现在位置:范文先生网>教案大全>数学教案>七年级数学教案>七年级数学下册教案

七年级数学下册教案

时间:2024-05-18 09:24:53 志升 七年级数学教案 我要投稿

七年级数学下册教案(精选15篇)

  作为一位杰出的教职工,总不可避免地需要编写教案,教案有助于顺利而有效地开展教学活动。教案应该怎么写才好呢?以下是小编收集整理的七年级数学下册教案,欢迎大家分享。

七年级数学下册教案(精选15篇)

  七年级数学下册教案 1

  【教材分析】

  这部分内容是在学生学习了比例的意义基础上进行教学的,是对比例的意义的深化和发展,是后面学习解比例知识的基础。它起着承前启后的作用,是小学阶段学习比例初步知识的一项重要内容。

  【教学目标】

  1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。

  2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。

  3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。

  【教学重点】

  探索并掌握比例的基本性质。

  【教学难点】

  根据乘法等式写出正确的比例。

  【设计理念】

  数学课程标准指出:数学课堂教学要从学生已有的知识经验出发,创设有助于学生自主学习、合作交流的.情境,让学生经历观察、操作、归纳、类比、猜想、反思等数学活动,获得基本的数学知识与技能,进一步激发学生的兴趣,发展学生的思维能力。本节课的教学紧紧围绕这一理念,先让学生学习比例的各部分名称,再探究比例的基本性质,最后通过简炼的分层练习,深化比例的基本性质,体验比例基本性质的应用价值,渗透假设、验证、优化等解决问题的策略和方法,感受“一一对应”和“变与不变”的思想。

  【教学预设】

  一、认识比例各部分的名称

  1、呈现:4:5和8:10

  (1)认识吗?叫什么?

  (2)正确吗?为什么?(4:5=0.8,8:10=0.8,所以4:5=8:10)

  (3)求比值,判断两个比能否组成比例。

  2、介绍比例各部分的名称

  4:5=8:10中,组成比例的四个数“4、5、8、10”叫做这个比例的项。两端的两项“4和10”叫做比例的外项。中间的两项“5和8”叫做比例的內项。

  3、你能说出下面比例的内项和外项各是多少吗?

  (1)1.4: =:5 (2) =

  【设计意图:简洁的情境,简单的问答,准确定位教学的起点,沟通比例各部分的名称,嫁接新知探究的支点。】

  二、探究比例的基本性质

  1、猜数

  (1)老师这里也有一个比例“12∶□=□∶2”,不过它的两个內项看不清了,想一想,这两个内项可能是哪两个数?(如1和24,2和12,……)

  (2)追问:正确吗?为什么?(求比值判断)

  (3)还有不同答案吗?

  (4)你能举出项不是整数的例子吗?

  (5)这样的例子举得完吗?

  2、猜想

  仔细观察这组等式,你有什么发现?(两个外项的积等于两个内项的积;两个內项的位置可以交换……)

  3、验证

  (1)是不是所有的比例都有这样的规律呢,有什么好办法?(举例验证)

  (2)你觉得应该怎样举例呢?

  示范:①任意写一个简单的比;②求出比值;③根据比值写出另一个比的一项,求出另一项;④组成比例;⑤算出外项的积和內项的积。

  (3)合作要求

  1)前后4个同学为一个小组;

  2)每个同学写出一个比例,小组内交换验证。

  3)通过举例验证,你们能得出什么结论?

  4、归纳

  (1)老师这里也有一个比例3:5=4:6,为什么两个外项的积不等于两个內项的积?

  (2)其实我们的发现与数学家不谋而合,他们也发现在“比例中,两个外项的积等于两个内项的积”,并且给它起了个名字,叫做比例的基本性质。(板书:比例的基本性质)

  5、完善

  (1)如果用字母表示比例的四个项,即a:b=c:d,那么,比例的基本性质可以表示成什么?(ad=bc或bc=ad)

  (2)老师这里也有一个比例0:3=0:4,可以吗?3:0=4:0呢?

  (3)比例中两个比的后项都不能为0。

  6、如果比例写成分数形式=,这怎么相乘?(交叉相乘)

  【设计意图:不完整的比例激发学生根据比例的意义猜数的兴趣,教师举例示范,为学生小组合作举例验证比例的基本性质搭建支点,意在让学生经历“猜数——猜想——验证——归纳——完善”的知识探究过程,激发学生的探究欲望,让学会学习的方法,提高学习能力。】

  三、巩固练习,应用比例的基本性质

  1、判断下面哪组中的两个比可以组成比例。

  示范:6:3和8:5 (1)1.2:和:5

  (2):和: (3)和

  〖学法指导:假设两个比能组成比例,根据比例的基本性质,分别算出两个外项和两个內项的积,再肯定两个比能否组成比例。〗

  (1)先让学生尝试判断,再交流,明确思考方法。

  (2)还可以用什么方法来判断?用求比值的方法判断1.2:和:5能否组成比例可以吗?

  (3)这两种方法,你更喜欢哪种?为什么?

  2、在比例中,两个外项的积等于两个內项的积,如果知道两个外项的积和两个內项的积,你会写比例吗?

  六(3)班智聪同学根据“2×9=3×6”写出了比例,猜猜他可能是怎么写得?请在练习本上写一写。

  追问:你为什么写得那么块?有什么窍门吗?

  补问:根据这个乘法等式,一共可以写多少个比例?

  3、如果a×2=b×4,则a:b=( ):( );

  如果a:b=4:2,则a=4,b=2。这种说法对吗?为什么?

  那么a、b还可能是多少?你发现了什么?

  4、猜猜我是谁?

  6:( )=5: 4

  延伸:如果把“( )”改为“x”就是我们下节课要学习的知识:解比例。

  【设计意图:通过分层练习,巩固对比例基本性质的掌握,体验比例基本性质的应用价值,促进所有学生都能在动静结合的练习过程中获得发展,不同学生获得不同程度的发展。同时渗透假设、验证、有序思考的解题策略和方法,体验解决问题方法的多样性和优化策略,感受“一一对应”和“变与不变”的数学思想。】

  四、分享收获畅谈感想

  这节课,我们学习了什么?我们是怎样探究比例的基本性质的?

