现在位置:范文先生网>教案大全>数学教案>七年级数学教案>华师大版七年级数学上册教案

华师大版七年级数学上册教案

时间:2023-09-04 17:07:26 晓丽 七年级数学教案 我要投稿

华师大版七年级数学上册教案(通用10篇)

  作为一名优秀的教育工作者,通常需要用到教案来辅助教学,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么教案应该怎么写才合适呢?下面是小编精心整理的华师大版七年级数学上册教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

华师大版七年级数学上册教案(通用10篇)

  华师大版七年级数学上册教案 1

  教学目标

  1.经历观察、分析、操作、欣赏以及抽象,归纳等过程,经历探索图形平移性质的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识。

  2.通过实例认识平移,理解平移的含义,理解平移前后两个图形对应点连线平行且相等的性质.

  重点、难点

  重点:探索并理解平移的性质.

  难点:对平移的认识和性质的探索.

  教学过程

  一、引入新课

  1.教师打开幻灯机,投放课本图5.4-1的图案.

  2.学生观察这些图案、思考并回答问题.

  (1)它们有什么共同的特点?

  (2)能否根据其中的一部分绘制出整个图案?

  3.师生交流.

  (1)这引进美丽的图案是由若干个相同的图案组合而成的,图5.4-1 上一排左边的图案(不考虑颜色)都有“基本图形”;中间一个正方形,上、下有正立与倒立的正三角形,如图(1);上排中间的图案(不考虑颜色)都有“基本图形”:正十二边形, 四周对称着4个等边三角形,如图(2);上排右边的图案(不考虑颜色)都有“基本图形”;正六边形,内接六角星,如图(3);下排的左图中的“基本图形”是鸽子与橄榄枝; 下排右图中的“基本图形”是上、下一对面朝右与面朝左的.人头像组成的图案.

  《5.4平移》同步讲义练习和同步练习

  1在△ABC中,∠C=90°,AC=BC=5,现将△ABC沿着CB的方向平移到△A′B′C′的位置,若平移的距离为2,则图中的阴影部分的'面积为   .

  2、把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24cm,WG=8cm,WC=6cm,求阴影部分的面积为   cm2.

  3、绐正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为l的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第20xx次“移位”后,则他所处顶点的编号是   .

  《5.4平移》同步测试卷含答案

  1. 将图形平移,下列结论错误的是( )

  A.对应线段相等

  B.对应角相等

  C.对应点所连的线段互相平分

  D.对应点所连的线段相等

  解析: 根据平移的性质,将图形平移,对应线段相等、对应角相等、对应点所连的线段相等,而对应点所连的线段不一定互相平分,故选C.

  12. 国旗上的四个小五角星,通过怎样的移动可以相互得到( )

  A.轴对称 B.平移 C.旋转 D.平移和旋转

  解析: 国旗上的四个小五角星通过平移和旋转可以相互得到.故选D.

  华师大版七年级数学上册教案 2

  教学目标

  【知识与能力目标】

  1、巩固理解有理数的概念;

  2、掌握数轴的意义及构成特点,明确其在实际中的应用;

  3、会用数轴上的点表示有理数。

  【过程与方法目标】

  【情感态度价值观目标】

  通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

  教学重难点

  【教学重点】

  数轴的意义及作用。

  【教学难点】

  数轴上的点与有理数的直观对应关系。

  课前准备

  《数学》人教版七年级上册,自制课件

  教学过程

  一、探索新知(投影展示)

  问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7、5m处分别有一棵柳树和一棵杨树,汽车站西3m和4、5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。

  学生结合上述问题分组讨论,明确以下问题:

  1、怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)?

  2、举例说明生活中类似的事例;

  3、什么叫数轴?它有哪几个要素组成?

  4、数轴的用处是什么?

  5、你会画数轴吗并应用它吗?

