现在位置:范文先生网>教案大全>数学教案>数学六年级教案

数学六年级教案

时间:2023-01-24 15:08:16 数学教案 我要投稿

人教版数学六年级教案

  作为一名教学工作者,通常会被要求编写教案,教案有助于学生理解并掌握系统的知识。那么你有了解过教案吗?下面是小编精心整理的人教版数学六年级教案,欢迎大家分享。

人教版数学六年级教案

人教版数学六年级教案1

  20xx年人教版六年级数学上册教案姓名:沈金鹏

  学号:134080303

  院、系:数学学院

  专业:数学与应用数学

  20xx年1月22日

  第二单元位置与方向

  教学目标:

  知识与技能:

  1.通过解决实际问题,了解确定位置的方法,能根据方向和距离确定物体的位置。2.会看简单的路线图,能根据路线图说出行走的方向和路线。

  过程与方法:

  1.通过解决实际问题,体会确定位置在生活中的应用。

  2.探索和发现确定位置的有效方法。

  情感态°价值观:

  1.体会到数学知识与实际生活紧密联系,感受到生活中处处有数学。

  2.培养学生合作交流的能力以及学习数学的兴趣和自信心。

  教学重点:

  通过学习了解确定位置的方法,能根据方向和距离确定物体的位置。会看简单的路线图,能根据路线图说出行走的方向和路线。

  教学难点:

  在学习过程中,发展学生的合情推理能力,使学生能进行有条理的思考,能比较清楚地表达自己的思考过程和结果。

  课时安排:

  六年级上册第二单元:位置与方向

  第1课:位置与方向㈠

  教学内容:教材第19、20页相关内容及练习题

  知识与技能:

  1.通过解决问题,体会确定位置在生活中的应用,了解确定位置的

  方法。

  2.学会通过测量描述物体在平面图上的具体位置,并会根据描述在

  平面图上画出物体的具体位置。

  过程与方法:通过小组合作交流探讨,掌握画图的方法。

  情感态度价值观:

  1.体会到数学知识与实际生活紧密联系,感受到生活中处处有数学。

  2.培养学生合作交流的能力以及学习数学的兴趣和自信心。

  重点:能根据任意方向和距离确定物体的位置。

  难点:根据描述标出物体在平面图上的具体位置。教学目标:教学重难点:

  教学方法:合作交流、共同探讨

  教师:多媒体课件,直尺、量角器等。教、学具准备:学生:直尺、量角器。

  教学过程:

  一、情景导入

  1.交流例题1中有关台风的消息。

  ⑴同学们听说过台风吗?你对台风有什么印象?

  ⑵播放有关台风的消息:目前台风中心位于A市东偏南30°方向、距离A市600km的.洋面上,正以20千米/时的速度沿直线向A市移动。

  师:听到这侧消息,你有什么感想?

  启发学生交流,引导学生关注台风的位置和动态。

  2.导入新课

  现在台风的确切位置在哪里呢?今天这节课,我们就来学习确定物体位置的知识。

  [板书课题:位置与方向(一)]

  【设计意图】通过交流台风的相关信息,引导学生关注到确定位置的数学知识,从而激发学生的学习兴趣,为教学的展开作铺垫。

  二、探究新知

  ㈠教学题例1

  1.投影出示例题1。

  学生观察情境图,交流从图中信息?

  (启发学生观察时关注以下几方面的信息:东、南、西、北四个方向在哪里;以哪里为观测点;图中台风中心的个体位置在哪里。)

  2.交流确定台风中心具体位置的方法。

  ⑴让学生尝试说说台风中心的具体位置。

  ⑵教师结合学生的汇报情况进行引导。

  提问:东偏南30°是什么意思?

  (东偏南30°表示的是台风中心位置相对于A市所在的方向,也就是台风中心位置与A市的连线和正东方向的夹角是30°,即正东方向往南偏30°。)

  ⑶小结确定位置的方法。

  提问:如果只有一个条件,能够确定台风中心的具体位置吗?

  引导学生得出:要确定台风中心的具体位置必须知道两个条件,即物体所在的方向和物体在这个方向上距离观察点的距离,简单地说就是要用“方向+距离”的方法来确定物体所在的具体位置。

  3.组织计算。

  师:现在我们知道台风中心所在的具体位置了,那台风大约多少小时后到达A市

  呢?

  学生独立计算,组织交流。

  600÷20=30(小时)

  (二)教学例题2

  1.投影出示例题2。

  提问:在例题1的图中,B市、C市的具体位置应该标在哪里呢?请你在例题1的图中标出B市、C市的具体位置。

  2.尝试画图。

  ⑴学生独立思考怎样标出B市、C市的具体位置。

  ⑵小组交流作图的方法。

  ⑶尝试画图。

  教师巡视交流,参与部分小组讨论,辅导有困难的学生。

  3.组织全班交流。

  投影展示学生完成的作品。

  组织交流和评议,通过交流明白在图上标出B市、C市位置的方法。

  B市:先确定方向,用量角器量出A市的北偏西30°(量角器中心点与A市重合,量角器0刻度线与正北方向重合,往西量出30°);再表示距离,用1cm表示100km,B市距离A市200km,在图上也就是2cm。

  C市:先确定方向,直接在图上找到A市的正北方向,再表示距离,用1cm表示100km,C市距离A市300km,在图上也就是3cm。

  4.算一算。

  台风到达A市后,移动速度变为40千米/时,几小时后到达B市?

  200÷40=5(小时)

  5.总结画图的基本步骤。

  交流:你们认为在确定物体在图上的位置时,应注意什么?怎样确定?

  总结:

  (1)确定平面图中东、西、南、北的方向。

  (2)确定观测点。

  (3)根据所给的度数定出所画物体所在的方向。

  (4)根据比例尺,定出所画物体与观测点之间的图上距离。

  【设计意图】教学过程中应注重学生观察能力的培养,给学生足够的探索时间和空间,体会在图上确定位置的方法,让学生感受到数学源于生活,高于生活,用于生活的价值和魅力。

  三、巩固练习

  1.教材第20页“做一做”。

  这道题物体所在的具体方向和距离都没有直接给出,需要学生自己测量和计算。⑴让学生独立进行测量、计算、填空。

  ⑵组织交流。

  让学生说说是怎样测量方向的,怎样计算距离的。

  2.教材第21页“做一做”。

  ⑴学生独立进行画图。

  ⑵投影展示,组织评议。

  ⑶交流画图的方法。

  四、课堂小结

  今天这节课我们知道要确定物体的位置,关键需要方向和距离两个条件。在平面图上标明物体位置的方法是先确定方向,再以选定的单位长度为基准来确定距离,最后画出物体的具体位置,标出名称。

人教版数学六年级教案2

  本单元内容包括比的意义、比的基本性质、化简比、按比分配解决实际问题等。本单元是在学生已经理解了除法的意义与基本性质、分数的意义与基本性质、分数乘除法的计算方法和解答分数除法实际问题的基础上进行教学的。

  由于本单元的知识与学生已有知识有着密切的联系,在教学时,教师应创设良好的学生自主学习的环境,引导学生自主探索与思考,并与同学展开积极的合作与交流,在特殊方法与一般方法的比较辨析中,进一步明晰知识的本质。

  教材还编排了很多问题情境图来突破教学中的重难点问题。

  例如:在例2按比分配解决实际问题中,教材在问题情境图和分析与解答过程中都采用图示直观地表示比的具体含义。

  这有利于学生理解这个比表示的是哪两个量之间的关系。同时,借助于直观图,也有利于学生运用数学语言转换各种信息,多元表达概念及数量关系,因而从本质上帮助学生理解数量关系,提高提出问题、分析问题、解决问题的能力。)

  第1课时比的意义

  教材48~49页的内容。

  1.在具体的情境中理解比的意义,学会比的读法、写法,掌握比的各部分名称及求比值的方法。

  2.经历探索比与分数、除法之间关系的过程,体会数学知识之间的内在联系,把握比的意义的本质。

  重点:

  理解比的意义以及比与分数、除法之间的关系。

  难点:

  理解比与分数、除法之间的关系,明确比与比值的区别。

  课件:

  学具。

  1.课件出示教材第48页情境图。

  教师提问:这就是杨利伟展示的两面旗,它们的长都是15cm,宽都是10cm。比较它们长和宽的关系,你能提出怎样的数学问题?

  (1)长比宽多多少厘米?15-10;

  (2)宽比长少多少厘米?15-10;

  (3)长是宽的多少倍?15÷10;

  (4)宽是长的几分之几?10÷15。

  2.师:今天我们将进一步研究这种倍数关系,它除了用除法表示外,还可以用一种新的数学方法——“比”来表示。(板书课题:比的意义)

  自学比的相关知识。

  学生自学教材第49页“做一做”之前的内容,思考问题:比各部分的名称是什么?怎样求一个比的比值?(汇报交流)

  (1)比各部分的名称。

  课件出示:15∶10=15÷10=,让学生说出比的各部分名称。(板书:前项、比号、后项、比值)

  (2)比值的意义。

  师:怎样求一个比的比值呢?(比的前项除以比的后项所得的商就是比值。)

  师:比和比值有什么区别?(引导学生小结:比表示一种关系,而比值是一个数,通常用分数表示,也可以用小数或整数表示。)

  师:同桌讨论一下,比与除法、分数之间有什么联系?比的前项、后项和比值分别相当于分数和除法算式中的什么?比的后项可以是0吗?