  五、板书设计

  七年级数学下册教案 2

  一、教材分析

  同底数幂的乘法是北师大版初中数学七年级(下)第一章整式的乘除第一节的内容。在此之前,学生已经掌握了用字母表示数的技能,会判断同类项、合并同类项,同时在学习了有理数乘方运算后,知道了求n个相同数a的积的运算叫做乘方,乘方的结果叫做幂,即,在中,a叫底数,n叫指数,这些基础知识为本节课的学习奠定了基础。学生已经学习了幂的概念,具备了幂的运算的方法,为本课打下了基础,同底数幂的乘法运算法则的学习有助于培养训练学生的数感与符号感,同时也发展了他们的推理能力和有条理的表达能力,而本课内容又是学习整式除法及整式的乘除的基础。

  二、教学目标

  知识与技能:让学生在现实背景中进行体会同底数幂的乘法运算,并能解决一些实际问题。

  过程与方法:经历在实际背景中探索同底数幂乘法运算性质的过程,进一步体会幂的意义,经历观察、归纳、猜想、解释等数学活动,增强学生的数感符号感,体验解决问题方法的多样性,发展合作交流能力,发展学生的合情推理和演绎推理能力以及有条理的表达能力。

  情感与态度:在解决问题的过程中了解数学的价值,渗透数学公式的简洁美与和谐美。培养学生观察、概括、抽象、归纳的能力。体会数学的抽象性、严谨性和广泛性。

  三、教学重难点

  教学重点:同底数幂乘法运算法则及其应用。

  教学难点:同底数幂乘法运算法则的探索及灵活运用。

  突破方法:通过实例,让学生感觉到学习同底数幂乘法运算法则的必要性,从而引起学生的兴趣和注意力。然后引导学生利用幂的意义,将同底数幂相乘转化为几个相同因式相乘。让学生通过思考、讨论、交流、归纳,个人思考、小组合作探究等方式,进行知识迁移,总结出同底数幂乘法运算法则。让学生在探究问题的过程中理解转化的数学思想,初步理解“特殊—一般—特殊”的认知规律,养成用数学的思维和方法解决问题的习惯。

  四、教学过程设计

  本课时设计了七个教学环节:旧知链接、情境引入、归纳法则、探索拓广、反馈延伸、课堂小结、布置作业。

  第一环节旧知链接

  活动内容:

  1、前面我们学习了乘方,那么乘方的意义是什么?并用字母表示出来(学生课前将数学符号表述写黑板上,上课只口答文字描述。)

  2、指出下列各式的底数与指数:54,x3 ,(-2)2,-22 。

  设计意图:通过此活动,让学生回忆幂与乘法之间关系,即,从而为下一步探索得到同底数幂的乘法法则提供了依据,培养学生知识迁移的能力,为探究新知做好知识准备。

  第二环节情境引入

  活动内容:

  1、光在真空中的速度大约是3×108m/s,太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需要4.22年。一年以3×107秒计算,比邻星与地球的距离约为多少千米?

  2、.计算下列各式:

  (1)102×103;

  (2)105×108;

  (3)10m×10n(m,n都是正整数).你发现了什么?

  3、 2m×2n等于什么?(1/7)m ×(1/7)n呢?(-3)m×(-3)n呢?(m,n都是正整数)

  (学生独立思考后,小组内交流,进行推导尝试,力争独立得出结论。.教师鼓励算法的多样化。 )

  设计意图:从实际问题情境中建立数学模型,让学生感受到数学来源于生活,自然地体会到学习同底数幂的乘法的必要性。鼓励学生利用已学知识解决问题,善于将陌生问题转化为熟悉的问题,培养学生数学转化的思想及重视算理的习惯。

  第三环节新知探究,归纳法则

  活动内容一:你能用字母表示同底数幂的乘法运算法则并说明理由吗?

  (1)将引例中的各算式改写成乘法的字母算式。

  (2)观察计算结果有什么规律?

  (3)试猜想:am . an=( ) (自主完成改写算式,观察思考,并进行猜想,发表见解。)

  (4)验证你的猜想。

  (5)小结归纳法则。

  (小组讨论,相互交流。鼓励学生用进行验证。对比同底数幂的乘法法则,引导学生用语言、数学符号两种方式表述,便于理解和记忆,互相补充。)

  同底数幂相乘,底数不变,指数相加。

  am· an=am+n(m,n是正整数)

  设计意图:学生经历观察、猜想、验证等探究活动,体会知识的生成过程,并感悟从特殊到一般的研究解决问题的方法。在验证、小结归纳的活动中,进一步发展符号、化归等推理能力和有条理的表达能力。

  活动内容二:am · an · ap等于什么?你是怎样做的?与同伴交流

  am· an· ap = am+n+p

  法则应用注意事项:(1)等号左边是同底数幂相乘法。

  (2)等号两边的.同底相同。

  (3)等号右边的指数等于左边的指数和。

  (4)公式中的底数a可以表示数、字母、单项式、多项式等整式。

  设计意图:让学生明白同底数是三个或三个以上时相乘,同底数幂的乘法法则也成立,培养学生的联系拓广能力。

  第四环节活学活用

  活动内容一:

  例1、计算:(1)(-3)7×(-3)6(2)(1/111)3×(1/111)2

  (3)-x3.x5(4)b2m.b2m+1

  (学生口述计算的每步过程和依据,师板书(1)解题过程。强调运算方法;强调字母a的指数;强调括号问题。其余自主完成计算,板演练习。集体讲评纠错。)

  设计意图:规范解题步骤的同时,进一步体会算理,并深刻地理解同底数幂的乘法运算法则,达到熟练、准确运用法则进行计算的目的。

  活动内容二:

  例2光在真空中的速度约为3×108m/s,太阳光照射到地球大约需要5×102s.地球距离太阳大约有多远?

