对顶角。
[作业]课本P9-1,2P10-7,8
七年级数学优秀教案5
教学目标
1.经历从性质公理推出性质的过程;
2.感受原命题与逆命题,从而了解平行线的性质公理与判定公理的区别,能在推理过程正确使用。
对话探索设计
〖探索1反过来也成立吗
过去我们学过:如果两个数的和为0,这两个数互为相反数。反过来,如果两个数互为相反数,那么这两个数的和为0.显然,这两个句子都是正确的。
现在换一个例子:如果一个整数个位上的数字是5,那么它一定能够被5整除。对吗?这句话反过来怎么说?对不对?
结论:如果一个句子是正确的,反过来说(因果对调),就未必正确。
〖探索2
上一节课,我们学过:同位角相等,两直线平行。反过来怎么说?猜一猜:它还是对的吗?
〖探索3
(1)用三角尺画两条平行线a、b.说一说:不利用第三条直线能画出两条平行线吗?请画出第三条直线(把它记为c),并说明判定这两条直线平行的根据(公理或定理);
(2)在(1)中再画一条直线d与直线a、b都相交,找出其中的'一对同位角,用量角器量出它们的度数验证你原来的猜测。
结论:两条平行线被第三条直线所截,同位角相等。
与平行线的判定公理一样,这个结论也是基本事实,即人们在长期实践中出来的结论,我们把它叫做平行线的性质公理,它是平行线的第一条性质。
〖探索4
如图,请画直线c截两条平行线a、b;再在图中找出一对内错角。同学们一定能从直觉判断这对内错角也是相等的。也就是说:
两条平行线被第三条直线所截,内错角相等。它是平行线的第二条性质。
现在我们来试一试:如何根据性质1说出性质2成立的道理。
如图,
∵a∥b(已知),
∴∠1=∠3(____________________).
又∠3=________(对顶角相等),
∴∠1=∠2(___________).
以上过程说明了:由性质1可以得出性质2.
〖探索5
我们学过判定两直线平行的第三种方法:
两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。(简单地说:同旁内角互补,两直线平行。)
把这条定理反过来,可以简单说成_____________________.
猜一猜:把这条定理反过来以后,还成立吗?
〖练习
P22练习
说一说:求这三个角的度数分别根据平行线的哪一条性质?
〖作业
P25.1、2、3
〖补充作业
如图:直线a、b被直线c所截,
(1)若a∥b,可以得到∠1=∠2.根据什么?
(2)若∠1=∠2,可以得到a∥b.根据什么?
(注意:(1)、(2)的根据一样吗?)
七年级数学优秀教案6
教学目标
1, 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;
2, 了解分类的标准与分类结果的相关性,初步了解“集合”的含义;
3, 体验分类是数学上的常用处理问题的方法。
教学难点 正确理解分类的标准和按照一定的标准进行分类
知识重点 正确理解有理数的概念
教学过程
探索新知
在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).
问题1:观察黑板上的9个数,并给它们进行分类.
学生思考讨论和交流分类的情况.
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.
例如,
对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.…(由于小数可化为分数,以后把小数和分数都称为分数)
通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,”。
按照书本的说法,得出“整数”“分数”和“有理数”的概念.
看书了解有理数名称的由来.
“统称”是指“合起来总的名称”的意思.
试一试:
按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的) 分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与
学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
有理数的分类表要在黑板或媒体上展示,分类的'标准要引导学生去体会
练一练
1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.
2,教科书第10页练习.
此练习中出现了集合的概念,可向学生作如下的说明.
把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;
数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号:。
思考:
问题1:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
创新探究
问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等。
小结与作业
到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
七年级数学优秀教案7
一、内容和内容解析
1、内容
无限不循环小数;求算术平方根的更一般的方法——用有理数估算、用计算器求值。
2、内容解析
无限不循环小数的引入,教科书是通过用有理数估计的大小,得到的越来越精确的近似值,进而发现是一个无限不循环小数的结论。发现无限不循环小数的过程就是反复运用有理数估计无理数的大小的过程。
用有理数估计(一个带算术平方根符号的)无理数的大致范围,通常利用与被开方数比较接近的完全平方数的算术平方根来估计这个被开方数的算术平方根的大小,这种估算在生活中经常遇到,是学生生活中需要的一种能力。
使用计算器可以求任何正数的平方根,但不同品牌的计算器,按键顺序可能不同,教学中,可以让学生根据计算器品牌,参考使用说明书,学习使用计算器求算术平方根的方法。这完全可以让学生自己完成。
基于以上分析,确定本节课的教学重点为:用有理数估计一个(带算术平方根符号的)无理数的大致范围。
二、目标和目标解析
1、教学目标
(1)通过估算,体验“无限不循环小数”的含义,能用估算求一个数的算术平方根的近似值。
(2)会利用计算器求一个正数的算术平方根;理解被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律。
2、目标解析
(1)学生了解“无限不循环小数”是指小数位数无限,且小数部分不循环的小数,感受这是不同于有理数的一类新数;对于估算,学生要会利用估算比较大小;了解夹逼法,采用不足近似值和过剩近似值来估计一个数的范围。
(2)学生会概述利用计算器求一个正数的算术平方根的程序(按键的顺序);明白利用计算器求一个正数的算术平方根,计算器显示的结果可能是近似值;会利用作为工具的计算器探究算术平方根的规律,理解被开方数小数点向右或向左移动2位,它的算术平方根就相应地向右或向左移动1位,即被开方数每扩大(或缩小)100倍,它的算术平方根就扩大(或缩小)10倍。
三、教学问题诊断分析
用有理数估计一个(带算术平方根符号的)无理数的大致范围,需要学生理解“算术平方根的被开方数越大,对应的算术平方根也越大”的性质,还要判断被开方数在哪两个相邻的整数平方数之间。为了让学生体验“无限不循环小数”的含义,还要多次采用“夹逼法”进行估计,即利用其一系列不足近似值和过剩近似值来估计它的大小,这些对学生综合运用知识的能力有较高的要求。
基于以上分析,本课的教学难点是:用有理数估计一个(带算术平方根符号的)无理数的大致范围的过程,体验“无限不循环小数”的含义。
四、教学过程设计
1、梳理旧知,引出新课
问题1
(1)什么是算术平方根?怎样表示?