  讨论后根据学生交流反馈填写下表:

  联系

  区别

  除法

  被除数÷除数=商

  一种运算

  分子—分母=分数值

  比

  前项:后项=比值

  两个量的关系

  请尝试用字母表示比和除法、分数之间的内在联系。

  板书:a∶b=a÷b=(b≠0)。

  师:根据分数与除法的关系,两个数的比还可以写成分数形式。如15∶10也可以写成,仍读作“15比10”。

  师:足球比赛中的比分3∶0与我们今天学习的比一样吗?(引导学生理解:各类比赛中的比不是我们这节课学习的比,它只是一种计分形式,是比较大小的,是相差关系,不是相除关系。)

  1.教材第49页“做一做”第1题。

  请学生思考这两个比的量是同类量吗?比值表示什么意思?(所花钱数和练习本数是不同类的量,比值表示单价。)

  2.教材第49页“做一做”第2题。

  学生独立完成。反馈时,说说未知的前项或后项是怎样求出的。(引导学生根据比与除法的关系求出未知的前项或后项,归纳一般方法:前项=比值×后项;后项=前项÷比值。)

  3.教材第52页“练习十一”第1题。学生独立完成,反馈交流。

  说说这节课我们学习了什么?你有什么收获?

  教学时利用“神舟”五号升空这一现实素材自然地引出“比”,一方面激发学生的学习兴趣,感受数学与生活的密切联系;另一方面可适时进行爱国主义教育。在比较分析中,学生感受“比”和除法的联系,加深对同类量与不同类量比的意义的理解,对比的概念形成较为清晰的认识。

  在讨论交流中,教师引导学生进一步认识比和除法、分数之间的联系与区别,体会数学知识间的内在联系。

  第2课时比的基本性质

  教材第50~51页的内容。

  1.理解和掌握比的基本性质,初步掌握化简比的方法。

  2.在自主探索的过程中,分析比和除法、分数之间的联系,培养观察、比较、推理、概括、合作、交流等数学能力。

  3.初步渗透转化的'数学思想,并使学生认识知识之间都是存在内在联系的。

  重点:

  理解比的基本性质。

  难点:

  正确应用比的基本性质化简比。

  课件、答题纸、实物投影。

  师:同学们先来回忆一下,关于比已经学习了什么知识?

  预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。

  师:我们知道,比与除法、分数之间存在着极其密切的联系,而除法具有商不变的性质,分数有分数的基本性质。联想这两个性质想一想,在比中有没有类似的性质呢?

  板书:比的基本性质。

  学生纷纷猜想比的基本性质。

  根据学生的猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

  1.教学比的基本性质。

  师:比和除法、分数一样,也具有属于它自己的性质,那么是否和大家猜想的一样呢?这需要我们通过研究证明。接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。

  教师说明合作要求。

  (1)独立完成:写出一个比,并用自己喜欢的方法进行验证。

  (2)小组讨论学习。

  ①每个同学分别向组内同学展示自己的研究成果,并依次交流。(其他同学表明是否赞同此同学的结论。)

  ②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。

  ③选派一个同学代表小组进行发言。

  (3)集体交流。(要求小组发言代表结合具体的例子在展台上进行讲解。)

  (4)全班验证。

  2.完善归纳,概括出比的基本性质。

  10∶15=10÷15==

  15∶9=15÷9=

  16∶20=(16

  ○

  □)∶(20

  ○

  □)

  上题中○内可以怎样填?□内可以填任意数吗?为什么?

  (1)学生发表自己的见解并说明理由,教师完善并板书。

  (2)学生打开书本读一读比的基本性质,教师板书课题:比的基本性质。

  3.深化认识。

  利用比的基本性质做出准确判断:

  (1)8∶10=(8+10)∶(10+10)=18∶20( )

  (2)12∶16=(12÷6)∶(16÷4)=2∶4( )

  (3)0.8∶1=(0.8×10)∶(1×10)=8∶10( )

  (4)比的前项乘3,要使比值不变,比的后项应除以3。

  ( )

  4.比的基本性质的应用。

  (1)引导学生自学最简整数比的相关知识。

  预设:前项、后项互质的整数比称为最简整数比。

  (2)从下列各比中找出最简整数比,并简述理由。

  3∶4 18∶12 19∶10 ∶ 0.75∶2

  (3)化简前项、后项都是整数的比。(课件出示教材第50页例1(1))

  学生独立尝试,化简后交流。

  (除以最大公因数和逐步除以公因数两种方法,重点强调除以最大公因数的方法。)

  (4)化简前项、后项出现分数、小数的比。(课件出示教材第51页例1(2))

  四人小组讨论研究,找到化简的方法。

  预设:含有分数和小数的比都要先化成整数比,再进行化简。有分数的先乘分母的最小公倍数;有小数的先把小数化成整数之后,再进行化简。

  (5)归纳小结:化简时,如果比的前项和后项都是整数,可以同时除以它们的最大公因数;遇到小数时先转化成整数,再进行化简;遇到分数时,可以同时乘分母的最小公倍数。

  5.方法补充,区分化简比和求比值。

  )

  还可以用什么方法化简比?(求比值)化简比和求比值有什么不同?

  预设:化简比的最后结果是一个比,求比值的最后结果是一个数。

  1.把下面各比化成最简单的整数比。(出示教材第51页“做一做”。)

  2.教材第53页“练习十一”第4题。学生口答完成。

  这节课你有什么收获?还有什么疑问?

  比的基本性质这一内容的学习非常适合培养学生的类比推理能力,学生在掌握商不变性质和分数的基本性质的基础上,很自然地就能联想到比的基本性质,这不仅激发了学生的学习兴趣,同时也很好地培养了学生的语言表达能力。基于猜想的学习必定需要来自学生的自主探究进行验证,而合作探究又是一种良好的学习方式,但合作学习不能流于形式。合作学习首先要让学生独立思考,让学生产生自己的想法,然后再进行合作交流,交流过程中不仅培养了学生的推理概括能力,同时也真正内化了来自猜想的“比的基本性质”,从而大大提高了合作学习的实效性。第3课时比的应用

  教材第54页的内容。

  1.能在实例的分析中理解按比分配的实际意义。

  2.初步掌握按比分配的解题方法,运用所学知识解决按比分配的实际问题。

  3.通过贴近学生生活的实例学习,在观察、研讨、交流中让学生感受到数学学习和活动的乐趣。

  重点:理解按比分配的意义,能运用比的意义解决按比分配的实际问题。

  难点:自主探索解决按比分配实际问题的策略,能运用不同的方法多角度解决按比分配的实际问题。

  课件。

  课件出示:一个农场计划把100公顷地平均分成2份,分别播种小麦和玉米。小麦和玉米各播种多少公顷?播种面积的比是多少?(指名学生回答)

  师:这道题是把100公顷平均分成2份,这是一道平均分配的应用题。在生产和生活中,使用平均分配方法的实例很多,但是在工农业生产和日常生活中,还有一种分配方法应用也很广泛,那就是把一个数量按照一定的比来进行分配。比如,配制一种混凝土需要2份水泥、3份沙子和5份石子。这种把一个数量按照一定的比来进行分配的方法通常叫做按比例分配。也就是我们今天要学的比的应用。(板书课题:比的应用)

  1.课件出示教材第54页例2。

  师:题目中要配制什么?(配制500

  mL的稀释液)

  师:是按什么进行配制的?(浓缩液和水的体积按1∶4的比进行配制)

  师:“浓缩液和水的体积比是1∶4”是什么意思?

  生:就是说在500

  mL的稀释液中,浓缩液的体积占1份,水的体积占4份,一共是5份。

  师:浓缩液的体积占稀释液体积的几分之几?水的体积占稀释液体积的几分之几?

  师:你能求出浓缩液和水的体积各是多少毫升吗?

  引导学生小组讨论解法,交流汇报。结合学生回答,板书解法。

  思路一:先把比化成分数,用分数乘法来解答。

  稀释液平均分成的份数:1+4=5(份)

  浓缩液的体积:500×=100(mL)

  水的体积:500×=400(mL)

  思路二:把比看作分得的份数,先求一份数,再求几份数。

  稀释液平均分成的份数:1+4=5(份)

  浓缩液的体积:500÷5×1=100(mL)

  水的体积:500÷5×4=400(mL)

  2.验证所求问题。

  方法一:把求得的浓缩液和水的体积相加,看是不是等于稀释液的体积。

  方法二:把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1∶4。

  3.明确按比例分配的意义。

  在日常生活中,我们常常需要把一个数按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。(板书:按比例分配)

  4.整理解题思路。

  (1)按比例分配的问题可以转化成整数的归一问题,即先用除法求出每份数,再用乘法求出几份数。(板书:整数的归一问题)

  (2)按比例分配的问题也可以转化成分数问题,先把比转化成分数,再用总数×分率。

  1.教材第55页“练习十二”第1、2题。

  第1、2题都是按比例分配的问题,但描述的方式不同,要引导学生善于转换各种信息。

  2.教材第55页“练习十二”第3题。学生独立完成,并组内交流。

  3.教材第56页“练习十二”第11题。

  注意引导学生先求出一个长、一个宽、一个高的长度和,再求解。

  今天这节课我们主要研究了什么?说说你的收获和感受。

  本节课的重点是掌握按比例分配类应用题的结构,分析应用题中的数量关系,难点是比与分数的转化。为了能在教学中化解难点,使学生轻松进入本节课的学习,课一开始我就将“平均分配”与“按比例分配”的不同用事例展示给学生,为例题的教学做好准备。把书上的例2作为尝试题,让学生独立尝试、交流,最后进行小结。这样不但培养了学生独立审题、分析的能力,而且进一步加深对两种方法的理解,让学生初尝成功的乐趣。

人教版数学六年级教案3

  教学目标:

  1、联系生活实际,创设探究情境,使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。

  2、在观察、猜想、尝试练习、交流反馈等活动中,培养学生分析能力,发展学生思维。

  3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆质疑,培养他们的创新能力。

  教学重点:理解题中的单位“1”和问题的关系。

  教学难点:抓住知识关键,正确、灵活判断单位“1”。

  教具准备:多媒体课件

  教学过程:

  一、旧知铺垫(课件出示)

  1、先说下列各算式表示的意义,再口算出得数。

  12×        ×

  2、列式计算。

  (1)20的是多少?    (2)6的是多少?