  (独立审题,认真计算,交流讨论,发表见解。小组内交流方法。小结归纳,相互补充。)

  设计意图:应用同底数幂的乘法运算法则解决实际问题,灵活运用同底数幂的乘法法则,同时培养学生用心审题的好习惯。

  第五环节巩固练习

  活动内容:课本随堂练习

  1.计算:

  (1)52×57;(2)7×73×72;

  (3)-x2·x3;(4)(-c)3·(-c)m.

  2.一种电子计算机每秒可做4×109次运算,它工作5×102s可做多少次运算?

  3.解决本节课一开始比邻星到地球的距离问题.

  (小组讨论、交流、展示。自主探究完成。)

  设计意图:以小组讨论的方式突破难点,在交流过程中理解、尊重他人意见,从交流中获得成功的体验,培养学生勇于探索的精神。

  第六环节课堂小结

  活动内容:这节课你学到了哪些知识及哪些数学思想?

  (鼓励学生多角度地对本节课的学习进行小结、评价,大胆发表见解和疑问。)

  设计意图:在知识的整理中拓展学生的思维,养成良好的学习习惯,教师予以鼓励,激发学生的学习兴趣与自信心。

  第七环节布置作业

  习题7.1A组1.B组1、2、3

  设计意图:作业分层布置,因材施教,培养学生的自信心。

  四、教学设计反思:

  1.培养学生数学思想,让学生掌握方法

  在教学过程中让学生多观察,多思考,多讨论,给他们时间空间,教师在教学中应当有意识、有计划地设计教学活动,引导学生体会到数学知识之间的联系,感受转化的数学思想和整体的数学思想,不断丰富解决问题的策略,提高解决问题的能力。

  2.改进教学和评价方式,为学生提供自主探索的机会

  数学教学活动,应激发学生兴趣,调动学生积极性,引发学生的数学思考;学生学习应当是一个生动活泼的、主动地和富有个性的过程,因此我们的数学课堂应该努力改进教学和评价的方式,给学生提供更多自主探索的机会。课上通过学生自主讲解展示学习效果,教师只根据学生自学的情况点拨部分难点即可。

  七年级数学下册教案 3

  教材分析:

  平行线的性质是空间与图形领域的基础知识,在以后的学习中经常要用到。这部分内容是后续学习的基础,它们不但为三角形内角和定理的证明提供了转化的方法,而且也为今后三角形全等、三角形相似等知识的学习奠定了理论基础,学好这部分内容至关重要

  教学目标:

  知识技能:

  1.掌握平行线的三个性质

  2.会用平行线的性质进行有关的简单推理和计算

  3.通过对比,理解平行线的性质和判定的区别

  过程与方法:

  在探索图形的过程中,通过观察、操作、推理等手段,有条理地思考和表达自己的探索过程和结果,从而进一步增强分析、概括、表达能力

  情感、态度与价值观:

  让学生在活动中体验探索、交流、成功与提升的喜悦,激发学生学习数学的兴趣,培养学生勇于实践,大胆猜想、推理的科学态度

  教学重点:

  平行线的三个性质的探索

  教学难点:

  平行线的`性质和判定的区别以及应用它们进行简单的推理

  教学过程:

  1、创设情境:

  (1)、回顾直线平行的条件。(学生回答后,教师板书。)

  (2)、设问:根据同位角相等可以判定两条直线平行,反过来,如果两条直线平行,同位角之间有什么关系呢?内错角、同旁内角之间又有什么关系呢?

  [设计意图]:通过复习回忆平行线的判定来引入新课,主要目的有两个,一是温故而知新,促使学生实现知识思维的正迁移;二是有利于学生在学习过程中去比较性质与判定的不同。同时,开门见山较直接地提出了本节课的目标,让学生明确本节课的学习任务,有利于实现学生对学习过程的自我监控。

  2、探究新知:

  (1)、画平行线:

  教师通过多媒体演示。

  学生用方格或笔记本上的横线。

  [设计意图]:画平行线的这个过程主要让学生明白确定平行线性质的前提是要两条平行线,帮助学生区分平行线的性质与判定。

  (2)、问题1:如何得到同位角? a

  学生独立思考后回答:如可随意画 2 b

  条直线与两条平行线相交,如图1,∠1 c

  和∠2是同位角。 图1

  [设计意图]:让学生体验得到同位角的过程,特别要让学生明白所得的同位角是任意的而不是特殊角、特殊位置的。

  问题2:你准备怎样去找∠1和∠2的关系?

  学生分组合作交流,进行探究后发表见解。

  学生回答:如测量或剪下其中某一个角把它贴到另一个同位角的位置上去观察等。

  [设计意图]:让学生明确探究的具体环节与步骤,形成整个班级内的合作与交流,让部分学习有困难的学生也能探究出结论。

  七年级数学下册教案 4

  教材分析:

  1.2二元一次方程组的解法

  1.2.1代入消元法

  教学目标

  1.了解解方程组的基本思想是消元。

  2.了解代入法是消元的一种方法。

  3.会用代入法解二元一次方程组。

  4.培养思维的灵活性,增强学好数学的信心。

  教学重点

  用代入法解二元一次方程组消元过程。

  教学难点

  灵活消元使计算简便。

  教学过程

  一、引入本课。

  接上节课问题,写出所得一元一次方程及二元一次方程组提问怎样解二元一次方程组?

  二、探究。

  比较此列二元一次方程组和一元一次方程,找出它们之间的联系。

  xy46.41(xx5.646.4 )xx5.646.4与xy46.4比xy5.62较而由(2)可得yx5.6(3)。把(3)代入(1)。xy46.4中的.y就是x5.6,可得一元一次方程。想一想本题是否有其它解法?讨论:解二元一次方程组基本想法是什么?

  15xy9例1:解方程组 2y3x1

  讨论:怎样消去一个未知数?

  解出本题并检验。

  12x3y0例2:解方程组 25x7y1

  讨论:与例1比较本题中是否有与y3x1类似的方程?

  怎样解本题?

  学生完成解题过程。

  草稿纸上检验所得结果。

  简要概括本课中解二元一次方程组的基本想法,基本步骤。介绍代入消元法。(简称代入法)

  三、练习

  P27.练习题。

  四、小结

  本节课你有什么收获?