  “问题”解决:课件投影课本p8图1、2-1,同时说明其产生的过程及合理、简明的特点;

  结论:正数、0和负数可以用一条直线上的点表示出来。

  3、展示温度计图形,比较其与图1、2-1的共同点和不同点:

  共同点:温度计也可以看作将正数、0和负数用一条直线上的.点表示出来的情形;

  不同点:温度计是竖直的,方向感不直观。

  4、描述数轴的`意义(课本p9中间,由学生阅读,并尝试画一条数轴,强调)

  (1)数轴的构成三要素:原点、方向、单位长度;

  (2)数轴的用处是:把数用数轴上的点来表示,例(课本p9图1、2-3),说明有理数都可以用数轴上的点表示;

  5、归纳

  (1)一般地,设a是一个正数,则数轴上表示数a的点在原点的边,与原点的距离是个单位长度;表示数-a的点在原点的边,与原点的距离是个单位长度。

  (2)数轴的出现将图形(直线上的点)和数紧密联系起来,使很多数学问题都可以借助图直观地表示,是“数形结合”的重要工具。

  二、例题分析

  例1.先画出数轴,然后在数轴上表示下列各数:

  -1、5,0,-2,2,-10/3

  例2、数轴上与原点距离4个长度单位的点表示的数是。

  三、巩固训练

  课本p10练习

  自我检测

  (1)数轴的三要素是;

  (2)数轴上表示-5的点在原点的侧,与原点的距离是个长度单位;

  (3)数轴上表示5与-2的两点之间距离是单位长度,有个点;

  (4)如图,a、b为有理数,则a0,b0,ab

  课堂小结

  (1)数轴概念:规定了原点、正方向、单位长度的直线叫做数轴。

  (2)数轴的三要素:原点、正方向、单位长度。

  (3)数学思想:数形结合的思想。

  五、作业

  1、课本14页习题1、2

  2、完成“自我检测”

  3、个性补充

  ⑴画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75。

  ⑵画一条数轴,并表示出如下各点:1000,5000,-20xx。

  ⑶在数轴上标出到原点的距离小于3的整数。

  ⑷在数轴上标出-5和+5之间的所有整数。

  华师大版七年级数学上册教案 3

  一、教学目标

  1、知识与技能:

  (1)在现实中,认识角是一种基本的几何图形,理解角的概念,掌握角的表示方法。

  (2)认识角的度量单位度、分、秒,能根据角的度量比较角的大小,熟练进行角的换算。

  2、能力目标:培养学生的抽象概括能力,增强应用数学的意识。

  3、情感目标:通过丰富的图形世界进一步理解角的有关概念,感受数学与生活的密切联系,积极参与数学学习活动。

  4、过程与方法:提高学生的识图的能力,学会用运动变化的观点看问题。

  二、教学重点、难点关键

  1、教学重点:角的概念、表示方法及角度制的换算

  2、教学难点:角的表示方法、角度制的换算

  3、关键:学会观察图形是正确表示一个角的关键

  三、学情分析

  角是几何初步知识中比较抽象的概念,学生在小学已经初步接触了角的有关知识,对角的概念、比较、度量有了初步的认识。按照教学目标要求,这节课将进一步对角的概念、比较和度量进行规范。培养学生观察、比较、概括能力,借此引导学生在已有的生活经验和知识的基础上学习数学,理解数学,体会数学与生活的关系。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。本节课设计的教学方法是采用引导发现法,辅之以讨论法

  四、教学准备

  为了提高课堂教学效率,激发学生学习兴趣,培养学生的空间想象力,本节课采用的是直观教学手段,充分利用多媒体演示,便于学生理解和掌握。

  五、教学用具:

  量角器

  六、教学过程

  (一)引入新课

  1多媒体放映一些生活中图形:时钟,教堂,足球射门请生观察。

  2提出问题:

  时钟的分针和时针,教堂的.屋顶,足球与门框,都给我们怎样的平面图形的形象?请把它们画出来。

  学生活动:进行独立思考,画出一个角,然后观看教师的演示过程。

  (二)活动探究,建构新知

  活动一

  角的概念

  师:我们如何给角下定义?请大家根据自己的理解给角下一个定义。生:角的两种定义:

  a、角是由两条具有公共端点的射线组成的图形,两条射线的公共端点上一这个角的顶点,这两条射线是这个角的边;

  b、角也可以看成由一条射线绕着它的端点旋转而成的图形。

  (学生小组活动思考讨论,组内统一意见,代表发言,最后比较各答案得出准确定义。学生对角的概念已初步接触过,让学生进一步加深对角的概念的理解,培养学生抽象概括能力以及语言的表达能力。但由于学生的语言表达能力还不是太强,教师可进行适当的纠正、归纳)

  活动二

  角的表示

  师:如何表示一个角?请同学们阅读课本第136面在关内容,归纳角的表示方法(小组内讨论互助)

  生:角的表示方法有:

  1、角的符号+三个大写字母,如:∠aob

  2、角的符号+一个大写字母,如:∠o

  (顶点处只有一个角时)

  3、角的符号+数字如:∠1

  4、角的符号+希腊字母如∠α

  师:在用这些方法表示角的时候应该注意些什么呢?