  3、学生得出:求一个数的几分之几用乘法。

  二、新知探究

  (一)课件出示自学目标

  1、通过学习掌握求一个数的几分之几是多少的应用题的解

  题方法并会分析数量关系。

  2、知道解这类应用题的关键是什么?

  3、知道如何找单位“1”。

  (二)、教学例1

  1、课件出示自学提示

  (1)、正确理解关键句“我国人均耕地面积仅占世界人均耕地面积的”。

  (2)、结合线段图理解题意,找到解题思路。

  (3)、如何来理解单位“1”?(小组讨论,理解这句话是把“我们人均耕地面积”与“世界人均耕地面积”相比较,其中“世界人均耕地面积”是表示单位“1”的.量,知道世界人均耕地面积为2500平方米,求我国人均耕地面积就是求2500的是多少)

  (4)、在分析题意的基础上,学生独立列式、计算。

  2、学生根据提示自学

  全班交流汇报:

  2500× =1000(平方米)

  3、结合计算结果,让学生说说自己的想法,培养学生分析数据的能力,进行国情教育。

  4、巩固练习:“做一做”,让学生画线段图表示题意,说说自己是怎样想的?依据是什么?然后独立解答。

  三、当堂测评

  练习四第2题、第3题。

  学生独立完成,教师巡回指点,照顾差生。

  小组内订正后

  四、课堂总结

  解答“求一个数的几分之几是多少”的应用题的解题步骤是什么?(找出关键句、确定单位“1”,画出线段图帮助理解题意,最后再列式解答)

  设计意图:

  本堂课是解决“求一个数的几分之几是多少”的问题,教学中,我紧扣分数乘分数的意义进行复习,并事先复习如“20的是多少?”的文字题,为解决与此相似的应用题做好准备。

  由于本节课是分数应用题学习的初始,因而教学中,我除了帮助学生分析、理解题意之外,更重要的还在于教给学生分析、解答分数应用题的方法,特别是在如何找单位“1”这个关键点上,更是花了较多的时间,但我认为这是十分必要的。

人教版数学六年级教案4

  教学目标:

  1、通过教学,使学生在理解分数除法意义及掌握分数乘法应用题

  题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。

  2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。

  教学重点:

  弄清单位“1”的量,会分析题中的数量关系。

  教学难点:分析题中的数量关系。

  教具准备:多媒体课件

  教学过程:

  一、旧知铺垫(课件出示)

  小红家买来一袋大米,重40千克,吃了,还剩多少千克?

  1、指定一学生口述题目的条件和问题,其他学生画出线段图。

  2、学生独立解答。

  3、集体订正。提问学生说一说两种方法解题的过程。

  4、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

  二、新知探究

  1、教学补充例题:小红家买来一袋大米,吃了,还剩15千克。买来大米多少千克?

  (1)吃了是什么意思?应该把哪个数量看作单位“1”?

  (2)引导学生理解题意,画出线段图。

  (3)引导学生根据线段图,分析数量关系式:

  买来大米的重量-吃了的.重量=剩下的重量

  (4)指名列出方程。

  解:设买来大米X千克。

  x- x=15

  2、教学例2

  (1)出示例题,理解题意。

  (2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的

  (3)学生试画出线段图。

  (4)根据线段图,结合题中的分率句,列出数量关系式:

  航模小组人数+美术小组比航模小组多的人数=美术小组人数

  (5)根据等量关系式解答问题。

  (6)解:设航模小组有χ人。

  χ+ χ=25

  (1+ )χ=25

  χ=25÷

  χ=20

  答:航模小组有20人。

  三、课堂小结

  1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

  2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)

  四、当堂测评

  练习十第4、12、14题。

  学生独立完成,教师巡回指点,有困难的学生及时请教优秀学生,做到“一帮一、兵强兵”。

  设计意图:

  继续发挥线段图的作用,以方便学生理解,寻求解决问题的方法。

  教学后记

人教版数学六年级教案5

  教学目标:

  1、引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。

  2、通过合作活动培养学生学会与人合作,愿与人交流的习惯。

  3、通过学生自行实施实践方案,培养学生自主学习和发展创新的意识。

  教学重点:

  理解倒数的意义和怎样求倒数。理解倒数的意义,掌握求倒数

  的方法。

  教学难点:掌握求倒数的方法

  教具准备:多媒体课件。

  教学过程:

  一、旧知铺垫(课件出示)

  1、口算:

  (1) ×      ×     6×     ×40

  (2) × × 3× ×80

  2、今天我们一起来研究“倒数”,看看他们有什么秘密?出示课题:倒数的认识

  二、新授

  1、课件出示知识目标:

  (1)什么叫倒数?怎样理解“互为”?

  (2)怎样求一个数的倒数?

  (3)0、1有倒数吗?是什么?

  2、教学倒数的意义。

  (1)学生看书自学,组成研讨小组进行研究,然后向全班汇报。

  (2)学生汇报研究的结果:乘积是1的两个数互为倒数。

  (3)提示学生说清“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数)

  (3)互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)

  3、教学求倒数的方法。

  (1)写出的倒数:求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。

  (2)写出6的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。

  6=

  4、教学特例,深入理解

  (1)1有没有倒数?怎么理解?(因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。)

  (2)0有没有倒数?为什么?(因为0与任何数相乘都不等于1,所以0没有倒数)

  5、同桌互说倒数,教师巡视。

  三、当堂测评

  1、练习六第2题:

  2、辨析练习:练习六第3题“判断题”。

  3、开放性训练。

  3/5×(  )=(  )×4/7=(  )×5=1/3×(  )=1

  四、课堂总结

  你已经知道了关于“倒数”的哪些知识?

  你联想到什么?

  还想知道什么?

  设计意图

  倒数的认识一课,教学内容较为简单,学生通过预习、自学,完全可以自行理解本课的内容。针对本课的特点,教学中我放手给学生,让学生通过自学、讨论理解“倒数”的意义,而在这其中,有一些概念点犹为关键,如“互为”,因此我也适当的加以提问点拨。对于求倒数的`方法,我同样给学生自主的空间,自学例题,按自己的理解、用自己的话概括出求一个数的倒数的方法。但对于“0”“1”的倒数这种特例,我并没有忽视它,而是充分发挥教师“导”的作用,帮助学生加强认识。

人教版数学六年级教案6

  一、教学内容:六年制小学数学第六册(人教版义务教材)第119—121页。

  二、教学目的:

  1.知道面积的意义。

  2.认识常用的三个面积单位的名称,知道它们的实际大小。

  3.会用面积单位测量指定的面积。

  三、教学过程;

  (一)面积的意义

  认识“面”

  师:同学们,你们知道什么是物体的表面吗?

  [板书:表面]比如课本的封面,课桌的桌面,黑板的板面分别指的是什么?[请同学们用手摸一摸自己课本的封面、课桌的桌面,然后老师摸一摸黑板的板面]

  师:刚才,我们摸的这些面都是平的,它们都是物体的表面。下面,再请一位同学到黑板前摸一摸老师画的这两个图形的平面部分。[板书:平面]

  引出平面的“大小”

  师:在我们摸的这些物体的表面和平面当中,谁的面最大?谁的面最小?[板书:大小]

  生:黑板的板面最大,课本的封面最小。

  归纳“面积”

  师:通过刚才的比较,说明日常生活中,我们碰到的物体的表面或见到的图形的平面当中有大,有小,因此,我们把物体表面或围成的平面图形的大小,叫做它们的面积。[板书:面积]

  [集体读:物体表面或围成的平面图形的大小,叫做它们的面积]

  出示:

  师:这三个平面图形当中,哪个围成了一个平面?哪个没有?