  五、作业

  习题2.2A组第1题。

  后记

  七年级数学下册教案 5

  一、情景导入

  见书问题

  二、用坐标表示地理位置

  探究:

  我们知道,在平面内建立直角坐标系后,平面内的点都可以用坐标来表示,为此,要确定区域内一些地点的位置,就要建立直角坐标系。

  思考:

  以什么位置为原点?如何确定x轴、y轴?选取怎样的比例尺?

  小刚家、小强家、小敏家的位置均是以学校为参照物来描述的,故选学校位置为原点。

  以正东方向为x轴,以正北方向为y轴建立直角坐标系。

  取比例尺1:10000(即图中1格相当于实际的100米)。

  点(150,200)就是小刚家的位置。

  画出小强家、小敏家的位置,并标明它们的`坐标。

  归纳:

  注意:

  (1)通常选择比较有名的地点,或者较居中的位置为坐标原点;

  (2)坐标轴的方向通常以正北为纵轴的正方向,正东为横轴的正方向;

  (3)要标明比例尺或坐标轴上的单位长度。

  三、课堂练习

  下图是小红所在学校的平面示意图,请你指出学校各地点的位置。

  四、课堂小结

  怎样利用坐标表示地理位置

  七年级数学下册教案 6

  教学目标:

  1、掌握数轴的概念,理解数轴上的点和有理数的对应关系;

  2、会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;

  3、感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。

  教学难点:

  数轴的概念和用数轴上的点表示有理数

  知识重点

  教学过程(师生活动) 设计理念

  设置情境

  引入课题

  教师通过实例、课件演示得到温度计读数。

  问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?

  (多媒体出示3幅图,三个温度分别为零上、零度和零下)

  问题2:在一条东西向的马路上,有一个汽车站,汽车站东3 m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境。

  (小组讨论,交流合作,动手操作) 创设问题情境,激发学生的学习热情,发现生活中的数学。

  探究新知

  教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?

  让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?

  从而得出数轴的三要素:原点、正方向、单位长度 体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。

  从游戏中学数学 做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第3个同学为原点,游戏还能进行吗? 学生游戏体验,对数轴概念的理解

  寻找规律

  归纳结论

  问题3:

  1、你能举出一些在现实生活中用直线表示数的实际例子吗?

  2、如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?

  3、哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?

  4、每个数到原点的'距离是多少?由此你会发现了什么规律?

  (小组讨论,交流归纳)

  归纳出一般结论,教科书第12的归纳。 这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。

  巩固练习

  教科书第12页练习

  小结与作业

  课堂小结

  请学生总结:

  1、数轴的三个要素;

  2、数轴的作以及数与点的转化方法。

  本课作业

  1、必做题:教科书第18页习题1.2第2题

  2、选做题:教师自行安排

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1、数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

  2、教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

  3、注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

  七年级数学下册教案 7

  教学目标:

  1、知识与技能:

  通过摸球游戏,了解并掌握计算一类事件发生可能性的方法,体会概率的意义。

  2、过程与方法:

  通过本节课的学习,帮助学生更容易地感受到数学与现实生活的联系,体验到数学在解决实际问题中的作用,培养学生实事求是的态度及合作交流的能力。

  3、情感与态度:

  通过环环相扣的、层层深入的问题设置,鼓励学生积极参与,培养学生自主、合作、探究的能力,培养学生学习数学的兴趣。

  教学重点:

  1、概率的定义及简单的列举法计算。

  2、应用概率知识解决问题。

  教学难点:

  灵活应用概率的计算方法解决各种类型的实际问题。

  教学过程:

  一、复习旧知

  1、下面事件:①在标准大气压下,水加热到100℃时会沸腾。②掷一枚硬币,出现反面。③三角形内角和是360°;④蚂蚁搬家,天会下雨,不可能事件的有 ,必然事件有 ,不确定事件有 。

  2、任何两个偶数之和是偶数是 事件;任何两个奇数之和是奇数是 事件;

  3、欢欢和莹莹进行“剪刀、石头、布”游戏,约定“三局两胜”决定谁最终获胜,那么欢欢获胜的可能性 。

  4、足球比赛前裁判通过抛硬币让双方的队长猜正反来选场地,只抛了一次,而双方的队长却都没有异议,为什么?

  5、一个均匀的骰子,抛掷一次,它落地时向上的数可能有几种不同的结果?每一种结果的概率分别为多少?

  求一个随机事件概率的基本方法是通过大量的重复试验,那么能不能不进行大量的重复试验,只通过一次试验中可能出现的结果求出随机事件的概率,这就是我们今天要探究学习的“等可能事件的概率”。

  二、情境导入

  1、任意掷一枚均匀的硬币,可能出现哪些结果?每种结果出现的可能性相同吗?正面朝上的概率是多少?

  2、这个袋子中有5个乒乓球,分别标有1,2,3,4,5这5个号码,这些球除号码外都相同,搅匀后任意摸出一个球,拿出来后再将球放回袋子中。

  (1)会出现哪些可能的结果?

  (2)每种结果出现的可能性相同吗?它们的概率分别是多少?你是怎么得到概率的值?

  学生分组讨论,教师引导

  三、探究新知

  1、请大家观察前面的抛硬币、掷骰子和摸球游戏,它们有什么共同的特点?

  学生分组讨论,教师引导:

  (1)一次试验可能出现的结果是有限的;

  (2)每种结果出现的可能性相同。

  设一个实验的所有可能结果有n种,每次试验有且只有其中的一种结果出现。如果每种结果出现的可能性相同,那么我们就称这个试验的结果是等可能的。

  2、探究等可能性事件的概率

  (1)抛掷一个均匀的骰子一次,它落地时向上的数是偶数的概率是多少呢?

  (2)不透明的一个袋子中装有大小相同的三个球,一个黄色和已编有1.2.3号码的3个白球,从中摸出2个球,一共有多少种不同的结果?摸出2个白球有多少种不同结果?摸出2个白球的概率是多少?