  生:用“角的符号+三个大写字母”表示角的时候要用大写字母,顶点的字母应该写在中间;在顶点处只有一个角时,才可以用一个大写的字母表示。

  师:老师再告诉大家一个细节:用数字或希腊字母表示角的时候,要在角上画一个小弧形。另外在角的表示中不能丢了前面角的符号。

  (在课堂教学中,教师应该充分相信学生,让学生在课堂上有充分的活动空间和时间,形成学生自我寻求发展的愿望,充分发挥他们的自主精神。当然,学生在归纳、表述的时候会出现不正确、思维不太严谨的地方,教师可给于适当的引导、纠正)

  尝试应用,反馈矫正

  师:请同学们完成下面的练习

  1、图中共有多少个角?请分别表示出来。

  c

  2、将图中的角用不同方法表示出来并填写下表

  b

  b

  ∠1

  ∠bca∠3∠4abc

  ceda

  获得积极深层次的体验,从而促进学生探究能力的发展)

  活动三

  角的度量与比较

  ab

  师:点a、b、c表示足球比赛中三个不同的射门位置,请同学们:c

  1、先估测图中所示各个角的大小

  2、再用量角器量一量,比较它们的大小,并与同学们交流度量角的方法3、射门角度越大,进球机会越大,请指出在图中哪一点射门最好

  4、对于角的比较大小,你还能有什么好的方法吗?

  生:

  1、∠b最大

  2、∠a=28°∠b=91°∠c=45°

  量角器的使用方法:“一对中,二合线,三读数”

  1、点b射门最好。

  2、对于角的比较大小,也可以通过叠合的方法来比较。

  (通过学生的探索,让学生明白角的比较方法很多,可以通过估测、度量的方法,也可以通过叠合的方法来比较角的大小)

  (三)巩固练习,迁移新知

  试一试

  1、如图打台球的时候,球的反射角总是等于入射角。

  请同学们估测球反弹后会撞击图中的哪一点?

  (问题1以打台球为情景,因为台球是学生喜爱的'体育活动,又与角有着密切的关系,可进一步引导学生分析角的三种比较方法)

  2、(1)图中以oa为一边的角有哪几个?请按大小顺序用“﹤”号连接起来;

  (2)∠aoc=∠aob+∠boc,∠aob=∠aod-∠dob。类似地,你还能写

  出哪些有关的角的和与差的关系式?o

  dac

  b

  (问题2具有开放性,教学中要指导学生认真读图,要给学生较为充分的独立思考、相互交流的时间和空间,鼓励学生尽可能多地表述出有关角的和与差的关系式)

  3、已知一条射线oa,若从点o再引两条射线ob、oc,使得∠aob=600,∠boc=300,求∠aoc的度数。

  (问题3的解答中,∠aoc有两种可能,不少同学只得出了一个答案:90°。表现出思维不太严谨,此时教师应该抓住思维训练的契机,培养学生的思维能力)关于角的度量单位,教学时应强调:

  (1)度、分、秒是常用的角的度量单位;

  (2)度、分、秒的进率是60(与时间的单位时、分、秒的换算一样)多媒体出示例题与练习

  (四)归纳总结,系统知识

  师:本节课学习了哪些知识?

  生:学习了角的概念、角的表示、角的比较与度量,角的换算。

  师:通过本节课的实践、探索、交流与讨论,你有哪些收获?

  生:学会了角的表示方法,角的大小比较方法,并能熟练地进行角度的换算等

  (五)布置作业:课本p3081、2、3同时出示思考题“用一副三角板,你可以作出哪些特殊的角”作为本节课的延伸。

  华师大版七年级数学上册教案 4

  教学目标

  知识与技能:

  1.会求代数式的值,会利用代数式求值判断代数式所反应的规律;

  2.能利用求代数式的值解决较简单的实际问题;

  过程与方法:

  3.通过求代数式的值,体会代数式实际上是由计算程序反映的一种数量间的关系;

  4.将不同的数代入同一代数式,求出相应的值,能够从所得代数式的值来判断代数式所反映的规律,体会抽象的代数式与实际数量关系之间的关系.

  情感态度价值观:

  5.通过代数式求值,感受数学中的程序化和抽象性,感受抽象的字母和具体的数之间的关系,进一步理解字母表示数的意义,进一步增强符号感.