(2)负数有算术平方根吗?
师生活动学生回答,教师说明:我们上节课已经能求出一些平方数的算术平方根了,例如,=4;但实际生活中,我们还会遇到被开方数不是一个数的平方数的情况,这时,它的算术平方根又该怎祥求呢?
设计意图:复习与本节课相关的知识,通过设问,引出本节课学习内容。
2、问题探究,学习新知
问题2能否用两个面积为1dm的小正方形拼成一个面积为2dm的大正方形?
师生活动:学生动手操作,在小组内讨论交流,教师展示剪拼方法。
追问(1)拼成的这个面积为2dm
的大正方形的边长应该是多少呢?
师生活动:学生自行解答,教师对解答有困难的学生进行指导。
追问(2)小正方形的对角线的长是多少呢?
师生活动:学生根据图形,不难回答,小正方形的对角线的长就是大正方形的边长dm。
设计意图:通过实际问题的操作探究,说明实际生活中确实存在被开方数不是一个数的平方数的情况,激发学生学习积极性,追问(2)主要为后面介绍用数轴上的点表示作准备。
问题3
有多大呢?为了弄清这个问题,请同学们探究“
在哪两个整数之间呢?”
师生活动:先让学生思考讨论并估计大概有多大,由直观可知大于1而小于2,教师引导学生利用“被开方数越大,对应的算术平方根也越大”说明理由,教师板书推理过程。
追问(1)那么
是1点几呢?你能不能得到
的更精确的范围?
师生活动:学生用试验的方法可得到平方数小于2且最接近的1位小数是1.4,而平方数大于2且最接近的1位小数是1.5,所以大于1.4而小于1.5……在此基础上教师按教科书上的推理进行讲解并板书。说明是一个无限不循环小数,以及什么是无限不循环小数。并要求学生回忆以前学过的数,进行比较。
追问(2)实际上,许多正有理数的算术平方根,如等都是无限不循环小数。根据估计的大小的方法,请你估计的整数部分是多少?
设计意图:通过对大小的估计,初步掌握利用的一系列不足近似值和过剩近似值来估计它的大小的`方法,并从中体会是一个无限不循环小数。让学生回忆以前学过的数,通过比较,了解无限不循环小数的特征,为后面学习无理数打下基础。追问(2)主要为及时巩固估算方法
3、用计算器,求算术根
例1用计算器求下列各式的值:
师生活动:教师指导学生操作,获得问题答案。解答完(2)后,让学生与上面所估计的大小进行比较,体会夹逼法的可行性。说明用计算器可以求出任意一个正数的算术平方根,但不同品牌的计算器,按键顺序可能有所不同。用计算器求出的算术平方根,有的是准确值,如题(1),有的是近似值,如题(2)。
设计意图:使学生会使用计算器求算术平方根。
练习教科书第44页练习1。
师生活动:学生独立完成后交流。
设计意图:巩固计算器求算术平方根。
4、综合应用,巩固所学
现在我们来解决本章引言中的问题。
问题4(1)你会表示
(2)用计算器求(用科学记数法把结果写成的形式,其中保留小数点后一位)
师生活动:学生理解题意,根据公式,可得,代入,利用计算器求出
设计意图:让学生体会计算器在解决实际问题中的应用。
问题5利用计算器计算下表中的算术平方根,并将计算结果填在表中。
师生活动:学生计算填表。
追问(1)你发现了什么规律?
师生活动:学生思考、讨论,教师归纳:被开方数的小数点向右或向左移动2位,它的算术平方根的小数点就相应地向右或向左移动1位。
追问(2)你能说出其中的道理吗?
师生活动:学生讨论,交流,教师引导学生从被开方数扩大的倍数与其算术平方根扩大的倍数思考回答。即当被开方数扩大(或缩小)100倍,10000倍…时,其算术平方根相应地扩大(或缩小)10倍,100倍……
追问(3)用计算器计算
(精确到0.001),并利用刚才的得到规律说出的近似值。
师生活动:学生计算,并根据所获规律回答。
追问(4)你能根据的值说出是多少吗?