  学生先独立思考,然后同桌间讨论,教师巡视指导

  一般地,如果一个试验有n种等可能的结果,事件A包含其中的种结果,那么事件A发生的概率为:

  P(A)=/n

  必然事件发生的概率为1,记做P(必然事件)=1;不可能事件的发生的概率为0,记做P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1

  3、应用新知

  例:任意掷一枚均匀骰子。

  1、掷出的点数大于4的概率是多少?

  2、掷出的点数是偶数的概率是多少?

  解:任意掷一枚均匀骰子,所有可能的结果有6种:掷出的点数分别是1,2,3,4,5,6,因为骰子是均匀的,所以每种结果出现的可能性相等。

  1、掷出的点数大于4的结果只有2两种:掷出的点数分别是5,6.

  所以P(掷出的点数大于4)=2/6=1/3

  2、掷出的点数是偶数的'结果有3种:掷出的点数分别是2,4,6.

  所以P(掷出的点数是偶数)=3/6=1/2

  四、实践练习

  1、袋子里装有三个红球和一个白球,它们除颜色外完全相同。小丽从盒中任意摸出一球。请问摸出红球的概率是多少?

  2、先后抛掷2枚均匀的硬币

  (1)一共可能出现多少种不同的结果?

  (2)出现“1枚正面、1面反面”的结果有多少种?

  (3)出现“1枚正面、1面反面”的概率有多少种?

  (4)出现“1枚正面、1面反面”的概率是1/3,对吗?

  3、将一个均匀的骰子先后抛掷2次,计算:

  (1)一共有多少种不同的结果?

  (2)其中向上的数之和分别是5的结果有多少种?

  (3)向上的数之和分别是5的概率是多少?

  (4)向上的数之和为6和7的概率是多少?

  五、课堂检测

  1、甲、乙、丙三个人随意的站一排拍照,乙恰好站中间的概率是( )

  A 2/9 B 1/3 C 4/9 D以上都不对

  2、在一次抽奖中,若抽中的概率是0.34,则抽不中的概率是( )

  A 0.34 B 0.17 C 0.66 D 0.76

  3、把标有1、2、3、4…10的10个乒乓球放在一个箱中,摇匀后,从中任取一个,号码小于7的奇数概率是( )

  A 3/10 B 7/10 C 2/5 D 3/5

  4、某商场举办有奖销售活动办法如下:凡购满100元得奖券一张,多购多得,现有10000张奖券,设特等奖1个,一等奖10个,二等奖100个,则一张奖券中一等奖的概率是

  5、一个袋中装有3个红球,2个白球和4个黄球,每个球除颜色外都相同。从中任意摸出一球,则: P(摸到红球)=

  P(摸到白球)=

  P(摸到黄球)=

  6、一个袋中有3个红球和5个白球,每个球除颜色外都相同。从中任意摸出一球,摸到红球和摸到白球的概率相等吗?分别是多少?如果不相等,能否通过改变袋中红球或白球的数量,使摸到的红球和白球的概率相等?

  六、课堂小结

  回想一下这节课的学习内容,同学们自己的收获是什么?

  1、等可能性事件的特征:

  (1)一次试验中有可能出现的结果是有限的。(有限性)

  (2)每种结果出现的可能性相等。(等可能性)

  2、求等可能性事件概率的步骤:

  (1)审清题意,判断本试验是否为等可能性事件。

  (2)计算所有基本事件的总结果数n。

  (3)计算事件A所包含的结果数。

  (4)计算P(A)=/n。

  布置作业:

  1、P148习题6.4知识技能 1.2.3

  2、问题解决:请大家为“翠苑小区”亲子活动设计一个有奖竞猜活动方案。

  板书设计

  等可能事件的概率(1)

  等可能事件的特征:

  1、 一次试验可能出现的结果是有限的;

  2、 每一结果出现的可能性相等。

  一般地,如果一个试验有n种等可能的结果,事件A包含其中的种结果,那么事件A发生的概率为:

  七年级数学下册教案 8

  教学目标

  在了解同底数幂乘法意义的基础上掌握法则,会进行同底数幂的乘法基本运算。

  在推导法则的过程中,培养观察、概括与抽象的能力。

  通过对具体事例的观察和分析,归纳、总结出同底数幂乘法的法则,培养学生归纳、总结,以及从特殊到一般的抽象概括等思维能力。

  让学生通过参与探索过程,培养合作、探索问题的能力,以及质疑、独立思考的习惯。

  重点难点

  重点

  同底数幂相乘的`法则的推理过程及运用

  难点

  同底数幂相乘的运算法则的推理过程

  教学过程

  一、温故知新

  1.表示什么意义?(是乘方运算,表示10个2相乘;也可以用来表示运算的结果)

  2.下列四个式子① ,② ,③ ④ 中,运算结果是 的有哪些?你能说明理由吗?(学生通过讨论,明确两个幂只有当底数相同时才可以乘起来,同时初步感受计算的方法)

  3.光的传播速度是每秒 米,若一年以 秒计算,那么光走一年的路程是多少米呢?

  学生列出式子 。这个式子怎样运算呢?解决这个问题的关键是弄清楚两个同底数幂相乘的一般方法,下面我们就来探索同底数幂的乘法法则。

  二、新课讲解

  探究新知

  你能计算出 吗?

  学生解答,教师板书

  那么 等于多少呢?更一般的, 等于多少呢?

  学生回答,教师板书

  你发现运算的方法了吗?

  师生共同概括归纳出同底数幂乘法的法则:

  同底数幂相乘,底数不变,指数相加。

  用公式表示是: (、n都是正整数)

  动脑筋

  当3个或三个以上的同底数幂相乘时,怎样用公式表示运算的结果呢?