  教学重点

  理解代数式的意义,会求代数式的值

  教学难点

  利用代数式求值推断代数式所反映的`规律

  教学方法

  引导、探究法,即引导学生发现规律,使其在探究过程中掌握知识

  教学准备

  多媒体,或投影仪,胶片

  课时安排

  1课时

  教学过程

  Ⅰ.巧设情景问题,引入课题

  [师]我们在探讨了代数式之后,不仅能用字母与代数式表示数量关系,还能解释一些代数式的实际背景或几何意义.

  下面我们来看一组数值转换机:(出示投影片§3.3A),大家想一想,做一做.

  下面是一组数值转换机,写出图1的输出结果,找出图2的转换步骤:

  [生1]图1的输出结果是:6x-3.

  图2的转换步骤:-3、×6.

  [师]这位同学书写的跟你们的一样吗?

  [生齐声]一样.

  [师]很好,同学们写得很正确,这两个数值转换机由于转换的步骤不一样,因此输出的代数式也不一样.

  我们已经知道,表示数的字母具有任意性和确定性.当给出代数式时,如:6x-3,字母x可以取任何有理数,当给出未知数的值时,如x=5时,求6x-3的值,这时,x只能是5这个确定的数.

  今天我们就来研究第三节:代数式求值.

  Ⅱ.讲授新课

  当我们把一些数输入“数值转换机”时,通过一个算法,相应得就会得到一些数值.下面大家来做一做,填下表.(出示投影片§3.3B)

  输入-2-

  00.26

  4.5

  图1输出

  图2输出

  (学生计算,使他们认识到代数式求值就是转换过程或是某种计算).

  [师]大家在运算时一定要注意:要按转换的步骤进行.填出结果了吗?……来同桌间相互检查.××同学说说你的结果.

  [生]

  [师]同学们做得都不错,很好,下面,我们来比赛一下,看谁做得又对又快.(出示投影片§3.3C)

  议一议:

  填写下表,并观察下列两个代数式的值的变化情况:

  (1)随着n的值逐渐变大,两个代数式的值如何变化?

  (2)估计一下,哪个代数式的值先超过100?

  (学生积极发言,大多同学填得对)

  [生]

  [师]很好,大家计算得又对又快,接下来我们分组讨论:(1)、(2)问题,并总结.

  [生]随着n的值逐渐变大,两个代数式的`值也逐渐变大.

  根据值的变化趋势,我估计:n2的值先超过100.

  [师]对,代数式的值是由其所含的字母取值所确定的,并随字母取值的变化而变化,字母取不同的值,代数式的值可能不同,也可能相同.求出代数式的值后,根据值的变化趋势还可以进行预测、推断代数式所反映的规律.

  下面我们来做练习,进一步体会本节课的内容:

  Ⅲ.课堂练习

  (一)课本P99随堂练习

  1.人体血液的质量约占人体体重的6%~7.5%.

  (1)如果某人体重是a千克,那么他的血液质量大约在什么范围内?

  (2)亮亮的体重是35千克,他的血液质量大约在什么范围内?

  (3)估计你自己的血液质量?

  答案:(1)6%a千克~7.5%a千克

  (2)亮亮的血液质量大约在2.1千克到2.625千克之间

  (3)让学生估计计算一下

  2.物体自由下落的高度h(米)和下落时间t(秒)的关系,在地球上大约是:

  h=4.9t2,在月球上大约是:h=0.8t2.

  (1)填写下表

  (2)物体在哪儿下落得快?

  (3)当h=20米时,比较物体在地球上和月球上自由下落所需的时间.

  答案:(1)

  (2)地球

  (3)通过表格,估计当h=20米时,t(地球)≈2秒,t(月球)≈5秒

  (二)试一试

  1.当a=-1,-0.5,0,0.5,1,1.5,2时,a2-a是正数还是负数?当|a|>2时,估计a2-a是正数还是负数?

  解:本题可列表进行比较.

  通过估计得:当|a|>2时,a2-a>0

  2.当a=-4,-3,-2,-1,1,2,3,4时,分别求出代数式a2+的值.你发现了什么?

  解:

  从计算的结果中发现:当a取互为相反数的值时,a2+的值相等;当|a|>1时,a的绝对值变大,a2+的值也变大.

  Ⅳ.课时小结

  通过本节课的学习,我们会求代数式的值,对于一个代数式,它所含的字母取不同的值时,所得代数式的值,一般也不同,所以在求代数式的值时,要注意解题步骤:(1)代入.