师生活动:学生回答,因为被开方数30与3不符合上述规律,所以无法由的值说出是多少。
设计意图:巩固用计算器求算术平方根以及其在探究规律中的应用。
例2小丽想用一块面积为400cm的长方形纸片,沿着边的方向剪出一块面积为300cm的长方形纸片,使它的长宽之比为3:2。她不知能否裁得出来,正在发愁。小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片。”你同意小明的说法吗?小丽能用这块纸片裁出符合要求的纸片吗?
师生活动:教师出示问题,学生理解题意,学生可能会和小明有同样的想法,此时教师进行如下引导:
(1)你能将这个问题转化为数学问题吗?
(2)如何求出长方形的长和宽?
(3)长方形的长和宽与正方形的边长之间的大小关系是什么?
最后给出完整的解答过程。
设计意图:让学生体验估算的实际应用。
5、归纳小结:
师生共同回顾本节课所学内容,并请学生回答以下问题:
(1)利用夹逼法来求算术平方根的近似值的依据是什么?
(2)利用计算器可以求出任意正数的算术平方根或近似值吗?
(3)被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律是怎样的呢?
(4)怎样的数是无限不循环小数?
设计意图:让学生对本节课知识进行梳理,同时也帮助学生养成良好的习惯。
6、布置作业:
教科书习题6.1第6.9.10题。
五、目标检测设计
1、求整数部分。
【设计意图】主要考查学生的估算能力。
2、比较下列各组数的大小。
【设计意图】主要考查学生的估算和比较大小的能力。
【设计意图】主要考查学生对算术平方根概念以及有关规律的理解。
3、国际比赛的足球场的长在100m到110m之间,宽在64m到75m之间,现有一个长方形的足球场其长是宽的1.5倍,面积为7560m,问:这个足球场能用作国际比赛吗?
【设计意图】主要考查学生运用算术平方根解决实际问题的能力。
七年级数学优秀教案8
教学目的
1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。
2.使学生会列一元一次方程解决一些简单的应用题。
3.会判断一个数是不是某个方程的解。
重点、难点
1.重点:会列一元一次方程解决一些简单的应用题。
2.难点:弄清题意,找出“相等关系”。
教学过程
一、复习提问
一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?
解:设小红能买到工本笔记本,那么根据题意,得
1.2x=6
因为1.2×5=6,所以小红能买到5本笔记本。
二、新授:
问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆? (让学生思考后,回答,教师再作讲评)
算术法:(328-64)÷44=264÷44=6(辆)
列方程:设需要租用x辆客车,可得。
44x+64=328 (1)
解这个方程,就能得到所求的`结果。
问:你会解这个方程吗?试试看?
问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”
通过分析,列出方程:13+x=(45+x)
问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?
把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,
因为左边=右边,所以x=3就是这个方程的解。
这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。
问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?
同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?
三、巩固练习
教科书第3页练习1、2。
四、小结。
本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。
五、作业 。
教科书第3页,习题6.1第1、3题。
七年级数学优秀教案9
教学目标
1、使学生能根据商品销售问题中的数量关系找出等量关系,列出方程,掌握商品盈亏的求法,;
2、培养学生分析问题,解决实际问题的能力;
3、让学生在实际生活问题中,感受到数学的价值。
教学难点 让学生知道商品销售中的盈亏的算法。
知识重点 弄清商品销售中的进价标价售价及利润的含义。
教学过程(师生活动)设计理念
引言前面我们结合实际问题,讨论了如何分析数量关系,利用相等关系列方程以及如何解方程。本节开始,我们将进一步探究如何用一元一次方程解决生活中的一些实际问题。利用一元一次方程解决实际问题前面已有所讨论,本节承上启下,进一步探究用一元一次方程解决生活中的实际问题。
引例①某商品原来每件零售价是元,现在每件降价 ,降价后每件零售价是 ;
②某种品牌的彩电降价 以后,每台售价为 元,则该品牌彩电每台原价应为 元;
③某商品按定价的八折出售,售价是 元,则原定价是 ;
④某商场把进价为1980元的商品按标价的八折出售,仍获利 ,则该商品的标价为 ;
⑤我国政府为解决老百姓看病问题,决定下调药品的价格,某种药品在1999年涨价30%后,20xx降价70%至 元,则这种药品在1999年涨价前价格为 元。学生对进价、标价、售价、打折等商品销售中的一些概念的含义已有一定的知识积累,通过引例,使学生在已有的知识经验基础上引入新课。
提出问题
探究新知问题(教科书93页探究1):某商店在某一时间以每件60元的价格卖两件衣服,其中一件盈利还是亏损?或是不盈不亏?通过实际生活中的实例,用问题的形式来探究新课内容,使学生感受数学来源于生活,生活中需要数学。
讨论交流解决问题①引导学生大体估算盈亏情况;
②教师提出问题,学生自主讨论解决;
(1)商品销售中的盈亏如何计算?
(2)两件衣服的进价、售价分别是多少?