  学生思考并讨论解答,最后教师总结: (,n,p都是正整数)

  三、典例剖析

  例1 计算:(1) ;(2)

  分析:直接运用公式计算,教师板书计算过程,强调初学时要注意弄清楚计算的步骤。

  例2 计算:(1) ;(2)

  让学生独立完成。这题意在进一步训练运用法则进行计算,注意观察学生是否会用法则进行计算,点评时要强调对法则的运用。

  例3 计算:(1) ;(2)

  学生解答并讨论,教师注意拓展学生对法则的运用,培养符号演算的能力,指出公式中的底数可以是具体的数,也可以是字母或式子表示的数,提高学生的运算能力。

  四、课堂练习

  基础训练:

  1.计算:

  (1) ;(2) ;(3) ;(4)

  2.计算:

  (1) ;(2) ;(3) ;(4)

  (学生解答各题,教师组织学生互相批改,对学生出错比较多的地方做讲解和变式训练)

  提高训练

  3.计算 ;(2)

  4.制作拉面需将长条形面团摔匀拉伸后对折,并不断重复若干次这组动作。随着不断地对折, 面条根数不断增加. 若一碗面约有64 根面条,则面团需要对折多少次? 若一个拉面店一天能卖出2 048 碗拉面,用底数为2的幂表示拉面的总根数。

  (用以提升学生运算的灵活性,提高学习兴趣。)

  五、小结

  师生互相交流总结本节课上应该掌握的同底数幂的乘法的特征,教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。(如:对法则的理解,解决了什么问题,体会从特殊到一般探索规律的数学思想等等)

  六、布置作业

  教材P40 第1题,P41 第12题

  七年级数学下册教案 9

  教学目标

  1.使学生理解分数乘、除法应用题的相同点与不同点,能准确解答应用题。

  2.加深学生对三类应用题的数量关系和内在联系的认识,提高学生的分析能力和解答应用题的能力。

  教学重点

  理解分数乘、除法应用题的异同点,会正确解答。

  教学难点

  能正确解答分数乘、除法应用题。

  教学过程

  一、复习引新

  (一)下面各题中应该把哪个数量看作单位“1”?

  1.花手绢的块数是白手绢的

  2.白手绢块数的正好是花手绢的块数。

  3.花手绢的块数相当于白手绢的

  4.白手绢块数的倍相当于花手绢的块数

  (二)教师提问

  1.求一个数是另一个数的的几分之几用什么方法?

  2.求一个数的几分之几是多少用什么方法?

  3.已知一个数的几分之几是多少,求这个数,用什么方法?

  (三)谈话导入

  为了更进一步了解每一类应用题的特点,巩固解题方法,请同学们和老师一起来做下面一组练习。

  二、讲授新课

  (一)教学例3

  1.课件演示:分数除法应用题

  2.比较。

  (1)我们把这三道题放在一起比较,它们有什么相同点?

  相同点:三个数量是相同的;需要找准单位“1”来分析。

  (2)它们有什么区别呢?

  不同点:已知和所求不同;解题方法不同。

  3.小结:分数应用题主要有以上三类:

  (1)求一个数是另一个数的几分之几。

  (2)求一个数的几分之几是多少。

  (3)已知一个数的几分之几是多少求这个数。

  4.解答分数应用题的方法是什么?

  抓住分率句;找准单位“1”;画图来分析;列式不必急。

  三、巩固练习

  (一)应用题

  1.一个排球36元,一个篮球40元,一个排球的价钱是一个篮球价钱的几分之几?

  (1)学生独立分析列式

  (2)要求根据这道题的数量关系,改编出一道分数乘法应用题和一道分数除法应用题。

  2.学校有故事书36本,是科技书的,科技书有多少本?

  3.学校有故事书36本,科技书是故事书的,科技书有多少本?

  (二)补充条件并列式解答。

  一条路长15千米,修了全长的, ?

  (三)选择正确答案

  1.修一条长240千米的`公路,修了,修了多少千米?

  2.修一条长240千米的公路,已经修了150千米,修了的占全长的几分之几?

  240× 240÷ 150÷240 240÷150

  (四)思考题

  有一个两位数,十位上的数是个位上的数的.十位上的数加上2,就和个位上的数相等。这个两位数是多少?

  四、课堂小结

  这节课我们进行了三类题的对比练习。解决这三类题的关键是什么?

  五、课后作业

  (一)解答下面各题

  1.六一班有学生45人,其中女生有20人。女生人数占全班的几分之几?

  2.六一班有学生45人,女生占.女生有多少人?

  3.六一班有男生25人,占全班的.全班共有学生多少人?

  (二)校园里栽了杨树144棵,栽的松树的棵数是杨树的,校园里栽了松树多少棵?

  (三)学校买了蓝墨水30瓶,红墨水24瓶。蓝墨水是红墨水的几倍?

  六、板书设计

  分数乘除法对比练习

  1.池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?

  4÷12=

  2.池塘里有12只鸭,鹅的只数是鸭的.池塘里有多少只鹅?

  12× =4(只)

  3.池塘里有4只鹅,正好是鸭的只数的.池塘里有多少只鸭?

  4÷ =12(只)

  七年级数学下册教案 10

  【学习目标】

  1.经历探索具体情境中两个变量之间关系的过程,获得探索变量之间关系的体验,进一步发展符号感。

  2.在具体情境中理解什么是变量、自变量、因变量,并能举出反映变量之间关系的例子。

  3.能从表格中获得变量之间关系的信息,能用表格表示变量之间的关系,并根据表格中的资料尝试对变化趋势进行初步的预测。

  【学习方法】自主探究与小组合作交流相结合。

  【学习重难点】重点:能从表格的数据中分清什么是变量,自变量、因变量以及因变量随自变量的变化情况。

  难点:对表格所表达的两个变量关系的理解。

  【学习过程】

  模块一 预习反馈

  一、学习准备

  1.我们生活在一个变化的世界中,很多东西都在悄悄地发生变化。

  你能从生活中举出一些发生变化的例子吗?

  教材精读

  1.请同学们观察思考,逐一回答下面的问题:

  根据上表回答下列问题:

  (1)支撑物高度为70厘米时,小车下滑时间是多少?

  (2)如果用h表示支撑物高度,t表示小车下滑时间,随着h逐渐变大,t的变化趋势是什么?

  (3)h每增加10厘米,t的变化情况相同吗?

  (4)估计当h=110厘米时,t的值是多少,你是怎样估计的?

  (5)随着支撑物高度h的.变化,还有哪些量发生变化?哪些量始终不发生变化?

