现在位置:范文先生网>教案大全>数学教案>高二数学教案>高二数学教案优秀

高二数学教案优秀

时间:2023-10-12 13:40:35 高二数学教案 我要投稿

高二数学教案优秀

  作为一名优秀的教育工作者,常常要写一份优秀的教案,教案有助于学生理解并掌握系统的知识。教案应该怎么写呢?以下是小编整理的高二数学教案优秀,希望对大家有所帮助。

高二数学教案优秀

高二数学教案优秀1

 一、教材

  正弦定理是高中新教材人教A版必修五第一章1.1.1的内容,是学生在已有知识的基础上,通过对三角形边角关系的研究,发现并掌握三角形的边长与角度之间的数量关系。提出两个实际问题,并指出解决问题的关键在于研究三角形的边、角关系,从而引导学生产生探索愿望,激发学生的学习兴趣。在教学过程中,要引导学生自主探究三角形的边角关系,先由特殊情况发现结论,再对一般三角形进行推导,并引导学生分析正弦定理可以解决两类关于解三角形的问题:

  (1)已知两角和一边,解三角形;

  (2)已知两边和其中一边的对角,解三角形。

  二、学情

  本节授课对象是高二学生,是在学生学习了必修四基本初等函数和三角恒等变换的基础上,由实际问题出发探索研究三角形边角关系,得出正弦定理。高二学生对生产生活问题比较感兴趣,由实际问题出发可以激发学生的学习兴趣,使学生产生探索研究的愿望。

  三、教学目标

  【知识与技能目标】

  能准确写出正弦定理的符号表达式,能够运用正弦定理理解三角形、初步解决某些测量和几何计算有关的简单的实际问题。

  【过程与方法目标】

  通过对定理的证明和应用,锻炼独立解决问题的能力和体会分类讨论和数形结合的思想方法。

  【情感态度价值观目标】

  通过对三角形边角关系的探究学习,经历数学探究活动的过程,体会由特殊到一般再由一般到特殊的认识事物规律,培养探索精神和创新意识。

  四、教学重难点

  【重点】

  正弦定理及其推导。

  【难点】

  正弦定理的推导与正弦定理的运用。

  五、教学方法

  运用“发现问题——自主探究——尝试指导——合作交流”的教学方式,整堂课围绕“一切为了学生发展”的`教学原则,突出:师生互动、共同探索,教师指导、循序渐进。

  新课引入——提出问题,激发学生的求知欲。掌握正弦定理的推导证明——分类讨论,数形结合动脑思考,由一般到特殊,组织学生自主探索,获得正弦定理及证明过程。

  例题处理——始终由问题出发,层层设疑,让他们在探索中得到知识。巩固练习深化对正弦定理的理解。

  六、教学过程

  (一)导入新课

  我采用的是设疑导入,进行口头提问:

  (1)在我国古代就有嫦娥奔月的神话故事,明月高悬,我们仰望星空,会有无限遐想,不禁会问,月亮离我们地球有多远呢?科学家们是怎样测出来的呢?

  (2)设A,B两点在河的两岸,只给你米尺和量角设备,不过河你可以测出它们之间的距离吗?

  设计意图:通过生活中的知识引入,激发学生学习需要和学习期待,以问题引起学生学习热情和探索新知的欲望。让学生积极主动的参与到课堂里面来,更好的调动学习氛围。

  (二)新课教学

  带动学生回忆以前学过的知识,并设置如下问题引导学生思考,减少学生对新知识的陌生感。

  教师提问:(1)请同学们回忆一下,直角三角形中的各个角的正弦是怎样表示的?这三个式子可以用同一个量联系起来吗?

高二数学教案优秀2

  一、学情分析

  本节课是在学生已学知识的基础上进行展开学习的,也是对以前所学知识的巩固和发展,但对学生的知识准备情况来看,学生对相关基础知识掌握情况是很好,所以在复习时要及时对学生相关知识进行提问,然后开展对本节课的巩固性复习。而本节课学生会遇到的困难有:数轴、坐标的表示;平面向量的坐标表示;平面向量的坐标运算。

  二、考纲要求

  1.会用坐标表示平面向量的加法、减法与数乘运算.

  2.理解用坐标表示的平面向量共线的条件.

  3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.

  4.能用坐标表示两个向量的夹角,理解用坐标表示的平面向量垂直的条件.

  三、教学过程

  (一)知识梳理:

  1.向量坐标的求法

  (1)若向量的起点是坐标原点,则终点坐标即为向量的坐标.

  (2)设A(x1,y1),B(x2,y2),则

  =xxxxxxxxxxxxxxxx_

  ||=xxxxxxxxxxxxxx_

  (二)平面向量坐标运算

  1.向量加法、减法、数乘向量

  设=(x1,y1),=(x2,y2),则

  +=-=λ=.

  2.向量平行的坐标表示

  设=(x1,y1),=(x2,y2),则∥?xxxxxxxxxxxxxxxx.

  (三)核心考点·习题演练

  考点1.平面向量的坐标运算

  例1.已知A(-2,4),B(3,-1),C(-3,-4).设(1)求3+-3;

  (2)求满足=m+n的实数m,n;

  练:(20xx江苏,6)已知向量=(2,1),=(1,-2),若m+n=(9,-8)

  (m,n∈R),则m-n的值为

  考点2平面向量共线的坐标表示

  例2:平面内给定三个向量=(3,2),=(-1,2),=(4,1)

  若(+k)∥(2-),求实数k的值;

  练:(20xx,四川,4)已知向量=(1,2),=(1,0),=(3,4).若λ为实数,(+λ)∥,则λ=(  )

  思考:向量共线有哪几种表示形式?两向量共线的充要条件有哪些作用?