  生:(1)和(2)分别围成了一个平面,(3)没有围成。

  师:对。(3)的图形还有一个缺口,没有围成一个封闭的图形,因此,它的平面有多大,没有办法确定。

  (二)面积单位

  面积单位的引入

  师:我们已经知道面积就是指物体的表面或围成的平面图形的大小,那么,我们怎样比较它们的大小,用什么去测量它们的大小呢?下面,我们继续学习。

  1.重叠比较。

  师:在比较面积大小的时候,有的一眼就能判断出来。比如,我们一看就知道课本的封面比课桌的桌面小,黑板的板面比课桌的桌面大。但是有的光凭观察,很难判断。比如:老师手中的两张纸片,谁能说出哪张比较大呢?[学生思考后,说出可用重叠方法比较,得出结论]

  2.利用“小方块”进行间接比较。

  (1)引出“小方块”。

  [先让同学们拿出事先准备好的两张纸]

  比一比它们的大小。[学生们发现用重叠法比较,判断不出谁大谁小]

  师:这两个图形,一个比较长,一个比较宽,即使用重叠的方法比较,也很难判断,怎么办呢?[学生思考后,仍感到无奈,这时教师出示一个小正方形]

  师:我们能否用这个正方形的`小方块,以它为标准,间接地比较出这两张纸片的大小呢?

  (2)实际演示:将学生手中的两张纸片贴在黑板上,(即:)教师用同样大小的小方块往纸片上铺,铺后成:

  师:现在,能看出哪个图形比较大吗?为什么?

  生:正方形图形比较大,因为它上面摆了9个小方块,而长方形上面只摆了8个。

  师:大家说得很好。通过刚才的比较,说明三点:第一,用重叠的方法进行直接比较,也很难得出结论时,我们可以用一个小方块为标准,像黑板上这样间接地比较出两个图形的大小。第二,通过实际测量得出图(1)的面积是8个小方块这么大,图(2)的面积是9个小方块这么大,换句话说:以这样的一个小方块为标准,图(1)的面积是8,图(2)的面积是9。所以,图(2)的面积比较大。大几?[大1]第三,用重叠的方法比较,我们只能看出谁大谁小,还不能知道大多少。利用小方块比大小,比用重叠的方法进了一步。说明用小方块比较面积的大小有着非常重要的作用。

  (3)做一做:教科书第120页第1题。(用数小方格的方法判断哪个图形面积大)

  3.统一标准。

  师:指着: 刚才我们说图(2)的面积比图(1)大的原因,就是因为图(1)的面积是8个小方块这么大,图(2)的面积是9个小方块这么大。[出示]那么这个长方形多大呢?

  生甲:8个小方块这么大。

  生乙:12个小方块这么大。

  生丙:24个小方块这么大。

  ……

  师:录音机里的彬彬和小青跟大家一样,也因为这个问题发生了一场争论。下面,我们来听听他们是怎样争的。

  录音内容:

  彬彬:小青……

  小青:彬彬,什么事呀?

  彬彬:你说老师画的这个长方形的面积有多大呢?

  小青:我说呀,这个长方形的面积是8个小方块那么大。[出示]

  彬彬:我说这个长方形面积是18个小方块那么大。[出示]

  小青:不对,是8个。

  彬彬:不对,是18个。

  动脑筋爷爷:是谁在那儿争呢?

  彬彬、小青:动脑筋爷爷来了,动脑筋爷爷,您说我们谁说得对呢?

  动脑筋爷爷:可以说,你们两个都对。但是为什么同样一个长方形,它的面积一会儿是8个小方块那么大,一会儿是18个小方块那么大,原因是什么呢?

  彬彬:是呀,为什么一会儿是8,一会儿又是18,原因是什么呢?

  动脑筋爷爷:在座的同学们,你们知道原因是什么吗?

  生:因为小方块的大小不一样。

  师:同样一个长方形,测得的结果却不一样,就是因为小方块的大小不一样,也就是标准没有统一。如果我们没有一个统一的标准,那么,在日常生活和生产中就会造成很多矛盾。比如:国家要在黄山造一个大宾馆,需要测量一块地面的大小,如果上海、北京的工程师以及外国专家他们测量地面用的方块大小都不一样,那结果怎样?(不一样)结果不一样,图纸没法画,房子也造不出来,那可就麻烦了。那么,怎样才能使上海的、北京的、外国的专家测量的结果都一样呢?

  生:必须用同样大小的方块去量。

  4.引进面积单位。

  师:说得很好。必须用同样大小的方块作为标准去测量。这样,结果才能一样。才能使一个确定的图形或地面有一个确定的面积。那么,到底用多大的方块作为标准呢?这个标准,不是上海人,不是北京人定的,也不是哪一个国家定的,而是国际上已经给我们规定好的。这种国际上规定的统一大小的方块,我们给它起个名字叫“面积单位”。[板书:面积单位]

  5.认识常用的面积单位。

  师:常用的面积单位有哪几个?请同学们看教科书第119页的下面。[板书:平方厘米这平方分米平方米]

  (1)认识1平方厘米。

  出示:1平方厘米的正方形。请同学们用尺量出它的边长,然后让学生齐读第120页上:边长是1厘米的正方形,面积是1平方厘米。

  让学生拿出学具袋中的6c2的长方形,让他们用1c2的小方块往上铺,实际测量指定图形的大小。

  师:长方形的面积有多大?(6c2)为什么说是6c2?

  生:因为铺了6个1c2的小方块。

  师:也就是说:一个图形中含有几个1c2的小方块,它的面积就是几平方厘米。

  (2)认识1平方分米。

  师:如果我们拿1c2的小方块去测量课桌的桌面有多大,那你们觉得怎样?[让学生说出很麻烦,费时间等]

  生甲:太麻烦。

  生乙:太浪费时间。

  师:怎么办呢?

  学生立即拿出1d2的正方形,告诉老师,可用这个铺。

  出示1d2的小方块,让学生量一量它的边长是几分米。

  再读结语。

  接着让学生用1d2的正方形实际测量课桌面的大小。[在学生数桌面上摆了多少个1d2的正方形时,注意引导用每排的个数乘以排数]

  (3)认识1平方米。

  师:如果想测量我们教室的地面有多大,给你们这三种方块[指1c2,1d2,12三个单位的实际大小的方块]作为标准去量,你选择哪一种?为什么?

  生:用那个最大的去量,因为地面比较大,用那个节省时间。

  (三)巩固练习

  做一做:教科书第121页第2题。

  学生回答后,教师拎出其中的3个作为参照,即1c2与学生的大拇指的指甲面差不多;1d2与老师的手掌面差不多;12与家里的大方桌桌面差不多。

  师:下面,我们再听听录音机里的彬彬和小青让我们干什么。

  录音内容:

  彬彬:小青。

  小青:哎。

  彬彬:咱们出几道题考考同学们好吗?

  小青:好哇,不过怎么考法呢?

  彬彬:是呀,怎么考法呢?哎,有了,每道题你说一遍,我说一遍,说完以后,请同学们选择一个适当的面积单位。选哪个,就拿出相应的正方形。[如果选择平方米,就指一指黑板上出示的12的正方形]同学们,你们准备好了吗?我们开始了。

  边长是1c的正方形,它的面积是1( )。

  我家大方桌的桌面约是1( )。

  课本的封面约是2( )。

  亮亮大拇指的指甲面约是1( )。

  我家房间的地面约是14( )。

  老师的手掌面约是1( )。

  (四)总结

  师:今天这节课我们知道了什么叫面积和常用的三个面积单位的名称以及它们的实际大小,学会了用面积单位实际测量指定的面积,并且知道了要根据所要测量的面积的大小选择相应的面积单位。如果我们想测量我们的祖国有多大,用平方米作单位,那又太小了,因为我们的祖国很大,必须用比平方米大的面积单位。那么,比平方米大的面积单位是什么呢?今后我们还要继续学习。

人教版数学六年级教案7

  教学目标:

  1.使学生学会在具体情境中探索确定位置的方法,懂得能用数对表示物体的位置。

  2.经历探索确定物体位置的方法的过程,让学生在学习的过程中发展空间观念。

  3.使学生感受确定位置的丰富现实情景,体会数学的价值,产生对数学的亲切感。

  教学重点:能用数对表示物体的位置。

  教学难点:能用数对表示物体的'位置,正确区分列和行的顺序。

  教学准备:投影仪、本班学生座位图

  教学过程:

  一、复习旧知,初步感知

  1、教师提问:同学们,你能介绍自己座位所处的位置吗?

  学生介绍位置的方式可能有以下两种:

  (1)用“第几组第几个”描述。

  (2)用在我的“前面”、“后面”、“左面”、“右面”来描述。让学生先说说

  2、我们全班有48名同学,但大部分的同学老师都不认识,如果我要请你们当中的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?

  3、学生各抒己见,讨论出用“第几列第几行”的方法来表述。

  二、新知探究

  1、教学例1(出示本班学生座位图)

  (1)如果老师用第二列第三行来表示-同学的位置,那么你也能用这样的方法来表示自己的位置吗?

  学生对照座位图初步感知,说出自己的位置。个别汇报,集体订正。

  (2)学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)

  (3)教学写法:-同学的位置在第二列第三行,我们可以这样表示:(2,3)。按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)

  2、小结例1:

  (1)确定一个同学的位置,用了几个数据?(2个)

  (2)我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。如果这两个数据的顺序不同,那么表示的位置也就不同。比较(2,3)与(3,2)的不同。

  {在比较中发现不同之处,从而加深学生对数对的更深了解。}

  3、练习:

  (1)教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。

  (2)生活中还有哪里时候需要确定位置,说说它们确定位置的方法。

  (电影院里的座位、地球仪上的经纬度、我国古代围棋等。)

  {拓宽学生的视野,让学生体会数学在生活中的应用。}

  三、当堂测评

  教师课件出示,学生独立完成。小组内评比纠错。

  {做到兵强兵、兵练兵。}

  四、课堂总结

  我们今天学了哪些内容?你觉得自己掌握的情况如何?还有什么不懂的?