  (2)计算.

  Ⅴ.课后作业

  (一)看课本P98;P99的读一读.

  (二)课本习题3.31、2、3、4.

  (三)(1)预习内容:P102~103

  (2)预习提纲

  1.项的系数和项的概念.

  2.进一步理解字母表示数的意义.

  Ⅵ.活动与探究

  1.下面是两个数值转换机,请你输入五组数据,比较两个输出的结果,发现了什么?

  根据上题的启示,你能设计出两个数值转换机来验证:a2-2ab+b2=(a-b)2吗?

  过程:让学生根据题意,求代数式的值.然后讨论、总结,最后根据总结的规律与等式a2-2ab+b2=(a-b)2进行比较,设计两个数值转换机.

  结果:通过输入数值,进行计算,发现了两个输出的结果相等,即:

  a2+b2+2ab=(a+b)2

  根据上题的启示,设计出如下的两个数值转换机,使得:a2-2ab+b2=(a-b)2.

  2.已知=7,求的值.

  过程:让学生审清题,不要盲目计算.从题中知:与正好是互为倒数,整体代入,问题可轻松解决.

  结果:因为=7,所以:=.

  所以:原式=2×7-×=13.

  板书设计

  §3.3代数式求值

  一、“数值转换机”求值三、课堂练习

  二、议一议

  四、课时小结

  规律五、课后作业

  华师大版七年级数学上册教案 5

  【教学目标】

  知识与技能:了解并掌握数据收集的基本方法。

  过程与方法:在调查的过程中,要有认真的态度,积极参与。

  情感、态度与价值观:体会统计调查在解决实际问题中的作用,逐步养成用数据说话的良好习惯。

  【教学重难点】

  重点:掌握统计调查的基本方法。

  难点:能根据实际情况合理地选择调查方法。

  【教学过程】

  讲授新课

  像前面提到的收集数据的活动中,全班同学是我们要考察的对象,我们采用问卷对全体同学作了逐一调查,像这样对全体对象进行的调查叫做全面调查。

  调查、试验如采用普查可以收集到较全面、准确的数据,但普查的.工作量比较大,有时受客观条件(人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采用。在这些情况下,常常采用抽样调查,即从被考察的全体对象中抽出一部分对象进行考察的调查方式。

  在一个统计问题中,我们把所要考察对象的全体叫做总体,其中的每一个考察对象叫做个体,从总体中所抽取的一部分个体叫做总体的一个样本(sample),样本中个体的数目叫做样本容量。

  例如,在通过试验考察500只新工艺生产的灯泡的使用寿命时,从中抽取50只进行试验。这500只灯泡的使用寿命的全体是总体,其中每只灯泡的使用寿命是个体,抽取的50只灯泡的使用寿命是一个样本,50是这个样本的样本容量。

  为了使抽取的50只灯泡能很好地反映500只灯泡的情况,抽取时要使每只灯泡逐一进行编号,再把编号写在小纸片上,将小纸片揉成团,放在一个不透明的容器内,充分搅拌后,从中一个个地抽取50个号签。

  上面抽取样本的过程中,总体中的各个个体都有相等的机会被抽到,像这样的抽样方法是一种简单随机抽样。

  师:以“你知道父母的生日吗?”为题在班级进行调查,请设计一张问卷调查表。

  学生小组合作、讨论,学生代表展示结果。

  教师指导、评论。

  师:除了问卷调查外,我们还有哪些方法收集到数据呢?

  学生小组讨论、交流,学生代表回答。

  师:收集数据的直接方法有访问、调查、观察、测量、试验等,间接方法有查阅资料、上网查询等。就以下统计的数据,你认为选择何种方法去收集比较合适?

  (1)你班中的同学是如何安排周末时间的?

  (2)我国濒临灭绝的植物数量;

  (3)某种玉米种子的发芽率;

  (4)学校门口十字路口每天7:00~7:10时的车流量。

  华师大版七年级数学上册教案 6

  教学目标:

  知识与能力

  能正确运用角度表示方向,并能熟练运算和角有关的问题。

  过程与方法

  能通过实际操作,体会方位角在是实际生活中的应用,发展抽象思维。

  情感、态度、价值观

  能积极参与数学学习活动,培养学生对数学的好奇心和求知欲。

  教学重点:方位角的表示方法。

  教学难点:方位角的准确表示。

  教学准备:预习书上有关内容

  预习导学:

  如图所示,请说出四条射线所表示的方位角?

