现在位置:范文先生网>教案大全>数学教案>整式的加减数学教案

整式的加减数学教案

时间:2023-04-01 13:47:58 数学教案 我要投稿

整式的加减数学教案(7篇)

  作为一名人民教师,通常需要用到教案来辅助教学,教案是教学活动的依据,有着重要的地位。教案应该怎么写呢?以下是小编整理的整式的加减数学教案,希望对大家有所帮助。

整式的加减数学教案(7篇)

整式的加减数学教案1

  教学目标

  ①过实例体验整式加减的意义

  ②掌握整式的简单加减运算

  ③会运用整式的加减解决简单的实际问题

  教学重点

  本节的教学重点是整式的加减运算。

  教学难点

  例3的问题情境比较复杂,还涉及含有字母的代数式的大小比较,是本节教学的难点

  教学方法

  讲练法

  教学用具

  教学过程

  集体备课稿个案补充

  一、新课引入

  甲、乙两个零件截面的面积哪一个比较大?大多少?把结果填在下面的横线上。

  a1.5a

  vb2b

  b

  甲乙

  截面甲的面积是

  截面乙的`面积是

  甲、乙的、两个截面面积的差是()—()=

  本引例让学生思考后回答,教师引导,让学生知道:1、作差法是比较大小的一种很好的方法;2、在解决这个实际问题时,将问题转化成两个整式的差,从而得以解决;3、整式的加减可以归结为去括号和合并同类项。

  二、讲授新课

  例1求整式3x+4y与2x-2y-1的和

  教师教会学生1、列式(注意整体性);2、去括号(特别是减法);3、有同类项就合并同类项(至少不能合并为止)。

  变式练习:求3x+4y与2x-2y-1的差(学生做,两个学生板演)。

  三、课堂练习(课本“做一做”)

  1、填空:

  (1)3x与-5y的和是,3x与-5y的差是;

  (2)a-b,b-c,c-a三个多项式的和是。

  2、先化简,再求值:3x^2-[x^2-2(3x-x^2)],其中x=-7。

  四、典例分析

  例2小红家的收入分农业收入和其他收入两部分,今年农业收入是其他收入的1.5倍。预计明年农业收入将减少20%,而其他收入将增加40%,那么预计小红家明年的全年总收入是增加,还是减少?

  这个例题是本节课的难带内,教师可以设置下列问题:

  1、分析题目的已知量与未知量,及相互间的关系;

  2、选哪个未知量用字母来表示比较方?其他未知量怎么表示?

  3、填空:设小红家今年其他收入为a元,则

  (1)今年农业收入为元;

  (2)预计明年农业收入为元;

  (3)预计明年其他收入为元;

  (4)今年全年总收入为元;

  (5)预计明年全年总收入为元。

  4、增加还是减少?怎么判断?

  教师总结:在解决实际问题时,我们经常把其中的一个量或几个量先用字母表示,然后列出数式,这是运用数学解决实际问题的一个重要策略。

  五、教学反馈(课本“课内练习”)

  1、计算:

  (1)3/2x^2-(-1/2x^2)+(-2x^2);

  (2)2(x-3x^2+1)-3(2x^2-x-2).

  2、先化简,再求值:

  (1)5x-[3x-x(2x-3)],其中x=1/2;

  (2)5(3a^2b-ab^2)—(ab^2+3a^2b),其中a=1/2,b=-1。

  3,如果某三角形第一条边长为(2a-b)cm,第二条边比第一条边长(a+b)cm,第三条边比第一条边的2倍少bcm,第三条边比第一条边的2倍少bcm,求这个三角形的周长。

  六.探究活动

  猜数游戏:游戏甲方把自己的出生年月份乘以2,加10,再把和乘5,再加上他家的人口数(小于10),将这样所得的结果告诉游戏乙方,乙方就能猜出甲方出生于何月,及他家有几口人。

  本题有较大的难度,采取合作学习这种方式进行,启发学生利用本节中例2的解题策略及思想方法来分析这个题目。

  教师可作以下工作:1、学生做甲方,教师做乙方猜测,让学生明白其中的奥秘(甲方告诉的结果的个位数字就是他家的人口数,结果减去人口数再减去50后除以10得到他的出生月份);2、组内积极展开游戏,并讨论这个游戏的原理是什么。(设甲方出生月份为x,家中人口数为y人,甲方告诉的结果是k(已知数),则结果k=5(2ax+10)+y=10x+50+y,所以结果k的个位数字是y,则(k-y-50)/10=x)。