  {让学生说出,了解对知识的掌握情况。}

人教版数学六年级教案8

  一、学习目标

  (一)学习内容

  《义务教育教科书数学》(人教版)六年级下册第33—34页的例2和例3。例2是以探索圆锥的体积与和它等底等高的圆柱体积之间的关系为例,让学生在探究过程中获得数学活动经验。例3则是在例2的基础上运用圆锥的体积公式解决实际问题,丰富解决问题的策略,感受数学与生活密不可分的联系。

  (二)核心能力

  在探索圆锥的体积与和它等底等高的圆柱体积之间的关系的过程中,渗透转化思想,发展推理能力。

  (三)学习目标

  1.借助已有的知识经验,通过观察、猜测、实验,探求出圆锥体积的计算公式,并能运用公式正确地解决简单的实际问题。

  2.在圆锥体积计算公式的推导过程中,进一步理解圆锥与圆柱的联系,发展推理能力。

  (四)学习重点

  圆锥体积公式的理解,并能运用公式求圆锥的体积。

  (五)学习难点

  圆锥体积公式的推导

  (六)配套资源

  实施资源:《圆锥的体积》名师课件、若干同样的圆柱形容器、若干与圆柱等底等高和不等底等高的圆锥形容器,沙子和水

  二、教学设计

  (一)课前设计

  1.复习任务

  (1)我们学过哪些立体图形?它们的体积计算公式分别是什么?请你整理出来。

  (2)这些立体图形的体积计算公式是怎么推导的?运用了什么方法?请整理出来。

  设计意图:通过复习物体的体积公式以及圆锥体积的推导,深化转化思想在生活中的应用,也为圆锥体积的推导埋下伏笔。

  (二)课堂设计

  1.情境导入

  (出示沙堆)

  师:你们有办法知道这个沙堆的体积吗?

  学生自由发言,提出各种办法。

  预设:把它放进圆柱形的容器里,测量出圆柱的底面积和高就可以知道等等

  师:能不能像其它立体图形一样,探究出一个公式来求圆锥的体积呢?这节课我们来研究。板书课题

  设计意图:利用情境引入,激发学生求知的欲望,引出求圆锥体积公式的必要性。

  2.问题探究

  (1)观察猜想

  师:你们觉得,圆锥的体积和我们认识的哪种立体图形的体积可能有关?为什么?

  学生自由发言。

  (圆柱,圆柱的底面是圆,圆锥的底面也是圆……)

  师:认真观察,它们之间的体积会有什么关系?(出示圆柱、圆锥的教具)

  学生猜想。

  (2)操作验证

  师:圆锥的体积究竟和圆柱的体积有什么关系?请同学们亲自验证。

  实验用具:教师准备等底等高和不等底等高的各种圆柱、圆锥模具,一些水。

  实验要求:各组根据需要先上台选用实验用具,然后小组成员分工合作,做好实验数据的收集和整理。

  1号圆锥2号圆锥3号圆锥

  次数

  与圆柱是否等底等高

  学生选过实验用具后进行试验,教师巡视,发现问题及时指导,收集有用信息。

  (3)交流汇报

  ①汇报实验结果

  各组汇报实验结果。

  ②分析数据

  师:观察全班实验的数据,你能发现什么?

  (大部分实验的结果是能装下三个圆锥的水,也有两次多或四次等)

  师:什么情况下,圆柱刚好能装下三个圆锥的水?

  各组互相观察各自的圆柱和圆锥,发现只有在等底等高的情况下,圆柱的体积是与它等底等高圆锥体积的3倍。也可以说成圆锥的体积是和它等底等高的圆柱的体积的三分之一。

  师:是不是所有符合等底等高条件的圆柱、圆锥,它们的体积之间都具有这种关系呢?

  老师用标准教具装沙土再演示一次,加以验证。

  ③归纳小结

  师:谁能来总结一下,通过实验我们得到的结果是什么?

  (4)公式推导

  师:你能把上面的试验结果用式子表示吗?(学生尝试)

  老师结合学生的回答板书:

  圆锥的体积公式及字母公式:

  圆锥的体积=×圆柱的体积

  =×底面积×高

  S=sh

  师:在探究圆锥体积公式的过程中,你认为哪个条件最重要?(等底等高)

  进一步强调等底等高的圆锥和圆柱才存在这种关系。

  设计意图:通过观察、猜测,让学生感知圆锥的体积与圆柱体积之间存在着一定的关系,渗透转化的思想。再通过对实验数据的分析,进一步感知圆锥的体积是和它等底等高的圆柱的体积的三分之一,在这一过程中,发展学生的推理能力。

  考查目标1、2

  (5)实践应用

  师:还记得这堆沙子吗?如果给你了它的高和底面的直径,你能算出这堆沙的体积大约是多少?如果每立方米沙子重1.5t,这堆沙子大约重多少吨?(得数保留两位小数。)

  师:要求沙堆的体积需要已知哪些条件?

  (由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)

  学生试做后交流汇报。

  已知圆锥的底面直径和高,可以直接利用公式

  V=π()h来求圆锥的体积。

  师:在计算过程中我们要注意什么?为什么?

  注意要乘以,因为通过实验,知道圆锥的体积等于与它等底等高的圆柱体积的。

  3.巩固练习

  (1)填空。

  ①圆柱的体积是12m,与它等底等高的圆锥的.体积是()m。

  ②圆锥的体积是2.5m,与它等底等高的圆柱的体积是()m。

  ③圆锥的底面积是3.1m2,高是9m,体积是()m。

  (2)判断,并说明理由。

  ①圆锥的体积等于圆柱体积的。()

  ②圆锥的体积等于和它等底等高的圆柱体积的3倍。()

  (3)课本第34页的做一做。

  ①一个圆锥形的零件,底面积是19cm2,高是12cm,这个零件的体积是多少?

  ②一个用钢铸造成的圆锥形铅锤,底面直径是4cm,高是5cm。每立方厘米钢大约重7.8g。这个铅锤重多少克?(得数保留整数)

  4.课堂总结

  师:这节课你收获了什么?和大家分享一下吧!

  圆柱的体积是与它等底等高圆锥体积的3倍;圆锥的体积是与它等底等高圆柱体积的三分之一;V圆锥=V圆柱=Sh。

  (三)课时作业

  1.王师傅做一件冰雕作品,要将一块棱长30厘米的正方体冰块雕成一个最大的圆锥,雕成的圆锥体积是多少立方厘米?

  答案:30÷2=15(厘米)

  ×3.14×152×30

  =235.5×30

  =7065(立方厘米)

  答:雕成的圆锥的体积是7065立方厘米。

  解析:这是一道考察学生空间思维能力的题,要在正方体里面雕一个最大的圆锥,必须满足圆锥的底面直径等于正方体的棱长,圆锥的高也要等于正方体的棱长,在实际中感受生活和数学的紧密联系,同时为下面在长方体里放一个最大的圆锥做了铺垫。考查目标1、2

  2.看看我们的教室是什么体?(长方体)

  要在我们的教室里放一个尽可能大的圆锥体,想一想,可以怎样放?怎样放体积最大?(测量教室长12m,宽6m,高4m.先计算,再比较怎样放体积最大的圆锥体。)

  解析:这是一道开放题,有一定的难度,在考察学生对圆锥体积理解的基础上,又综合了长方体的知识,对学生的空间想象能力要求比较高。

  ①以长宽所在的面为底面做最大的圆锥,此时圆锥的高为4m,底面圆的直径为6m.

  ②以宽高所在的面为底面做最大的圆锥,此时圆锥的高为12m,底面圆的直径为4m.

  ③以长高所在的面为底面做最大的圆锥,此时圆锥的高为6m,底面圆的直径为4m.

  以上三种情况计算并加以比较,得出结论。考查目标1、2

人教版数学六年级教案9

  教学目标:

  1、在运动会的情境中,通过观察比较,了解同样多多少的含义,认识=、<和>表示的意思及用法,会比较以内数的大小。

  2、在比较过程中渗透一一对应的思想,初步用一一对应的方法进行比较。

  3、在探索解决实际问题的方法中,发展初步的思维能力和语言表达能力,发展解决问题的策略。

  教学准备:运动会的.挂图、各种小动物的头像

  教学过程:

  一、情境导入

  谈话:森林运动会开始啦,你们想不想去看看?

  1、出示情景图

  提问:瞧,运动员登场了,同学们看一看有几支代表队?

  2、学生汇报

  3、在仔细看一看,每个队有几名队员?

  生答

  二、设计比赛方案

  谈话:现在四队队员要进行拔河比赛,可是比赛方案还没有呢,请你来当小裁判,你想让哪两队在一起比赛?

  1、分组讨论比赛方案

  2、小组汇报,教师板书

  三、认识

  提问:刚小朋友想出了好多种比赛方案,你们觉得哪个队比赛最能体现拔河比赛的公平?