③得出结论后,将结论与学生先前的估算进行比较;
④教师归纳解决问题的大致过程。先由学生估算(培养学生敏感意识)然后通过师生合作交流,学生自主探索,得出结论,让学生品尝成功的喜悦。
巩固练习由学生自主探索解决。
问题:我国股市交易中每天、卖一次各交千分之七点五的各种费用,某投资者以每股10元的价格买入上海某股票1000股,当该股票涨到12元时全部卖出,该投资者实际盈利为多少?
巩固本课中商品销售盈亏的.求法,再次使学生感受到数学的应用价值。
小结与作业
课堂小结通过以下问题引导学生小结:
①由学生谈谈本节课学到了哪些知识?学后有何感受?
②商品销售中的基本等量关系有哪些?由学生概括本课中学到的知识,体现学生是学习的主人。
布置作业必做题:教科书97面习题2.4第2、3、4题;
备选题:
①某商品的进价是1000元,售价为1500元,由于情况不好,商店决定降价出售,但又要保证利润率不低于5%,那么商店可降多少元出售此商品;
②一年定期的存款,年利率为 ,到期取款时须扣除利息的20%,作为利息税上缴国库,假如某人存入一年的定期储蓄1000元,到期扣税后可得利息多少元?
③某商场将某种DVD产品按进价提高35%,然后打出九折酬宾,外送50元打的费的广告,结果每台DVD仍获利208元,则每台DVD的进价是多少元?
④某企业生产一种产品,每件成本价是400元,销售价为510元,本季度销售了件,为进一步扩大市场,该企业决定在降低销售的同时降低生产成本,经过市场调研,预测下季度这种产品每件销售价降低4%,销售量将提高10%,要使销售利润(销售利润=销售价-成本价)保持不变,该产品每件的成本应降低多少元?
本课教育评注(课堂设计理念,实际教学效果及改进设想)
本课以学生已有的知识经验和生活中的实例入手引入新课,在新授过程中,以学生为学习的主人教师进行适当引导、点拔、启迪。在学生的自主探索、合作交流过程中弄清商品销售中的盈亏的算法。加法对进价标价售价及利润的实际意义的理解。使学生深切感受到数学生活实际中的应用。从而激发他们学习数学的兴趣。另外学生通过对新授问题的估算,最后计算得出正确的结论,品尝到成功的喜悦,从而也激发了学生探求知识的欲望。
七年级数学优秀教案10
教学目标:
1、通过现实情景感受利用有序数对表示位置的广泛性,能利用有序数对来表示位置。
2、让学生感受到可以用数量表示图形位置,几何问题可以转化为代数问题,形成数形结合的意识。
教学重点:理解有序数对的概念,用有序数对来表示位置。
教学难点:理解有序数对是“有序的”并用它解决实际问题,课时安排:1课时
教学过程
一、创设问题情境,引入新课
展示书P105画面并提出问题,在建国50周年的庆典活动中,天安门广场上出现了壮观的背景图案,你知道它是怎么组成的吗?
原来,他们举起不同颜色的花束(如第10排第25列举红花,第28排第30列举黄花)整个方阵就组成了绚丽的背景图章。类似用“第几排第几列”来确定同学的位置,我们在日常生活中经常用的方法。
二、师生共同参于教学活动
(1)影院对观众席所有的座位都按“几排几号”编号,以便确定每个座位在影院中的位置观众根据入场券上的“排数”和“号数”准确入座。
师:只给一个数据如“第5号”你能确定某个同学的位置吗?为什么?要确定必须怎样?
生:不能,要确定还必须知道“排数”。
(2)教师书写平面图通知,由学生分组讨论。
今天以下座位的同学放学后参加数学问题讨论:(1,5), (2,4),(4,2),(3,3),(5,6)。
师:你们能明白它的意思吗?
学生通过交流合作后得到共识:规定了两个数所表示的.含义后就可以表示座位的位置。
师:请同学们思考以下问题:
①怎样确定你自己的座位的位置?
②排数和列数先后须序对位置有影响吗?
生:通过讨论,交流后得到以下共识:
①可用排数和列数两个不同的数来确定位置。
②排数和列数的先后须序对位置有影响。
(3)让学生的问题都是通过像“9排8号”,第2列第4排,这样含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义。例如前面的表示“排数”后面的表示“列数”。我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)。
(4)在生活中还有用有序数对表示一个位置的例子吗?
学生分组讨论,交流,教师深入小组参与活动,倾听学生的交流,并对学生提供的生活素材给予肯定和鼓励。
例如:人们常用经纬度来表示,地球上的地点
三、巩固练习
让学生完成p46的练习。
四、布置作业
1、课本习题6,1,1。
2、“怪兽吃豆豆”是一种计算机游戏,图中标志表示“怪兽”按图中箭头先后经过的几个位置,如果用(1,2)表示“怪兽”按图中箭头所指路线经过的第3个位置,那么你能用同样的方式表示出图中“怪兽”经过的其他几个位置吗?
1 2 3 4 5 6 7 8
五、教后反思
师:谈谈本节课,你有哪些收获?