  教学过程;

  一、创设情景,谈话导入

  在现实生活中,有一种角经常用于航空、航海,测绘中领航员常用地图和罗盘进行这种角的测定,这就是方位角,方位角应用比较广泛,什么是方位角呢?

  二、精讲点拔,质疑问难

  方位角其实就是表示方向的角,这种角以正北,正南方向为基准描述物体的方向,如“北偏东30°”,“南偏西40°”等,方位角不能以正东,正西为基准,如不能说成“东偏北60°,西偏南50°”等,但有时如北偏东45°时,我们可以说成东北方向。

  三、课堂活动,强化训练

  例1如图:指出图中射线OA、OB所表示的方向。

  (学生个别回答,学生点评)

  例2若灯塔位于船的北偏东30°,那么船在灯塔的.什么方位?

  (小组讨论,个别回答,教师)

  例3如图,货轮O在航行过程中发现灯塔A在它的南偏东60°的方向上,同时在它北偏东60°,南偏西10°,西北方向上又分别发现了客轮B,货轮C和海岛D,仿照表示灯塔方位的方法,画出表示客轮B、货轮C、海岛D方向的射线。

  (教师分析,一学生上黑板,学生点评)

  四、延伸拓展,巩固内化

  例4某哨兵上午8时测得一艘船的位置在哨所的南偏西30°,距哨所10km的地方,上午10时,测得该船在哨所的北偏东60°,距哨所8km的地方。

  (1)请按比例尺1:000画出图形。

  (独立完成,一同学上黑板,学生点评)

  (2)通过测量计算,确定船航行的`方向和进度。

  (小组讨论,得出结论,代表发言)

  五、布置作业、当堂反馈

  练习:请使用量角器、刻度尺画出下列点的位置。

  (1)点A在点O的北偏东30°的方向上,离点O的距离为3cm。

  (2)点B在点O的南偏西60°的方向上,离点O的距离为4cm。

  (3)点C在点O的西北方向上,同时在点B的正北方向上。

  作业:书P1407、9

  华师大版七年级数学上册教案 7

  教学目标:

  知识能力:理解有理数的概念,掌握有理数的两种分类方法,能够按要求对给定的有理数进行分类。

  过程与方法:通过本节的`学习,培养学生正确的分类讨论观点和分类能力。

  情感、态度、价值观:通过本节课的`学习,体验成功的喜悦,保持学好数学的信心。

  教学重点:

  掌握有理数的两种分类方法

  教学难点:

  给定的数字将被填入它所属的集合中

  教学方法:

  问题导向法

  学习方法:

  自主探究法

  教学过程:

  一、形势归纳

  小学我们学了整数和分数,上节课我们学了正数和负数。谁能快速提出以下问题?

  1、有以下数字:15,—1/9,—5,2/15,—13/8,0.1,—5.22,—80,0,123,2.33

  (1)将以上数字填入以下两组:正整数集{}和负整数集{}。你填完了吗?

  (2)将以上数字填入以下两个集合:整数集合{}和分数集合{}。你填完了吗?

  称整数和分数为有理数。(指点题,板书)

  二、自学指导

  学生自学课本,根据课本寻找自学的机会

  提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。

  三、展示归纳

  1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;

  2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;

  3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。

  四、变式练习

  逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。

  五、总结与反思:通过本节课的学习,你有什么收获?

  六、作业:必做题:课本14页:1、9题

  华师大版七年级数学上册教案 8

  【学习目标】

  1、能根据题意用字母表示未知数,然后分析出等量关系,再根据等量关系列出方程。

  2、理解什么是一元一次方程。

  3、理解什么是方程的解及解方程,学会检验一个数值是不是方程的解的方法。

  【重点难点】

  体会找等量关系,会用方程表示简单实际问题,能验证一个数是否是一个方程的解。

  【导学指导】

  一、温故知新

  1:前面学过有关方程的一些知识,同学们能说出什么是方程吗?

  答:叫做方程。

  一元一次方程复习

  注意:我们在解一元一次方程时,既要学会按部就班(严格按步骤)地解方程,又要善于认真观察方程的结构特征,灵活采用解方程的一些技巧,随机应变(灵活打乱步骤)解方程,能达到事半功倍的效果.对于一般解题步骤与解题技巧来说,前者是基础,后者是机智,只有真正掌握了一般步骤,才能熟能生巧.