  学生回答。

  1、问为什么,师贴图板书。

  2、我们来把小兔和小猴手拉手,看看它们是不是都有好朋友?

  一边说一边连线。

  3、你发现了什么?生答,所以它们一样多。

  4、在4与4之间写=,它的名字叫等号,跟老师来读。

人教版数学六年级教案10

  教学目标 1、通过分数应用题的复习,帮助学生熟练掌握分数应用题的数量关系和解题思路;

  2、引导学生运用转化的思想,寻找出简便的解法,并理出解题思路;

  3、培养学生分析和解决实际问题的能力,发展学生的思维;

  4、让学生了解到生活与数学的关系,体会到数学的价值,培养对数学的学习兴趣。

  教学

  关键 培养学生分析和解决实际问题的能力

  教学

  重点 复习分数乘除法应用题,掌握解题方法。

  教学

  难点 找准单位“1”

  教具

  准备 多媒体课件

  教学步骤 教学过程 教学课件演示 教学意图

  一、基础训练导入。

  师:今天我们要对分数应用题做一下全面的复习。大家想一下我们解答分数应用题最关键的是什么?

  专项训练:

  课件:练习:已知根据条件,说出把哪个数量看作单位“1”,并说出有关的数量关系式。

  在每道题后追问:从信息中你还知道了什么? 指名回答,并作评价:说一说你们找单位1有什么好的方法吗?

  我们以信息中的第6题为例,谁来说说,应该怎样画线段图呢?根据线段图教师问:线段图画好了,如果要求用去和还剩的吨数应该怎样做?

  常规性基本训练,复习找单位“1” 训练:为新知识做铺垫。

  二、根据看线段图列式

  师:谁来说说,根据线段图应该这么列式呢? 出示线段图 【教学课件演示】

  注重线段图的应用,帮助学生在理解的基础上写出乘法数量关系式。同时,向学生渗透数形结合的思想。

  三、基础练习

  基础练习只列式不计算

  师:用我们刚才复习的方法做。(学生做完后教师指名回答)你是怎么想的?把谁看作单位“1”?单位“1”的量是已知的还是未知的?用什么方法计算?

  归纳总结:请同学们把这4道题分分类,并要说出分类的依据是什么?自己不能完成的可以进行小组讨论,有能力的就独立完成。学生进行思考;在学生回答时要引导学生说出分类的依据是什么,这类题目应当怎样解答。

  尝试练习,然后提问:这道题你是怎样想的?分数和比联系在一起会出现许多的新问题。出示:文艺书和科技书本数的比是1∶4。谁来说说可以得出哪些信息?

  【教学课件演示】

  培养学生审题要仔细,弄清数量关系。使学生通过自主探索,掌握分数应用题分类的依据是。

  四、对比练习

  1)读题,分别找到两道题的单位“1”,并说说这两道题有何不同?2)根据题意分析数量关系,然后列式计算,全班讲评。

  通过两题对比,突出较复杂应用题的难点,帮助学产生加强审题意识,提高分析能力。

  五、巩固练习

  练习八的3-5题

  师:下面请同学们独立进行计算,完成练习八P118第3题和第4题。

  (1)、读题,分别找到两道题的单位“1”,并说说这两道题有何不同?

  (2)、根据题意分析数量关系,然后列式计算,全班讲评。

  (3)、出示P118页5题。

  提问:把谁看作单位“1”?

  结合讲解,进一步强调在解答分数乘法应用题时,一定要找准单位“1”。因为分数乘法应用题是根据分数乘法的意义计算的,求哪个数量的几分之几,就要把那个数量作为单位“1”。在解答两步计算的分数应用题时,更要注意每一步是把什么数量看作单位“1”,每一步中的单位“1”可能是不同的。

  【教学课件演示】

  加强解题思维的训练,沟通新旧知识,沟通解决问题的`方法。

  六、强化练习

  1、完成练习二十七的第7题:

  3个同学跳绳。小明跳了120个,小强跳的是小明跳的5/8,小亮跳的是小强的2/3,小亮跳了多少个?

  渗透健康教育:

  跳绳运动,是对付肥胖、预防血脂异常、高血压最切实可行的方式,也是一个很好的锻炼耐力的有氧代谢运动。同学们要积极进行跳绳运动,

  学生独立进行思考计算,请个别同学讲解回答。

  2、练习二十七的第8题,练习二十七的第9题。

  (1)一个县去年绿色蔬菜总产量720万千克,是今年绿色蔬菜总产量的9/10。今年全县绿色蔬菜总产量是多少万千克?

  (2)一个县去年绿色蔬菜总产量720万千克,比今年少了1/10,今年全县绿色蔬菜总产量是多少万千克?

  渗透健康教育:

  绿色蔬菜含维生素U较多是抗癌、防癌的复合剂,对胃溃疡高血压、动脉硬化、视网膜出血、紫癜以及出血性肾炎等疾病有治疗效果多吃的蔬菜会对胃肠功能的恢复有所帮助。

  【教学课件演示】

  强化数量关系的分析,强化方程的解法,体现解法的多样性、解法的最优化,提高学生自主意识和优化意识。

  通过强化练习提升学习水平,让各种类型的学生都有所提高。

  七、课堂总结

  今天你都学会了什么?有什么收获?今天我们学习了应用题,解答这类应用题要先找准单位“1”和相等的数量关系,再确定算法,然后列式计算,先找单位1,再看知不知,已知用乘法,未知用除法,比1多就加,比1少就减”。

  【教学课件演示】 帮助学生抓住解题的重点,已知单位“1”的用什么方法解,不知道单位“1”的又用什么方法解。帮助学生进行数学知识网络的建构。

  八、作业:

  练习二十七的第8、10题 【教学课件演示】

  板书:

  分数乘除法应用题复习

  根据条件分析单位“1”和找准对应分率。

  用算术方法解:已知单位“1”用乘法,不知单位“1“用除法。

  用方程解:单位“1”不知道或者题目的条件中含有“比另一个数多(或少)几分之几”。

人教版数学六年级教案11

  教学内容:

  教材第59页及相关题目。

  教学目标:

  1、在前面所学轴对称图形的基础上,进一步认识圆的轴对称特性。

  2、培养学生的动手操作能力,加深对所学平面图形的对称轴的认识。

  3、培养学生观察周围事物的兴趣,提高观察能力。

  教学重点:

  认识圆的对称轴。

  教学难点:

  用圆设计图案的方法。

  教学准备:

  多媒体课件、圆规、直尺等。

  教学过程:

  学生活动(二次备课)

  一、复习导入

  1、课件出示轴对称的物体,想一想:这些图形有什么特点?让学生观察图形,找出这些图形的特点。

  师生共同回顾总结:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的直线叫做这个图形的对称轴。

  2、你能画出下面两个圆的`对称轴吗?能画多少条?学生尝试画出圆的对称轴,并观察。你发现了什么?

  学生汇报后师生共同总结:圆有无数条对称轴,每一条过直径所在的直线都是它的对称轴。

  3、导入:我们可以利用圆的这一特点去设计很多漂亮图案来装点、美化我们的生活。本节课我们继续研究有关圆的知识。

  二、预习反馈点名让学生汇报预习情况。

  (重点让学生说说通过预习本节课要学习的内容,学到了哪些知识,还有哪些不明白的地方,有什么问题)

  三、探索新知

  1、设计美丽图案——花瓣。

  (1)课件出示教材第59页最上方的图片。观察思考:4个花瓣由几个半圆组成,这几个半圆的圆心分别在哪里?半径怎么找?

  (2)想一想,自己尝试画一画。可参考课本第59页的步骤。

  (3)交流画法。在讲述过程中要重点说出:圆心的位置在哪里,是如何找到的?半径是如何找到的?学生讲述,教师在黑板上画。

  小结:画图时首先要找出图中包含的各个圆或半圆,找到它们的圆心、半径。

  2、设计美丽的图案——风车图。

  (1)观察图案,想一想如果画这个图案,应按怎样的步骤。

  (2)在小组内交流后动手完成。展示自己画出的图案,并说一说画图步骤:

  ①先画一个圆,在圆内画两条互相垂直的直径。

  ②分别以这4个半径的中点为圆心,以大圆半径的一半为半径向同一方向画半圆。

  ③把所画半圆涂上颜色。

  3、设计美丽的图案——太极图。

  指名说一说画太极图的步骤:

  (1)画一个圆,在圆内画一条直径。

  (2)分别以组成这条直径的两个半径的中点为圆心,以大圆半径的一半为半径,分别向上、下两个方向画半圆。把大圆分成上、下两部分。

  (3)把圆的一半涂上颜色,如图所示。

  四、巩固练习

  1、完成教材练习十三第6题。

  2、完成教材练习十三第8题。

  3、完成教材练习十三第9题。

  五、拓展提升

  观察图案,说一说下面两个图案的画法。

  六、课堂总结

  让学生说一说这节课的收获。

  七、作业布置

  教材练习十三第7题和第10题的第1、4个图案。

  画一画,看一看,想一想。教师根据学生预习的情况,有侧重点地调整教学方案。在小组内交流后再汇报。观察图案,找到各个圆、半圆的圆心和半径。观察图案,想一想,说一说,画一画首先要对图案进行“分解”,知道每一部分是怎么来的。难度较大,可在课下完成。

  教学反思

  成功之处:本节课学生通过观察、操作、比较、思考、交流、讨论等一系列活动,主动获取知识,并且体会到探索之趣,经历成功之乐,培养了学生的学习兴趣,发展了学生的能力。不足之处:学生的创新能力没有体现。教学建议:教学时,在学生掌握了基本方法后,让学生用自己的思维方式自由开放地去创造,以张扬他们的个性,培养他们的动手操作能力和创新能力。

人教版数学六年级教案12

  教学目标:

  1.使学生进一步理解比例的意义,懂得比例各部分名称。

  2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

  3.能运用比例的基本性质判断两个比能否组成比例。

  教学重点:

  比例的基本质性。

  教学难点:

  发现并概括出比例的基本质性。

  教具准备:

  多媒体课件

  教学过程:

  一、旧知铺垫

  1.什么叫做比例?