由同学交流解决问题,教师设疑为以后的学习奠定基础。
七年级数学优秀教案11
【知识与技能】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其近似值。
【过程与方法】通过题目,进一步熟悉开平方的运算过程,能熟练的进行开平方的运算过程。
【情感、态度与价值观】体会平方与开平方这一对互逆运算的辩证关系,感受平方根在现实世界中的客观存在,增强数学知识的.应用意识。
【教学重点】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示。
【教学难点】能熟练的进行开平方运算,并熟悉各种不同形式的开平方运算,为后续打下基础。
【教具准备】小黑板科学计算器
【教学过程】
一、导入
1、小刚家厨房的面积为10平方米的正方形,它的边长是多少米?边长的近似值是多少?(用四舍五入的方法取到小数点后面第二位)
2、用计算器分别求,得近似值。(用四舍五入的方法取到小数点后面第三位)
3、0.36的平方根是( )
4、(-5)2的算术平方根是( )
二、题目内容
(一)填空
1、若=1.732,那么=( ) 2、(-)2=( )
3、 =( ) 4、若_=6,则=( )
5、若=0,则_=( ) 6、当_( )时,有意义。
(二)选择
1、下列各数中没有平方根的是A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.的值是( )
A.B.C.D.; 2、4_2-49=0; 3、(25/81)_2=1;
4、求8+(-1/6)2的算术平方根;
5、求b2-2b+1的算术平方根;(b<1)
6、
7、 ;(用四舍五入方法取到小数点后面第三位)
8、肖明家装修用了大小相同的正方形瓷砖共66块,铺成了10.56平方米的房间,肖明想知道每块瓷砖的规格,请你帮助算一算。
三、小结与巩固
七年级数学优秀教案12
教学目标
1、使学生在理解线段概念的基础上,了解线段的长度可以用正数来表示,因而线段可以度量、比较大小以及进行一些运算。使学生对几何图形与数之间的联系有一定的认识,从而初步了解数形结合的思想。
2、使学生学会线段的两种比较方法及表示法。
3、通过本课的教学,进一步培养学生的动手能力、观察能力。
教学重点和难点
对线段与数之间的关系的认识,掌握线段比较的正确方法,是本节的重点,也是难点。
教学过程设计
一、复习线段的概念,引出线段的长度的度量和表示
1、学生动手画出(1)直线AB。(2)射线OA。(3)线段CD。
2、提出问题:能否量出直线、射线、线段的长度?(如果有学生将直线、射线也量出了长度,借此复习直线和射线的概念。)
3、提出数与形的问题:线段是一个几何图形,而线段的长度可用一个正数表示。这就是数与形的结合。
4。线段的两种度量方法:(1)直接用刻度尺。(2)圆规和刻度尺结合使用。(教师可让学生自己寻找这两种方法)
5、教师再讲表示法:线段AB=7cm。
二、通过实例,引导学生发现线段大小的比较方法
教师设计以下过程由学生完成。
1、怎样比较两个学生的身高?提出为什么要站在一起,脚底要在一个平面上?
2、怎样比较两座大山的高低?只要量出它们的高度。
由此引导学生发现线段大小比较的两种比较方法:
重叠比较法将两条线段的各一个端点对齐,看另一个端点的位置。教师为学生演示,步骤有三:
(1)将线段AB的端点A与线段CD的端点C重合。
(2)线段AB沿着线段CD的方向落下。
(3)若端点B与端点D重合,则得到线段AB等于线段CD,可以记AB=CD。
若端点B落在D上,则得到线段AB小于线段CD,可以记作AB
若端点B落在D外,则得到线段AB大于线段CD,可以记作AB>CD。
如图1-6、
教师讲授此部分时,应用几个木条表示线段AB和线段CD,这样可以更加直观和形象。也可以用圆规截取线段的方法进行。
数量比较法用刻度尺分别量出线段AB和线段CD的长度,将长度进行比较。可以用推理的写法,培养学生的推理能力。写法如下:
因为量得AB=-cm,CD=-cm,
所以AB=CD(或ABCD)。
总结:现在我们学会了比较线段的大小,还会比较什么?学生可以回答出,可以比较数的大小,进而再问:数的大小如何比较?(数轴)再问:比较线段的大小与比较数的大小有什么联系?
引导学生得到:比较线段的大小就是比较数的大小。
三、应用实例,变式练习:
1、如图1-7,量出以下图形中各条线段的长度,比较它们的大小。并比较一个三角形中任意两边的和与第三边的'关系。可以得出什么结论?
2、如图1-8,根据图形填空。
AD=AB+______+______,AC=______+______,CD=AD-______。
3、如图1-9,已知线段AB,量出它的长度并找出它的中点、三等分点、四等分点。
4、如图1-10,根据图形填空,(1)AB=______+______+______。(2)AB-a=______+______。
四、小结
1、教师提问:怎样表示线段的长度?怎样比较线段的大小?通过本节课你对图形与数之间的关系有什么了解?