  在小车下滑的过程中:

  支撑物的高度h和小车下滑的时间t都在变化,它们都是 。其中小车下滑的时间t随支撑物的高度h的变化而变化。支撑物的高度h是 ,小车下滑的时间t是 。

  在这一变化过程中,小车下滑的距离(木板的长度)一直 变化。像这种在变化过程中 的量叫做 。

  我国从1949年到1999年的人口统计数据如下(精确到0.01亿):

  (1)如果用x表示时间,y表示我国人口总数,那么随着x的变化,y的变化趋势是什么?

  (2)X和y哪个是自变量?哪个是因变量?

  (3)从1949年起,时间每向后推移10年,我国人口是怎样的变化?

  (4)你能根据此表格预测20xx年时我国人口将会是多少?

  在人口统计数据中:

  时间和人口数都在变化,它们都是 。其中人口数随时间的变化而变化。时间是 ,人口数是 。

  归纳:借助表格,我们可以表示因变量随自变量的变化而变化的情况

  模块二 合作探究

  1.研究表明,当每公顷钾肥和磷肥的施用量一定时,土豆的产量与氮肥的施用量有如下关系:

  (1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?

  (2)当氮肥的施用量是101千克/公顷时,土豆的产量是多少?如果不施氮肥呢?

  (3)据表格中的数据,你认为氮肥的施用量是多少时比较适宜?说说你的理由。

  (4)粗略说一说氮肥的施用量对土豆产量的影响。

  模块三 形成提升

  某电影院地面的一部分是扇形,座位按下列方式设置:

  (1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?

  (2)第5排、第6排各有多少个座位?

  (3)第n排有多少个 座位?请说明你的理由。

  模块四 小结反思

  一、本课知识

  1. 变量、自变量、因变量:在某一变化过程中不断变化的量,叫做如果一个变量y随另一个变量x的变化而变化,则把x叫做 ,y叫做 。即先发生变化的量叫做 ,后发生变化或者随自变量的变化而变化的量叫做 。

  2.常量:略

  二、我的困惑

  七年级数学下册教案 11

  教学目标

  能确定多项式的公因式,熟练运用提公因式法分解因式。

  经历探索提公因式法的过程,培养逆向思维能力。

  让学生通过参与探索过程,培养合作意识和创新精神。

  重点难点

  重点

  公因式的定义以及提公因式法分解因式。

  难点

  准确找出多项式中各项的公因式。

  教学过程

  一、复习回顾

  1. 什么叫做因式分解?与整式乘法有什么联系?

  2. 计算:

  3. 观察上式运算的结果 ,各项所含的因式有什么特点?

  学生观察到各项含有相同的因式m后,教师给出公因式的概念:

  几个式子的公共的因式称为它们的公因式。

  一个多项式如果各项含有公因式,怎样分解因式呢?

  二、探究新知

  根据 的计算结果,你能将 分解因式吗?分解的根据是什么?你能说说分解的具体做法是什么吗?

  学生思考讨论后,教师引导学生分析分解的根据是乘法分配律,具体的做法是把各项的公因式提到括号外面。随后给出这种方法的名称。

  如果一个多项式的各项有公因式,可以把这个公因式提到括号外面,这种把多项式因式分解的方法叫做提公因式法。用提公因式法分解因式时要把所有的公因式都提出,使剩下的`多项式因式里不含公因式。

  三、典例剖析

  例1 把 因式分解

  教师引导学生观察各项的公因式,并板书分解过程。

  解:

  反思:分解得 对不对,为什么?

  例2把 因式分解。

  教师引导学生观察各项的公因式,并总结出找公因式的方法:一看各项系数,找出各系数的最大公因数,二看各项的字母因式,找出相同的字母因式。

  板书分解过程:

  解:

  例3 把 因式分解。

  引导学生观察各项的公因式,并总结出找公因式的方法:一看各项系数,找出各系数的最大公因数,二看各项的字母因式,找出相同的字母因式,相同的字母取指数最小的作为公因式。

  板书分解过程:

  解:

  四、课堂练习

  基础训练:

  1.说出下列多项式中各项的公因式:

  (1) ; (2) ;

  (3)

  2. 在下列括号内填写适当的多项式:

  (1) ;(2) .

  3. 把下列多项式因式分解:

  (1) ; (2) ;

  (3)

  学生解答各题,教师组织学生互相批改。补充说明,当多项式首项系数是负数时,一般要把负号提出括号。

  五、小结

  请你总结一下如何确定多项式中各项的公因式。

  六、布置作业

  教材P62第1题,第2题的(1)(2)(3)。

  七年级数学下册教案 12

  复习目标:

  1、复习基本概念形成知识体系;

  2、会利用图形的分割法求图形的面积。

  复习过程:

  一、板书课题,出示目标:

  同学们,今天,我们一起来复习第六章,本节课的学习目标是:

  二、指导检测:

  复习目标达到,从认真做检测题开始,下面,请看检测要求:

  检测指导

  1.认真审题,细心计算;

  2. 把字写端正,步骤写完整;

  3. 在十五分钟内完成。

  预祝大家出色完成任务!

  三、学生检测,教师巡视

  A:P58“知识结构图”,完成P60 4、5

  B:学生检测,教师巡视,搜集学生出现的错误,进行第二次备课。

  四、板演、更正答案:

  A:分别让2名学生上堂板演,有错误,鼓励其他同学更正。

  B:对改(下面,比谁能在2分钟内对改完,不出错)

  五、讨论:

  1.独立更正:

  2.小组讨论:(自己不能独立更正的题,小组解疑)

  3.可能出现错误,需要集体讨论:(会了的小组帮助不会的小组解疑,若没有不同答案的且正确的,肯定答案,不讨论。如果有不同意见的,让同学讨论。)

  可能出现错误需讨论的.有:

  评:第4题

  (1)坐标对吗?(估计问题不大)

  (2)他路上经过的地方对吗?(估计问题不大)

  (3)图形对吗?(估计问题不大)

  第5题

  (1)红色图形平移的对吗?为什么?