  2.应用比例的意义,判断下面的比能否组成比例。

  0.5:0.25和0.2:0.4

  0.5 :0.2和5:2

  1/2:1/3 和6 : 4

  0.2:0.8和1:4

  二、探索新知

  1.比例各部分名称。

  (1)教师说明组成比例的四个数的名称。

  板书

  组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

  例如:2.4:1.6 = 60:40

  内项:1.6 6o

  外项:2.4 40

  (2)学生认一认,说一说比例中的外项和内项。让学生再写出几个比例。

  如:2.4 :1.6 = 60:40

  外 内 内 外

  项 项 项 项

  2.比例的基本性质。

  你能发现比例的外项和内项有什么关系吗?

  (1) 学生独立探索其中的规律。

  (2) 与同学交流你的发现。

  (3) 汇报你的发现,全班交流。(师作适当的补充)

  在比例里,两个内项的积等于两个外项的积。

  板书

  两个外项的积是2.440=96

  两个内项的积是1.660=96

  外项的'积等于内项的积。

  (4) 举例说明,检验发现。

  0.6 :0.5=1.2: 1

  两个外项的积是 0.61 =0.6

  两个内项的积是0.51.2=0.6

  外项的积等于内项的积。

  如果把比例改成分数形式呢?

  如:2.4/1.6 = 60/40

  3.440=1.660

  等号两边的分子和分母分别交叉相乘,所得的积相等。

  (5) 学生归纳。

  在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。

  4.填一填。

  (1)1/2:1/5 =1/4:1/10

  ( )( )=( )( )

  (2)0.8:1.2=4:6

  ( )( )=( )( )

  (3)45=210

  4:( )=( ):( )

  5.做一做。

  完成课本中的做一做。

  6.课堂小结

  (1) 说一说比例的基本性质。

  (2) 你可以用什么方法来判断两个比能否组成比例(引导学生总结说出两种方法,重点让学生理解掌握比例的基本性质,到此,学生要学会用两种方法判断两个比能否组成比例;1.比值是否相等;2.内项之积是否等于内项之积。)

  三、巩固练习

  完成课文练习六第4~6题。

  补充习题

  一题多变化,动脑解决它

  (1)在比例里,两个内项的积是18,

  其中一个外项是2,另一个外项是()。

  (2)如果5a=3b,那么, = ,

  (3)a︰8=9︰b,那么,ab=( )

  教学反思:

  比例的各部分名称通过学生自学,老师提问,完成的较好。让学生通过计算内项之积和外项之积发现比例的基本性质。然后大量的练习巩固新知。

人教版数学六年级教案13

  教学目标:

  1、使学生掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法的两步应用题。

  2、发展学生思维,侧重培养学生分析问题的能力。

  教学重点:理解数量关系。

  教学难点:根据多几分之几或少几分之几找出所求量是多少。

  教具准备:多媒体课件。

  教学过程:

  一、旧知铺垫(课件出示)

  1、口答:把什么看作单位“1”的量,谁是几分之几相对应的量?

  (1)一块布做衣服用去。 (2)用去一部分钱后,还剩下。

  (3)一条路,已修了。 (4)水结成冰,体积膨胀。

  (5)甲数比乙数少。

  2、口头列式:

  (1)32的是多少? (2)120页的是多少?

  (3)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后,降低了,降低了多少分贝?

  (4)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后只剩下原来的,人现在听到的声音是多少分贝?

  3、你能把口头列式计算中的第(3)(4)题合并成一道题吗?

  4、根据学生回答,出示例4,并指出:这就是我们今天要学习的“稍复杂的分数乘法应用题”。

  二、新知探究

  (一)教学例2

  1、课件出示自学提纲:

  1)画出线段图,分析题意,寻找解题方法。

  2)小组间说出图中各部分表示什么?哪些是已知的,哪些是要求的,哪一个是表示单位“1”的量?让后把线段图表示完整。

  3)四人小组讨论,根据线段图提出不同解决办法,并列式计算。

  2、学生汇报:

  解法一:80-80× =80-10=70(分贝)

  解法二:80×(1- )=80× =70(分贝)

  3、学生讨论两种解法的不同:两种方法都是从整体与部分的关系入手。第一种思路是从

  总量里减去一个部分量;第二种方法是求出部分量与总量的比较关系,再运用求一个数的.

  几份之几是多少的方法求出这个部分量。

  4、巩固练习:P20“做一做”

  (二)教学例3

  1、读题理解题意后,提出“婴儿每分钟心跳的次数比青少年多”表示什么意思?(组织学生讨论,说说自己的理解)

  2、引导学生将句子转化为“婴儿每分钟比青少年多跳的次数是青少年每分钟心跳次数的”。着重让学生说说谁与谁比,把谁看作单位“1”。

  3、出示线段图,学生讨论交流,结合例2的解题方法,学生独立列式计算后全班交流两种解题方法。

  解法一:75+75× =75+60=135(次)

  解法二:75×(1+ )=75× =135(次)

  4、巩固练习:P21“做一做”(列式后让学生说说算式各部分表示什么)

  三、当堂测评

  练习五第2、3、4、5题。

  1、学生依据例题引导的解题方法,引导学生抓住题目中关键句子分析,找到谁与谁比,

  谁是表示单位“1”的量。独立完成。教师巡回指点,照顾差生。

  2、小组间解决疑难,全班汇报,教师讲评。

  四、谈收获、找疑难

  这节课你有什么收获?还有什么不懂的吗?

  设计意图:

  例2和例3都是在理解和掌握了求一个数的几分之几是多少的问题的思路和方法的基础上,学习解决稍复杂的求一个数的几分之几是多少的问题。

  教学中,我依然依据教学例1时教给学生的解答步骤进行分析解答,找出单位“1”,并画出线段图帮助理解。教学中,我引导学生紧扣线段图,直观地理解题意,并引导学生从数量和分率两方面入手,培养学生思维的多样性。但本堂课,老师讲解的部分似乎多了一些,留给学生讨论、练习的时间稍为稀薄。

人教版数学六年级教案14

  第1课时

  圆柱的认识

  教学内容

  人教版六年级下册教材第17页圆柱的认识、第18页例1和第19页例2。

  内容简析

  圆柱的认识:通过观察物体的形状,初步认识圆柱。

  例1:通过观察圆柱,认识圆柱的侧面、底面和高。

  例2:通过观察图形,掌握圆柱的侧面展开图。

  教学目标

  1.认识圆柱的侧面、底面和高;认识圆柱的侧面展开图,理解圆柱侧面展开图与圆柱的关系。

  2.通过观察、发现、交流,让学生自主探究,掌握学习方法。

  3.培养学生观察、比较和判断的能力,以及发现问题、分析问题和解决问题的能力。

  教学重难点

  重点:使学生掌握圆柱的基本特征,理解圆柱侧面展开图与圆柱的关系。

  难点:圆柱侧面展开图与圆柱的关系,建立圆柱的空间观念。

  教法与学法

  1.在教法上,应加强直观演示和操作,利用多媒体课件从实物中抽象出圆柱的图形,帮助学生建立圆柱的表象,再让学生通过观察和操作,发现并总结出圆柱的特征。

  2.在学法上,学生把观察和动手操作相结合,通过摸一摸、量一量、画一画等实践操作活动认识圆柱的特征。本节课也应以学生自主学习为主,加强小组合作与交流。

  承前启后链

  教学过程

  一、情景创设,导入课题

  实物展示法:

  教师拿出一个做好的圆柱模型展示给学生,让学生摸一摸、看一看,初步感知圆柱;紧接着让学生观察这个圆柱的特征,观察圆柱的组成。(学生观察并独立思考)

  学生1:圆柱由三部分组成:两个圆和一个曲面。

  学生2:两个圆的面积相等。

  学生3:……

  教师表扬并鼓励学生的回答。【品析:用观察实物的方式导入,让学生看到了真实的物体,使学生对圆柱的印象更加深刻,同时用动作摸一摸更能吸引学生的学习兴趣。】

  课件展示法:

  1.课件出示“旋转门”的画面,引导联想:你看到了什么?想到了什么?(圆柱的形成)

  我看到了旋转门,想到了它转起来会形成一个圆柱。

  2.课件出示:比萨斜塔、客家围屋、立柱、蜡烛、水杯等。课件抽出圆柱的几何模型。

  今天我们一起来研究圆柱。(板书课题)【品析:课件展示的效果是使图形更加形象具体,学生一目了然,对于图形的认识和理解更加准确和深刻,有助于学生对于圆柱的学习和研究。】