2、根据学生回答的情况,教师重点总结数与形的结合以及比较线段大小的两种方法。
五、作业
p。18,1、2题。p21,2、3、4题。
板书设计
课堂教学设计说明
1、本课的教学时间为1课时45分钟。
2、本课时设计的主导思想是:将数形结合的思想渗透给学生,使学生对数与形有一个初步的认识。为将来的学习打下基础,这节课是一堂起始课,它为学生的思维开拓了一个新的天地。在传统的教学安排中,这节课的地位没有提到一定的高度,只是交给学生比较线段的方法,没有从数形结合的高度去认识。实际上这节课大有可讲,可以挖掘出较深的内容。在教知识的同时,交给学生一种很重要的数学思想。这一点不容忽视,在日常的教学中要时时注意。
3、学生在小学时只会用圆规画圆,不会用圆规去度量线段的大小以及截取线段,通过这节课,学生对圆规的用法有一个新的认识。
4、在课堂练习中安排了度量一些三角形的边的长度,目的是想通过度量使学生对“两点之间线段最短”这一结论有一个感性的认识,并为下面的教学做一个铺垫。
5、为避免本节课的枯燥,可以用提问的形式,出现悬念。如:开始的提问“线段是几何图形,它与数字有什么联系?”“在我们学过的知识和生活中,什么东西可以比较大小?”等。这样就会调动学生的学习的积极性,提高他们的学习兴趣,积极思维,使课堂的气氛更加活跃。
6、如果感觉课堂密度小,还可以增加一些培养动手能力的题。如:
(1)量一量老师的大三角板中的等腰三角形各边的长,然后再量一量自己手中同样的小三角板各边的长,算一算相等的角所对的边长度的比值,是否相等。(为相似三角形的内容做一些铺垫)
(2)量一量课桌四条边的长,再量一量课本四条边的长,算一算长边与长边的比、短边与短边的比。(得到角相等的图形,边不一定成比例)
(3)在同一时间下,两棵高矮不同的大树的影子的长度自己量出,然后比较大小,想一想这两棵树哪一棵高?(对相似三角形的边角关系有一定的感性认识)以上的三个题对学有余力的同学是很好的认识数学世界的实例。使本节课的内容更加生动丰富,课堂气氛更加活跃。
七年级数学优秀教案13
一、教材分析
1、教材的内容:本节课是人教版七年级下册第五章第一节的第一课时
2、教材的地位和作用:平面内两条直线的位置关系是“空间与图形”所要研究的基本问题,这些内容学生在前两个学段已经有所接触,本章在学生已有知识和经验的基础上,继续研究平面内两条直线的位置关系,首先研究相交的两条直线,这是后面学习垂直相交的必要基础也为后面学面直角坐标系奠定基石,因此本节课具有承前启后的重要作用
3、教学的重点、难点:
重点:邻补角、对顶角的概念,对顶角的性质和应用。
难点:理解对顶角性质的探索
(确定重难点的依据:本节的学习目的是研究两条相交直线产生的四个角的关系,因此将邻补角、对顶角的概念、性质以及应用作为本节的重点。同学们刚刚开始接触几何,对推理说理不习惯也不熟悉,所以将理解对顶角相等的性质作为难点。)
4、教学目标:
A:知识与技能目标
(1).理解对顶角和邻补角的概念,能在图形中辨认.
(2).掌握对顶角相等的性质和它的推证过程
(3).会用对顶角的性质进行有关的简单推理和计算.
B:过程与方法目标
(1).通过观察、操作、探究、猜想、思考、交流、归纳、推理等培养学生的推理能力和有条理的表达能力,培养操作能力、动手能力。
(2).体会具体到抽象再到具体的思想方法.
C:情感、态度与价值目标
(1).感受图形中和谐美、对称美.
(2).感受合作交流带来的成功感,树立自信心.
(3).感受数学应用的广泛性,使学生更加热爱数学
二、学情分析:
在此之前,学生已经学习了图形的初步认识、对相交线和平行线有了直观的感性认识,且对互补和互余有了清楚的了解,在此基础上来学习邻补角和对顶角,符合学生的认知规律,让学生对新知识的应用充满好奇与期待.
三、教法和学法:
教法:
叶圣陶先生倡导:解放学生的手,解放学生的脑,解放学生的时间.根据这一思想及我校初一学生活泼好动的特点,我采取启发式教学、探究式教学及多媒体辅助教学相结合的方法.
学法:以学生分组实践、自主探究、合作交流为主要形式的探究式学习方法.
四、教学过程:
1课前准备:课件,剪刀,纸片,相交线模型
2教学过程:设置以下六个环节
环节一:情景屋(创设情景,激发学习动机)
请学生欣赏观察图片,图片中有大桥上的钢梁和钢索,窗户的窗格都给我们以相交线平行线的形象,让学生感受到相交线平行线在我们生活中有着广泛的应用,由此产生研究它们了解它们的兴趣和欲望,适时的给出本章课题:相交线和平行线
环节二:问题苑(合作交流,解释发现)
通过一些问题的设置,激发学生探究的欲望,具体操作:
(1):动手尝试:剪纸片,感知剪刀所形成的角在剪纸过程中的变化
(2):给出问题,由剪刀这个实物抽象出几何模型——两条直线相交。
(让学生充分的感知到数学来源于生活,符合初中学生的认识规律和兴趣爱好)
(3):分析研究此模型:
设置以下一系列问题:
A、两直线相交构成的4个角两两相配共能组成几对?(6对)
B、对各对角进行分析,首先从位置上去分析————结论:可把这六对角分成两大类,一类为哪些角?——特点?——它们有一条公共边,它们的另一边互为反向延长线——引出概念——邻补角。
另一类是哪些角?———特点?——它们的两边互为反向延长线——引出概念——对顶角
C、再从大小上进行分析——量一量——结论:邻补角互补、对顶角相等。
D、你能阐述它们互补和相等的理由吗?