  解一元一次方程常用的技巧有:

  (1)有多重括号,去括号与合并同类项可交替进行

  (2)当括号内含有分数时,常由外向内先去括号,再去分母

  (3)当分母中含有小数时,可根据xx分数的基本性质xx把分母化成整数

  (4)运用整体思想,即把含有未知数的代数式看作整体进行变形

  (三)实际问题与一元一次方程

  1.用一元一次方程解决实际问题的一般步骤是:

  (1)审题,搞清已知量和待求量,分析数量关系. (审题,寻找等量关系)

  (2)根据数量关系与解题需要设出未知数,建立方程;

  (3)解方程;

  (4)检查和反思解题过程,检验答案的正确性以及是否符合题意,并作答.

  2.用一元一次方程解决实际问题的典型类型

  (1)数字问题:①数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c则这个三位数表示为xx100a+10b+cxx(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9).

  ②用一个字母表示连续的自然数、奇数、偶数等规律数.

  (2)和、差、倍、分问题:关键词是“是几倍,增加几倍,增加到几倍,增加百分之几,增长率,哪个量比哪个量……”

  《第三章一元一次方程》精编导学

  3.1从算式到方程

  【学习目标】

  1、知道什么是方程,什么是一元一次方程;

  2、在实际问题中,能够找到并利用题中的等量关系列出方程.

  【重点难点】

  重点1.归纳方程、一元一次方程的概念;

  2.分析实际问题中的数量关系,利用其中的相等关系列出方程。

  难点:能够用方程解决一些实际问题。

  【学法指导】

  自主探究、合作学习

  【自主学习,基础过关】

  1. (1)3+b=2b+1 (2)4+x=7

  (3) 0.7x=1400 (4)2x-2=6

  请大家观察上面4个式子有什么共同特点?

  从而得到:xxxxxxxxxxxxxxx的等式叫做方程。

  2.阅读课本78页问题,你能用算术方法解答吗?试一试。

  若设A,B两地间的路程是x km?则从A地到B地,卡车用了小时,客车用了小时。根据题意,可列出等式吗?

  还有其他的解法吗?试着改变一种设法。

  我的'疑惑

  【合作探究,释疑解惑】

  1.根据下面实际问题中的数量关系,设未知数列出方程:

  ①用一根长为48cm的铁丝围成一个正方形,正方形的边长为多少?

  ②某校女生人数占全体学生数的52%,比男生多80人,这个学校有多少学生?

  ③练习本每本0.8元,小明拿了10元钱买了若干本,还找回4.4元。问:小明买了几本练习本?

  小结:像上面①、②、③中列出的.方程,它们都含有xxxxx个未知数(元),未知数的次数都是xxxxxxx,这样的方程叫做一元一次方程。

  (即方程的一边或两边含有未知数)

  【检测反馈,学以致用】

  1.根据条件列出等式:

  ①比a大5的数等于8:

  ②某数的30%比它的2倍少34:

  ③27与x的差的一半等于x的4倍:xxxxxxxxx

  ④比a的3倍小2的数等于a与b的和:

  2.列方程解决实际问题

  (1)用一根长24cm的铁丝围成一个长方形,使它的长是宽的1.5倍,长方形的长,宽各应是多少?

  (2)小芳种了一株树苗,开始时树苗高为40厘米,栽种后每周升高约15厘米,大约几周后树苗长高到1米?

  【总结提炼,知识升华】

  1、学习收获

  2、需要注意的问题

  【课后训练,巩固拓展】

  1、必做题:教科书80页练习1,2,3,4题;

  2、悬赏题(2个优)

  鸡兔同笼,上有20头,下有52足,请问鸡兔各有多少只?

  华师大版七年级数学上册教案 9

  教学目标

  1.利用10的乘方,进行科学记数,会用科学记数法表示大于10的数;(重点)

  2.能将用科学记数法表示的数还原为原数.(重点)

  教学过程

  一、情境导入

  在悉尼举行的国际天文学联合会大会上,天文学家指出整个可见宇宙空间大约有700万亿亿颗恒星,这个数字比地球上所有沙漠和海滩上的沙砾总和数量还要多.

  如果想在字面上表示出这一数字,需要在“7”后面加上22个“0”.即约为“70000000000000000000000”颗.

  生活中,我们还常会遇到一些比较大的数.例如:

  1.据报载,20xx年我国将发展固定宽带接入新用户25000000户.

  2.全球每年大约有577000000000000m3的水从海洋和陆地转化为大气中的水汽.

  3.拒绝“餐桌浪费”刻不容缓,据统计,全国每年浪费粮食总量约50000000000千克.