  动手操作法:

  让学生拿出所带的.硬纸板、直尺、剪刀、圆规等学具,小组合作,教师引导动手制作圆柱的模型。

  小组展示制作成果,教师给予评价。【品析:亲自动手操作制作圆柱模型不仅使学生更好地认识圆柱,而且让学生有一种喜悦的成就感。同时,对下面观察总结圆柱的组成和特征打下坚实的基础。】

  二、师生合作,探究新知

  ◎教学例1

  (1)整体感知圆柱

  ①谈谈圆柱,大家知道什么是圆柱吗?请同学说说你理解的圆柱。

  ②找找圆柱,请同学找出生活中圆柱形状的物体。

  引导学生阅读观察教材第17页几个圆柱物体的图形,认识圆柱。

  (2)教学例1:

  出示教材第18页例1:观察一个圆柱形的物体,看一看它是由哪几个部分组成的,有什么特征。

  ①认识圆柱的面。

  师:请同学摸摸自己手中圆柱的表面,说说你发现了什么。

  师:指导看书,再次观察例1中的图形,引导归纳。(上、下两个面叫作底面,它们是完全相同的两个圆;圆柱的曲面叫侧面。)

  ②认识圆柱的高

  引导学生观察例1中的圆柱,根据图形上的提示认识圆柱的高,再根据例1中的高找到自己手中圆柱的高。结合教材回答什么叫圆柱的高。(板书:圆柱两个底面之间的距离叫作高)

  讨论交流:圆柱的高的特点。

  归纳小结并板书:圆柱的高有无数条,高的长度都相等。

  总结:圆柱是由3个面围成的。圆柱的上、下两个面叫作底面。圆柱周围的面(上、下底面除外)叫作侧面。圆柱的两个底面之间的距离叫作高。

  【品析:此教学环节先运用提问交流的方式引出认识圆柱,再联系生活实物模型,通过让学生动手操作观察自己所制作的圆柱模型来认识圆柱的组成和特征,使学生记忆更加深刻。】

  ◎教学例2:圆柱的侧面展开

  (1)动手操作:请同学分小组拿出有商标纸的圆柱形实物,把商标纸剪开,再打开,观察商标纸的形状。

  反馈后讨论:展开后得到长方形和正方形的是怎样剪的?展开后得到平行四边形的是怎样剪的?

  (2)操作探究:展开的长方形的长和宽与圆柱的关系。

  师生一起把展开的长方形还原成圆柱的侧面,再展开,在重复操作中观察。

  归纳:这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。

  (3)延伸发现:展开的平行四边形的底和高及正方形的边长与圆柱的关系。

  (4)引导学生自主阅读并观察教材第19页例2。

  总结:长方形的长就是圆柱底面的周长,宽就是圆柱的高。

  【品析:此环节在探索学习的过程中,教师为学生创设动手实践的机会,给学生足够的时间进行操作与思考,让学生获得丰富的活动体验,让学生动手操作推导出圆柱侧面展开后是一个长方形,长方形的长等于底面周长,宽等于圆柱的高。通过这样的活动体验,让学生经历学习数学的过程。】

  三、反馈质疑,学有所得

  在认识了圆柱,学习完例1、例2的基础上,让学生及时消化吸收,教师提出质疑,师生共同系统整理。

  质疑一:圆柱是由几部分组成的?圆柱有什么特征?

  师生共同总结:圆柱是由3个面围成的。圆柱的上、下两个面叫作底面。圆柱周围的面(上、下底面除外)叫作侧面。圆柱的两个底面之间的距离叫作高。

  质疑二:圆柱的侧面展开后是什么形状?长方形的长、宽与圆柱有什么关系?

  师生共同总结:圆柱侧面展开后得到一个长方形。长方形的长就是圆柱底面的周长,宽就是圆柱的高。

  四、课末小结,融会贯通

  同学们,今天我们认识了圆柱,学习了圆柱的基本特征和圆柱的侧面展开图,你能说说你的收获吗?找两个学生畅谈本课时的收获,教师对其进行补充完成课堂的小结。

  师生共同总结:

  1.圆柱的组成及特点:圆柱是由3个面组成的。圆柱的上、下两个面叫作底面;圆柱周围的面(上、下面除外)叫作侧面;圆柱的两个底面之间的距离叫作高。圆柱的底面都是圆,并且大小一样。圆柱的侧面是一个曲面。

  2. 圆柱的侧面展开图:圆柱的侧面沿高展开是一个长方形,长方形的长等于圆柱底面的周长,宽等于圆柱的高。衔接下一节课的学习内容,给大家留一个思考的话题:

  什么叫作圆柱的表面积?包括哪几个面?

  五、教海拾遗,反思提升

  回味课堂,发现亮点之处:两次质疑的讨论使学生的学习进入了二次消化吸收的过程,这次内化把圆柱的基本特征和圆柱的侧面展开图的有关知识真正掌握了。

  反思过程,有待改进之处:在教学中,应多给予学生动手实践的机会,给学生足够的时间进行操作和思考的同时,教师应进行相应的提问,这样学生学习的印象才能更深刻,学习的知识才会更扎实。

人教版数学六年级教案15

  教学目标:

  1、使学生理解圆周长和圆周率的意义,理解和掌握圆周长的计算公式,并能运用公式正确计算圆的周长和解决简单的实际问题。

  2、通过引导学生参与知识的探求过程,培养学生的动手操作能力、创新意识和合作能力,激发学生学习的积极性和自信心。

  3、通过教学,对学生进行爱国主义教育和辩证唯物主义观点的启蒙教育。

  教学重难点:

  圆周率意义的理解和圆周长公式的推导。

  教学设想:

  新课程从促进学生学习方式的转变着眼,提出了参与、探究、搜集、处理、获取、分析、解决、交流与合作等一系列关键词。这些在本节课都有不同程度的体现。其中,参与是一切的前提和基础,而只有当参与成了学生主动的行为时,参与才是有价值的、有意义的。因此要怎样调动学生参与的积极性,吸引他们参与进来就成了基础的基础。这里,老师能善于打破学生思维的平衡状态,使他们产生新的不平衡,从而不断吸引学生参与到新知的探究中来。圆的周长是一条曲线,该如何测量?的问题使学生思维产生最初的不平衡,当学生通过化曲为直的两种方法的局限性,从而打破学生刚刚建立的平衡,进一步吸引学生探究更加简便的求圆周长的.方法。

  接着,就是要让学生参与什么,怎样参与的问题了。在引导学生探究圆周长与直径的关系时,学生从猜测、分组测量计算到根据新获取的数据寻找共性的东西,体验到知识的形成过程,发现了知识新成的道。在小组活动前,老师鼓励小组成员间分工合作,活动中教师参与其间,关注学生合作的情况。实验后的广泛交流达到了资源共享的目的,使接下来得到的结合更具可信度,也使学生感受到合作交流的必要性。这种以学生为主体,以教师为主导,在学生兴趣点上激疑、质疑,无疑能鼓舞学生的探知、求知精神,使学生真正理解、消化、吸收本课重点内容,不仅学到知识,而且学会学习。]

  教学具准备:

  多媒体课件、1元硬币、直尺、卷尺、系线的小球、计算器、实验报告单。

  教学过程:

  一、创设情境,提出问题

  1、创设情境。

  这节课,老师要和同学一起探讨一个有趣的数学问题。

  媒体显示:唐老鸭与米老鼠在草地上跑步,唐老鸭沿着正方形路线跑,米老鼠沿着圆形路线跑。

  2、迁移类推。

  引导学生认真观察唐老鸭、米老鼠所跑的跑线,讨论、回答问题。

  (1)要求唐老鸭所跑的路程实际就是求什么?

  (2)什么叫正方形的周长?怎样计算正方形的周长?(突出正方形的周长与它的边长有关系)

  (3)要求米老鼠所跑的路程实际就是求什么?(板书:圆的周长)

  3、提出问题。

  看到这个课题,你想提些什么问题。学生纷纷发言提出自己想探究的问题。

  梳理筛选形成学习目标:①什么叫做圆的周长?②怎样测量圆的周长?③圆的周长与什么有关系,有什么关系?④圆的周长怎样计算?⑤圆的周长计算有什么用处?

  [设想:通过创设情境,引发学生参与形成学习目标,既培养了学生的问题意识,又为学生创造了自主学习的氛围,指明了探究方向,避免盲目性。]

  二、自主参与,探究新知。

  1、实际感知圆的周长。

  让学生拿出各自圆片学具,边摸边说圆的周长;同桌之间相互边指边说。

  2、明确圆周长的意义。

  引导学生解决第一个问题,概括什么叫做圆的周长。(媒体显示一个圆,并闪动圆的周长)

  (1)圆的周长是一条什么线?

  (2)这条曲线的长就是什么的长?

  (3)什么叫做圆的周长?

  学生讨论互补,概括出围成圆的曲线的长叫做圆的周长(显示字幕)

  [设想:让学生动手摸一摸圆的周长,初步感知周长是一周的长度,再动口说一说培养学生把思维过程转化为外部语言更增强对圆周长的感性认识。在学生对圆周长有了较强的感性认识后,体验及形象理解圆周长的意义。]