(一堂好课,是由一系列的真问题组成的,本环节在老师的引导下,由学生自由的发挥,通过观察分析,交流讨论一步一步的解决本节课的重点和难点,学生通过自己探索获得的知识才是自己的知识,让学生在此过程中学会学习,达到教是为了不教的目的)
环节三:快乐房(大胆创设,感悟变换)
(设置见投影,让学生判断形成的两个角是否为邻补角,这一变换让学生充满兴趣,此时一定让学生用邻补角的特点去检验,达到知识的正向迁移,并理解邻补角和补角的关系)
环节四:实例库(拓展应用,升华提高)
例子1:是一组不同形式的角,判断是否为对顶角,此题的目的是巩固对顶角的概念,培养学生的识图能力
例子2:例子2是用对顶角和邻补角的性质进行简单的计算,在这里设置了一组变式题,而且变式题目不是教师直接给出,而是启发学生自己编,让学生过了一把编导的瘾,学生一定非常的开心,这样可以活跃课堂气氛,提高学生的思维能力
(一方面巩固了对顶角的性质;另一方面说明几何里的计算题,需要用到图形的几何性质,因此,要有根有据地计算.例题放手让学生自己解决,比教师单纯地讲解效果会更好.尽管学生书写格式不如课本上的规范,但通过集体讲评纠正后,学生印象会更深刻).
最后安排一个脑筋急转弯:见投影
(让学生始终对课堂充满热情,通过此练习,体会到数学来自于生活又用于生活,提高学习数学的'兴趣和热情)
环节五:点金帚(学后反思感悟收获)
通过本堂课的探究
我经历了......
我体会到......
我感受到......
(学生畅所欲言,在“以生为本”的民主氛围中培养学生归纳、概括能力和语言表达能力;同时引导学生反思探究过程,帮助学生肯定自我,欣赏他人,同时把本节课的内容形成知识体系.)
角的名称
特征
性质
相同点
不同点
对顶角
①两条直线相交而成的角
②有一个公共顶点
③没有公共边
对顶角相等
都是两直线相交而成的角,都有一个公共顶点,它们都是成对出现。
对顶角没有公共边而邻补角有一条公共边;两条直线相交时,一个角的对顶角有一个,而一个角的邻补角有两个
邻补角
①两条直线相交面成的角
②有一个公共顶点
③有一条公共边
邻补角互补
环节六:沉思阁(课后延伸张扬个性)
此为课后作业:
(适当增加利用对顶角相等解决一些说理的题目,既让学生感受到对顶角相等这个性质在解题中的独特魅力,又为后续学习打下良好的基础.)
五、教学设计说明:
设计理念:面向全体学生,实现:
——人人学有价值的数学
——人人都能获得必需的数学
——不同的人在数学上得到不同的发展
过程设计:学生亲身经历从现实生活的图形中提出数学问题,并抽象其蕴涵的数学本质(相交直线),最后回归生活去运用所学知识的全过程。
设计目的:让学生带着兴趣、带着问题走进课堂,带着新的问题、带着高涨的热情离开课堂,进行不断的探究。
七年级数学优秀教案14
前面几节课,我们已经学习了平面直角坐标系及其相关概念,知道了利用平面直角坐标系可以确定平面内的一个点,反过来,给了一个有序数对,在坐标平面内可以找到一个点和它对应.利用我们所学的平面直角坐标系可以解决什么样的问题?这就是我们从今天开始研究的内容,从而引出课题.
设计意图:
通过教师引导学生复习已学过的平面直角坐标系的知识,导入新的课题,起了一个承上启下的作用,为学生学习用坐标表示地理位置作了一个铺垫.
师生活动:
由教师引导学生通过复习已学知识,引入课题.
活动1
用多媒体演示某城市地区的一部分.(如北京市、上海市或本地区的一部分)
问题:
如课本图6.2-1,这是北京市地图的一部分,同学们你知道怎样用坐标表示地理位置吗?
(1)如图6.2-1,你是怎样确定各条街道位置的?
(2)“东四十条街”和“天安门广场”的'东、北各多少个格?“复兴门内大街”在“天安门广场”的西、南各多少个格?
(3)如果以“天安门广场”为原点作两条相互垂直的数轴,分别取向右和向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,那么你能表示“东四十条街”的位置吗?“复兴门内大街”的位置呢?
设计意图:
不管是出差办事,还是出门旅游,人们都愿意带上一幅地图,它给人们出行带来了很大方便这一事例,引入用坐标的形式表示某一区域内一些地点分布情况.问题选择人们熟悉的祖国首都,北京市地图的一部分,以天安门广场为原点建立直角坐标系,激起学生对已学过的用直角坐标思想的定位方式的回忆和重新认识.
生:
(1)用坐标可以表示各条街的位置.
(2)“东四十条街”和“天安门广场”的东5格,北8格处.
(3)如果以“天安门广场”为原点作两条相互垂直的数轴,分别取向右和向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,则“东四十条街”的位置是(5,8).