  像这些较大的数据,书写和阅读都有一定的难度,那么有没有这样一种表示方法,使得这些大数易写、易读、易于计算呢?

  二、合作探究

  探究点一:用科学记数法表示大数

  例1 我区深入实施环境污染整治,关停和整改了一些化工企业,使得每年排放的污水减少了167000吨,将167000用科学记数法表示为(  )

  A.167×103 B.16.7×104

  C.1.67×105 D.1.6710×106

  解析:根据科学记数法的表示形式,先确定a,再确定n,解此类题的'关键是a,n的确定.167000=1.67×105,故选C.

  方法总结:科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

  例2 20xx年3月发生了一件举国悲痛的空难事件——马航失联,该飞机上有中国公民154名.噩耗传来后,我国为了搜寻生还者及找到失联飞机,花费了大量的人力物力,已花费人民币大约934千万元.把934千万元用科学记数法表示为______元(  )

  A.9.34×102 B.0.934×103

  C.9.34×109 D.9.34×1010

  解析:934千万=9340000000=9.34×109.故选C.

  方法总结:对用带“万”“千万”“亿”等单位的数用科学记数法表示时,要化成不带单位的数,再用科学记数法表示.

  探究点二:将用科学记数法表示的数转换为原数

  例3 已知下列用科学记数法表示的数,写出原来的数:

  (1)2.01×104;(2)6.070×105;(3)-3×103.

  解析:(1)将2.01的小数点向右移动4位即可;(2)将6.070的小数点向右移动5位即可;(3)将-3扩大1000倍即可.

  解:(1)2.01×104=20100;

  (2)6.070×105=607000;

  (3)-3×103=-3000.

  方法总结:将科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的.数.

  三、板书设计

  科学记数法:

  (1)把大于10的数表示成a×10n的形式.

  (2)a的范围是1≤|a|<10,n是正整数.

  (3)n比原数的整数位数少1.

  教学反思

  本节课的特点是实际性强,和我们的日常生活联系紧密,从学生的生活经验和已有的知识出发,创设生动有趣的情境,引导学生开展观察、讨论、交流等活动.把学生被动接受知识的过程变为主动探究发现的过程,使知识的发生与发展在每一位学生各自的体验和自主学习中逐渐展现.

  华师大版七年级数学上册教案 10

  学习目标:

  知识:对顶角邻补角概念,对顶角的性质。

  方法:图形结合、类比。

  情感:合作交流,主动参与的意识。

  学习重点:

  对顶角的概念、性质。

  学习难点及突破策略:

  “对顶角相等”的探究;小组讨论

  教学流程:

  【导课】

  同学们,你们看我左手拿着一块布,右手拿着一把剪刀,现在我用剪刀把布片剪开,同学们仔细观察,随着两把手之间的角逐渐变小,剪刀刃之间的角怎样变化?(学生答:也相应变小)如果把剪刀的构造看作两条相交的直线,这就关系到两条相交直线所成的角的问题(板书课题)。

  【阅读质疑,自主探究】

  请大家阅读课本P,回答以下问题(自探提纲):

  1、两条相交的`直线所成的四个角中,两两相配共能组成几组对角?各组对角间存在着怎样的位置关系?存在怎样的大小关系?

  2、什么样的两个角互为邻补角?什么样的两个角互为对顶角?

  3、对顶角有什么性质?你是怎样得到的?

  【多元互动,合作探究】

  同学们阅读教材后,对自己不能解决的问题分小组讨论,然后老师针对自探提纲的问题让学生回答。先让学困生、中等生回答,优等生做补充、归纳,特别是问题3的`第2问,最后老师强调:

  1、注意“互为”的含义。邻补角和对顶角都是要两个角互为邻补角或对顶角。

  2、“邻补角”这个名称,即包含了这两个角的位置关系,还包含了数量关系,对顶角一定是两条相交直线所构成的,这是一个前提条件。

  3、“对顶角相等”的推导过程。

【华师大版七年级数学上册教案】相关文章:

华师大版七年级数学上册教案02-24

北师版七年级上册数学教案01-11

北师大版七年级数学上册教案01-17

2022人教版数学七年级上册教案(精选18篇)11-01

北师版七年级语文上册教案12-06

北师大版七年级数学上册教案9篇01-17

湘教版数学七年级上册教案01-09

北师版七年级语文上册教案8篇12-08

鲁教版七年级上册语文教案01-14