  七、小结、布置作业

整式的加减数学教案2

  三维目标

  一、知识与技能

  能根据题意列出式子:会进行整式加减运算,并能说明其中的算理。

  二、过程与方法

  经历用字母表示实际问题中的数量关系的过程,发展符号感,提高运算能力及综合运用知识进行分析、解决问题的能力。

  三、情感态度与价值观

  培养学生积极探索的学习态度,发展学生有条理地思考及代数表达能力,体会整式的应用价值。

  教学重、难点与关键

  1.重点:列式表示实际问题中的数量关系,会进行整式加减运算。

  2.难点:列式表示问题中的数量关系,去掉括号前是负因数的括号。

  3.关键:明确问题中的'数量关系,熟练掌握去括号规律。

  教具准备:投影仪。

  四、教学过程 引入新课

  1.多项式中具有什么特点的项可以合并,怎样合并?

  2.如何去括号,它的依据是什么?

  五、新授

  例1.(1)求多项式2x-3y与5x+4y的和。

  (2)求多项式8a-7b与4a-5b的差。

  例2.一种笔记本的单价是x(元),圆珠笔的单价是y(元),小红买这种笔记本3本,买圆珠笔2枝;小明买这种笔记本4个,买圆珠笔3枝,买这些笔记本和圆珠笔,小红和小明共花费多少钱?

整式的加减数学教案3

  教学目的

  1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。

  2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。

  教学分析

  重点:整式的加减运算。

  难点:括号前是-号,去括号时,括号内的各项都要改变符号。

  突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。

  教学过程

  一、复习

  1、叙述合并同类项法则。

  2、叙述去括号与添括号法则。

  3、化简:

  y2+(x2+2xy-3y2)-(2x2-xy-2y2)

  二、新授

  1、引入

  整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。

  2、例题

  例1(P166例1)

  求单项式5x2y,-2 x2y,2xy2,-4xy2的和。

  分析:式子5x2y+(-2 x2y)+2xy2+(-4xy2)就是这四个单项式的`和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。

  解:(略,见教材P166)

  例2(P166例2)

  求3x2-6x+5与4x2-7x-6的和。

  解:(3x2-6x+5)+(4x2-7x-6)(每个多项式要加括号)

  =3x2-6x+5+4x2-7x-6(去括号)

  =7x2+x-1(合并同类项)

  例3。(P166例3)

  求2x2+xy+3y2与x2-xy+2y2的差。

  解:(2x2+xy+3y2)-( x2-xy+2y2)

  =2x2+xy+3y2-x2+xy-2y2

  =x2+2xy+y2

  3、归纳整式加减的一般步骤。

  整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。

  三、练习

  P167:1,2,3,4。

  补:已知:A=5a2-2b2-3c2, B=-3a2+b2+2c2,求2A-3B

  四、小结

  1、文字叙述的整式加减,对每一个整式要添上括号。

  2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。

  五、作业

  1、 P169:A:1(3、4),3,5,6,7,8。B:1,2。

  基础训练同步练习1。

整式的加减数学教案4

  一、教材分析

  本节内容是人民教育出版社出版《义务教育课程实验教科书(五四学制)数学》(供天津用)八年级下册第十章整式第一节整式加减第2小节整式的加减。

  二、设计思想

  本节内容是学生掌握了“整式”有关概念的延展学习,为后继学习整式运算、因式分解、一元二次方程及函数知识奠定基础,是“数”向“式”的正式过度,具有十分重要地位。

  八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观察、归纳、探索的技能。因此,我结合教材,立足让每个学生都有发展的宗旨,我采用合作探究的学习方式开展教学活动,通过设计有针对性、多样式的问题引导学生,给学生提供充足的、和谐的探索空间让学生学习。通过学习活动不但培养学生化简意识,提升数学运算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增强应用数学的意识。

  三、教学目标:

  (一)知识技能目标:

  1、理解同类项的含义,并能辨别同类项。

  2、掌握合并同类项的方法,熟练的合并同类项。

  3、掌握整式加减运算的方法,熟练进行运算。

  (二)过程方法目标:

  1、通过探究同类项定义、合并同类项的方法的活动,培养学生观察、归纳、探究的能力。

  2、通过合并同类项、整式加减运算的练习活动,提高学生运算技能,提升运算的'准确率培养学生化简意识,发展学生的抽象概括能力。

  3、通过研究引例、探究例1的活动,发展学生的形象思维,初步培养学生的符号感。

  (三)情感价值目标:

  1、通过交流协商、分组探究,培养学生合作交流的意识和敢于探索未知问题的精神。

  2、通过学习活动培养学生科学、严谨的学习态度。

  四、教学重、难点:

  合并同类项

  五、教学关键:

  同类项的概念

  六、教学准备:

  教师:

  1、筛选数学题目,精心设置问题情境。

  2、制作大小不等的两个长方体纸盒实物模型,并能展开。

  3、设计多媒体教学课件。(要凸显①单项式中系数、字母、指数的特征②长方体纸盒立体图、展开图。)

  学生:

  1、复习有关单项式的概念、有理数四则运算及去括号的法则)

  2、每小组制作大小不等的两个长方体纸盒模型。

整式的加减数学教案5

  教学目标

  1.知识与技能

  能运用运算律探究去括号法则,并且利用去括号法则将整式化简.

  2.过程与方法

  经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.

  3.情感态度与价值观

  培养学生主动探究、合作交流的意识,严谨治学的学习态度.

  重、难点与关键

  1.重点:去括号法则,准确应用法则将整式化简.

  2.难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误.

  3.关键:准确理解去括号法则.

  教具准备

  投影仪.

  教学过程

  一、新授

  利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?

  现在我们来看本章引言中的问题(3):

  在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为

  100t+120(t-0.5)千米①

  冻土地段与非冻土地段相差

  100t-120(t-0.5)千米②

  上面的式子①、②都带有括号,它们应如何化简?

  思路点拨:教师引导,启发学生类比数的运算,利用分配律.学生练习、交流后,教师归纳:

  利用分配律,可以去括号,合并同类项,得:

  100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60

  100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60

  我们知道,化简带有括号的整式,首先应先去括号.

  上面两式去括号部分变形分别为:

  +120(t-0.5)=+120t-60③

  -120(t-0.5)=-120+60④

  比较③、④两式,你能发现去括号时符号变化的规律吗?

  思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用屏幕)展示:

  如果括号外的.因数是正数,去括号后原括号内各项的符号与原来的符号相同;

  如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.

  特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3).

  利用分配律,可以将式子中的括号去掉,得:

  +(x-3)=x-3(括号没了,括号内的每一项都没有变号)

  -(x-3)=-x+3(括号没了,括号内的每一项都改变了符号)

  去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项.

  二、范例学习

  例1.化简下列各式:

  (1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).

  思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号.

  解答过程按课本,可由学生口述,教师板书.

  例2.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时.

  (1)2小时后两船相距多远?

  (2)2小时后甲船比乙船多航行多少千米?

  教师操作投影仪,展示例2,学生思考、小组交流,寻求解答思路.

  思路点拨:根据船顺水航行的速度=船在静水中的速度+水流速度,船逆水航行速度=船在静水中行驶速度-水流速度.因此,甲船速度为(50+a)千米/时,乙船速度为(50-a)千米/时,2小时后,甲船行程为2(50+a)千米,乙船行程为(50-a)千米.两船从同一洪口同时出发反向而行,所以两船相距等于甲、乙两船行程之和.

  解答过程按课本.

  去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,括号内每一项都要变号.为了防止出错,可以先用分配律将数字2与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号.

  三、巩固练习

  1.课本第68页练习1、2题.

  2.计算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.[5xy2]

  思路点拨:一般地,先去小括号,再去中括号.

  四、课堂小结

  去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“-”号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号.去括号规律可以简单记为“-”变“+”不变,要变全都变.当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项.

  五、作业布置

  1.课本第71页习题2.2第2、3、5、8题.

  2.选用课时作业设计.