师:很好,在(3)的约定条件下,你能把其他街道的位置表示出来吗?
生:能,西长安街的位置是(-3,-1.3)
建国门内大街的位置是(5,-1).
……
在活动1中教师要关注:
(1)学生已有的知识水平;
(2)建立适当的直角坐标系.
七年级数学优秀教案15
教学目标:
1、知道有理数加法的意义和法则
2、会用有理数加法法则正确地进行有理数的加法运算
3、经历有理数加法法则的探究过程,体会分类和归纳的数学思想方法
教学重点:
有理数加法则的探索及运用
教学难点:
异号两数相加的法则的理解及运用
教学过程:
一、创设情境
展示足球赛图片,你知道足球赛中“净胜球”是怎么回事吗?
(学生口答,教师介绍净胜球的算法:只要把各场比赛的结果相加就可以得到,由此揭示课题。)
二、探求新知
1、甲、乙两队进行足球比赛,(1)、如果上半场赢了3球,下半场又赢了2球,那么全场累计净胜几球?
(2)、如果上半场赢了3球,下半场输了2球,那么全场累计净胜几球?
足球比赛中赢球个数与输球个数是一对相反意义的量.若规定赢球为正,输球为负,例如赢3球记为“+3”,输2球记为“-2”,你能把上述结果用加法算式表示出来吗?
(学生根据生活经验得到两种情况下的净胜球数,从而列出算式:(+3)+(+2)= +5;(+3)+(-2)= +1,教师板书。)
(3)、除了上面所说的“赢了再赢”,“先赢后输”,你还能说出其它可能的几种情况并用加算式表示吗?
(引导学生联系生活实际思考输赢球其它可能的情况,尽可能完整地说出所有的可能,由此感受两个有理数相加的各种情况,让学生自由发言,相互补充,教师板书算式:(-3)+(+2)= -1,(-3)+(-2)= -5,(-3)+0= -3,0+(+2)=+2,教师还可根据学生回答情况补充:上半场赢了3球,下半场输了3球;上半场打平,下半场也打平,最后的净胜球情况,由学生说出结果并列出算式:(+3)+(-3)= 0,0+0=0 )
2、你能举出一些运用有理数加法的'实际例子吗?
(学生列举实例并根据具体意义写出算式)
3、学生活动:
(1)、把笔尖放在数轴原点处,先向正方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?你能用数轴和加法算式表示以上过程及结果吗?
(2)、把笔尖放在数轴原点个单位长度,再向负方向移动2个单位长度,这时笔尖的位置表示什么数?你能用数轴和加法算式表示以上过程及结果吗?
(3)、你还能再做一些类似的活动,并写出相应的算式吗?
(教师示范活动(1)的操作过程,学生列出算式并完成(2)(3),得到一组算式,教师板书。这一活动目的是让学生从“形”的角度,直观感受有理数的.加法法则。)
4、归纳法则:
观察上述算式,和小学学过的加法运算有什么区别?你能归纳出有理数的加法法则吗?
(由前面所学的内容学生已经知道:有理数由符号和绝对值两部分组成,所以两个有理数的相加时,确定和时也需要分别确定和的符号和绝对值,教师可引导学生对照情境中输赢球的情况分别探索和的符号和绝对值如何确定,学生相互交流,自由发言,不断完善。通过探索有理数加法法则的过程,学生体会分类和归纳的数学思想方法。)
5、例题精讲:
例1 、计算
(1)、 (-5)+(-3) (2)、(-8)+(+2);; (3)、(+6)+(-4)
(4)、 5+(-5); (5)、 0+(-2); (学生口答计算结果,并对照法则说说是如何确定和的符号和绝对值的,教师板书解题过程,让学生体会“运算有据”。)
解:(1)、(-5)+(-3)
= -(5+3) (同号两数相加,取相同的符号,并把绝对值相减)
= -8
(2)、(-8)+(+2)
= -(8-2) (异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。)
= -6
(4)、5+(-5);
=0 (互为相反的两数之和为0)
6、训练巩固:
1、 p33练一练2
(学生利用扑克完成本题,通过游戏进一步巩固有理数加法法则,体现“做中学”的新课程理念。)
7、延伸拓展:
(1)、一个数是2的相反数,另一个数的绝对值是5,求这两个数的和
(2)、在小学里,计算两个数相加时,它们的和总是小于任何一个加数,学了有理数的加法法则后,你认为这个结论还成立吗?请你举例说明
(这两题都具有一定的挑战性,第(1)题可让学生进一步体会分类的数学思想方法。第(2)题具有开放性,可让学生在探索的过程中进一步理解法则。)
三、课堂小结:
学生回顾本节课所学内容,谈谈自己对有理数加法法则的理解及如何进行有理数加法运算。
四、布置作业:
1、课本p41第1题
2、列举一些生活中运用有理数加法的实际例子,并相互交流。
【七年级数学优秀教案】相关文章:
七年级数学下册优秀教案02-15
数学优秀教案01-19
七年级数学下册优秀教案8篇02-15
数学备课教案优秀03-30
数学集合优秀教案09-26
数学优秀教案模板11-22
初中数学优秀教案10-12
优秀的数学教案02-05
优秀数学高中教案01-07