  方法总结:

  1.向量共线的两种表示形式

  设a=(x1,y1),b=(x2,y2),①a∥b?a=λb(b≠0);②a∥b?x1y2-x2y1=0.至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②.

  2.两向量共线的充要条件的作用

  判断两向量是否共线(平行的问题;另外,利用两向量共线的充要条件可以列出方程(组),求出未知数的值.

  考点3平面向量数量积的坐标运算

  例3“已知正方形ABCD的边长为1,点E是AB边上的动点,

  则的值为;的值为.

  【提示】解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷.

  练:(20xx,安徽,13)设=(1,2),=(1,1),=+k.若⊥,则实数k的.值等于(  )

  【思考】两非零向量⊥的充要条件:·=0?     .

  解题心得:

  (1)当已知向量的坐标时,可利用坐标法求解,即若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.

  (2)解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷.

  (3)两非零向量a⊥b的充要条件:a·b=0?x1x2+y1y2=0.

  考点4:平面向量模的坐标表示

  例4:(20xx湖南,理8)已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则的值为(  )

  A.6B.7C.8D.9

  练:(20xx,上海,12)

  在平面直角坐标系中,已知A(1,0),B(0,-1),P是曲线上一个动点,则的取值范围是?

  解题心得:

  求向量的模的方法:

  (1)公式法,利用|a|=及(a±b)2=|a|2±2a·b+|b|2,把向量的模的运算转化为数量积运算;

  (2)几何法,利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解..

  五、课后作业(课后习题1、2题)

高二数学教案优秀3

  教学目的:

  1、使理解线段的垂直平分线的性质定理及逆定理,掌握这两个定理的关系并会用这两个定理解决有关几何问题。

  2、了解线段垂直平分线的轨迹问题。

  3、结合教学内容培养学生的动作、形象和抽象。

  教学重点:

  线段的垂直平分线性质定理及逆定理的引入证明及运用。

  教学难点:

  线段的垂直平分线性质定理及逆定理的关系。

  教学关键:

  1、垂直平分线上所有的点和线段两端点的距离相等。

  2、到线段两端点的距离相等的所有点都在这条线段的垂直平分线上。

  教具:投影仪及投影胶片。

  教学过程:

  一、提问

  1、角平分线的性质定理及逆定理是什么?

  2、怎样做一条线段的垂直平分线?

  二、新课

  1、请同学们在练习本上做线段AB的垂直平分线EF(请一名同学在黑板上做)。

  2、在EF上任取一点P,连结PA、PB量出PA=?,PB=?引导学生观察这两个值有什么关系?

  通过学生的观察、分析得出结果PA=PB,再取一点P'试一试仍然有P'A=P'B,引导学生猜想EF上的所有点和点A、点B的距离都相等,再请同学把这一结论叙述成命题(用幻灯展示)。

  定理:线段的垂直平分线上的点和这条线段的两个端点的距离相等。

  这个命题,是我们通过作图、观察、猜想得到的,还得在理论上加以证明是真命题才能做为定理。

  已知:如图,直线EF⊥AB,垂足为C,且AC=CB,点P在EF上

  求证:PA=PB

  如何证明PA=PB学生分析得出只要证RTΔPCA≌RTΔPCB

  证明:∵PC⊥AB(已知)

  ∴∠PCA=∠PCB(垂直的定义)

  在ΔPCA和ΔPCB中

  ∴ΔPCA≌ΔPCB(SAS)

  即:PA=PB(全等三角形的对应边相等)。

  反过来,如果PA=PB,P1A=P1B,点P,P1在什么线上?

  过P,P1做直线EF交AB于C,可证明ΔPA P1≌PB P1(SSS)

  ∴EF是等腰三角型ΔPAB的顶角平分线

  ∴EF是AB的垂直平分线(等腰三角形三线合一性质)

  ∴P,P1在AB的垂直平分线上,于是得出上述定理的逆定理(启发学生叙述)(用幻灯展示)。

  逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

  根据上述定理和逆定理可以知道:直线MN可以看作和两点A、B的距离相等的所有点的集合。

  线段的垂直平分线可以看作是和线段两个端点距离相等的所有点的集合。

  三、举例(用幻灯展示)

  例:已知,如图ΔABC中,边AB,BC的垂直平分线相交于点P,求证:PA=PB=PC。

  证明:∵点P在线段AB的.垂直平分线上

  ∴PA=PB

  同理PB=PC

  ∴PA=PB=PC

  由例题PA=PC知点P在AC的垂直平分线上,所以三角形三边的垂直平分线交于一点P,这点到三个顶点的距离相等。

  四、小结

  正确的运用这两个定理的关键是区别它们的条件与结论,加强证明前的分析,找出证明的途径。定理的作用是可证明两条线段相等或点在线段的垂直平分线上。

【高二数学教案优秀】相关文章:

高二优秀数学教案11-14

高二优秀数学教案5篇11-15

高二优秀数学教案(5篇)11-16

高二数学教案12-04

高二数学教案04-27

关于高二数学教案12-01

中职高二数学教案11-07

高二数学教案15篇12-05

高二数学教案(15篇)12-06

最新高二数学教案09-29