整式的加减数学教案6

  教学目的

  1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。

  2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。

  教学分析

  重点:整式的加减运算。

  难点:括号前是-号,去括号时,括号内的各项都要改变符号。

  突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。

  教学过程

  一、复习

  1、叙述合并同类项法则。

  2、叙述去括号与添括号法则。

  3、化简:

  y2+(x2+2xy-3y2)-(2x2-xy-2y2)

  二、新授

  1、引入

  整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。

  2、例题

  例1(P166例1)

  求单项式5x2y,-2 x2y,2xy2,-4xy2的和。

  分析:式子5x2y+(-2 x2y)+2xy2+(-4xy2)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。

  解:(略,见教材P166)

  例2(P166例2)

  求3x2-6x+5与4x2-7x-6的'和。

  解:(3x2-6x+5)+(4x2-7x-6)(每个多项式要加括号)

  =3x2-6x+5+4x2-7x-6(去括号)

  =7x2+x-1(合并同类项)

  例3。(P166例3)

  求2x2+xy+3y2与x2-xy+2y2的差。

  解:(2x2+xy+3y2)-( x2-xy+2y2)

  =2x2+xy+3y2-x2+xy-2y2

  =x2+2xy+y2

  3、归纳整式加减的一般步骤。

  整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。

  三、练习

  P167:1,2,3,4。

  补:已知:A=5a2-2b2-3c2, B=-3a2+b2+2c2,求2A-3B

  四、小结

  1、文字叙述的整式加减,对每一个整式要添上括号。

  2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。

  五、作业

  1、 P169:A:1(3、4),3,5,6,7,8。B:1,2。

  基础训练同步练习1。

整式的加减数学教案7

  新课指南

  1.知识与技能:(1)在具体情境中了解代数式及代数式的值的含义;(2)掌握整式、同类项及合并同类项法则和去括号法则;(3)培养学生用字母表示数和探索数学规律的能力.

  2.过程与方法:经历探索规律并用代数式表示规律的过程,学会列简单的代数式.在具体情境中体会同类项的意义及合并同类项、去括号法则的必要性,总结合并同类项及去括号的法则,并利用它们进行整式的加减运算和解决简单的实际问题.

  3.情感态度与价值观:通过对整式加减的学习,深入体会代数式在实际生活中的`应用,它为后面学习方程(组)、不等式及函数等知识打下良好的基础,同时,也使我们体会到数学知识的产生来源于实际生产和生活的需求,反之,它又服务于实际生活的方方面面.

  4.重点与难点:重点是用含有字母的式子表式规律,理解整式的意义,合并同类项的法则和去括号的法则.难点是探索规律的过程及用代数式表示规律的方法,以及准确识别整式的项、系数等知识.

  教材解读精华要义

  数学与生活

  如图15-1所示,用同样规格的黑、白两色的正方形瓷砖铺长方形地面,在第n个图形中,每一行有块瓷砖,每一列有块瓷砖,共有块瓷砖,其中黑色瓷砖共块,白色瓷砖共块.

  思考讨论由图15-1可以看到,当n=1时,一横行有4块瓷砖,一竖列有3块瓷砖;当n=2时,一横行有5块瓷砖,一竖列有4块瓷砖;当n=3时,一横行有6块瓷砖,一竖列有5块瓷砖.综上可以发现:4-1=5-2=6-3=3,3-1=4-2=5-3=2.即:一横行的瓷砖数等于n加上3,一竖列的瓷砖数等于n加上2.所以,在第n个图形中,每一横行共有(n+3)块瓷砖,每一竖列共有(n+2)块瓷砖,共有(n+3)(n+2)块瓷砖,其中白色瓷砖共(n+3-2)(n+2-2)=n(n+1)块,黑色瓷砖共有[(n+3)(n+2)-n(n+1)]块.这就是用字母来表示数,即代数式,你还能举出这样用字母表示数的例子吗?

  知识详解

  知识点1代数式

  用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数.的字母连接起来的式子叫做代数式.单独的一个数或一个字母也是代数式.

  例如:5,a,(a+b),ab,a2-2ab+b2等等.

  知识点2列代数式时应该注意的问题

  (1)数与字母、字母与字母相乘时常省略“×”号或用“·”.

  如:-2×a=-2a,3×a×b=3·ab,-2×x2=-2x2.

  (2)数字通常写在字母前面.

  如:mn×(-5)=-5mn,3×(a+b)=3(a+b).

  (3)带分数与字母相乘时要化成假分数.

  如:2×ab=ab,切勿错误写成“2ab”.

  (4)除法常写成分数的形式.

  如:S÷x=.

【整式的加减数学教案】相关文章:

数学教案-整式的加减01-23

数学教案-整式的加减(1)01-23

整式的加减数学教案03-24

整式的加减01-23

整式的加减数学教案7篇03-24

整式的加减(1)01-23

整式的加减数学教案(汇编7篇)04-01

整式的加减教学反思01-08

《整式的加减》教学设计11-25