  引导学生说出:可以有两种平移的方法:第一种方法:先向上平移6个单位,再向右平移3个单位;第二种方法:先向右平移3个单位,再向上平移6个单位。

  (2)略

  归纳总结:同学们,通过本节课的学习,你有哪些收获?引导学生说一说解类似题时该注意哪些问题?

  六、课堂作业

  必做题:P60 6、8

  思考题:P61 10

  七年级数学下册教案 13

  一、整式

  ※1.单项式

  ①由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。

  ②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数。

  ③一个单项式中,所有字母的指数和叫做这个单项式的次数。

  ※2.多项式

  ①几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项。其中,不含字母的项叫做常数项。一个多项式中,次数最高项的次数,叫做这个多项式的次数。

  ②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数。多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数。多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数。

  ※3.整式单项式和多项式统称为整式。

  二、整式的加减

  1、整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式。

  2、括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。

  三、同底数幂的乘法

  ※同底数幂的乘法法则:(m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:

  ①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;

  ②指数是1时,不要误以为没有指数;

  ③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;

  ④当三个或三个以上同底数幂相乘时,法则可推广为(其中m、n、p均为正数);

  ⑤公式还可以逆用:(m、n均为正整数)

  四、幂的乘方与积的乘方

  ※1.幂的乘方法则:(m,n都是正数)是幂的乘法法则为基础推导出来的`,但两者不能混淆。

  ※2.。

  ※3.底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3化成-a3

  ※4.底数有时形式不同,但可以化成相同。

  ※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。

  ※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即(n为正整数)。

  ※7.幂的乘方与积乘方法则均可逆向运用。

  五、同底数幂的除法

  ※1.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m、n都是正数,且m>n)。

  ※2.在应用时需要注意以下几点:

  ①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.

  ②任何不等于0的数的0次幂等于1,即,如,(-2.50=1),则00无意义。

  ③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即(a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的;

  七年级数学下册教案 14

  知识与技能:

  掌握本章基本概念与运算,能用本章知识解决实际问题。

  过程与方法:

  通过梳理本章知识点,挖掘知识点间的联系,并应用于实际解题中。

  情感态度:

  领悟分类讨论思想,学会类比学习的方法。

  教学重点:

  本章知识梳理及掌握基本知识点。

  教学难点:

  应用本章知识解决实际与综合问题。

  一、知识框图,整体把握

  教学说明:

  1、通过构建框图,帮助学生回忆本节所有基本概念和基本方法。

  2、帮助学生找出知识间联系,如平方与开平方,平方根与立方根,有理数与实数等等。

  二、释疑解惑,加深理解

  1、利用平方根的'概念解题

  在利用平方根的概念解题时,主要涉及平方根的性质:正数有两个平方根,且它们互为相反数;以及平方根的非负性:被开方数为非负数,算术平方根也为非负数。

  例1已知某数的平方根是a+3及2a—12,求这个数。

  分析:由题意可知,a+3与2a—12互为相反数,则它们的和为0。解:根据题意可得,a+3+2a—12=0

  解得a=3

  ∴a+3=6,2a—12=—6

  ∴这个数是36

  教学说明:

  1、负数没有平方根,非负数才有平方根,它们互为相反数,而0是其中的一个特例。

  2、比较实数的大小

  除常用的法则比较实数大小外,有时要根据题目特点选择特别方法。

  七年级数学下册教案 15

  教学目标

  (一)教学知识点

  1、了解近似数的概念,并按要求取近似数

  2、体会近似数的意义及在生活中的作用

  (二)能力训练要求

  能根据实际问题的需要选取近似数,收集数据

  (三)情感与价值观要求

  进一步体会数学的应用价值,发展“用数学”的信心和能力

  教学重点

  1、体会和感受生活中的近似数和精确数,明白测量的结果都是近似数

  2、能按要求对一个数四舍五入取近似数

  教学难点

  合理地对一个数四舍五入取近似值

  教学方法

  实验——讲——练相结合

  通过测量实验体会生活中存在着近似数和精确数,经过讲解和练习能将一个数按要求取近似值

  教具准备

  1、收集不同形状的树叶制成标本

  2、最小单位是厘米的刻度尺和最小单位是毫米的刻度尺

  教学过程

  Ⅰ、创设情景,引入新课

  [师]在我们学习和生活中,经常会遇到一些数据。例如:

  (1)小明班上有45人;

  (2)吐鲁番盆地低于海平面155米;

  (3)某次地震中,伤亡10万人;

  (4)小红测得数学书的长度为21.0厘米

  而这些数据在收集的过程中,有些是精确的,而有些由于客观条件无法或难以得到精确数据或无需要得到精确数据而取了近似数

  凭你生活的经验,你能判断一下,哪些是精确数?哪些是近似数吗?

  [生]我认为第(1)个中的数据是精确的,而第(2)、(3)、(4)中的数据都是近似的

  [师]很好,下面我们接着来做一个实验,进一步体验近似数的意义和在生活中的作用、

  Ⅱ、引入新课,获得直观的体验

  1、实验——测得树叶的长度

  [师]同学们在下面收集了不少的树叶,把这些树叶制成标本的时候,要求必须在标本中注明每片树叶的长度,下面我们就以同桌为一小组,用你准备好的最小刻度是厘米和最小刻度是毫米的刻度尺测量你收集到的树叶的长度,并读取数据

  (教师可以让学生交流,讨论读取数据的方法,同时给予指导,让同学们体验到测量读取的数据是有误差的)

  [师]在同学们测量的过程中,同桌的小明和小颖用最小单位不同的刻度尺测量了同一片树叶的长度,如图3-1所示:

  图3-1

  (1)根据小明的测量方法,你能知道他用的刻度尺最小刻度是什么吗?这片树叶的长度约为多少?根据小颖的测量呢?

  (2)谁的测量结果更精确一些?说说你的理由

  [生]小明用的刻度尺最小单位是厘米,这片树叶的长度约为6.8厘米,其中6是精确的,8是估计的,即是近似的`;小颖用的刻度尺最小单位是毫米,她测量的结果可以读成6.78厘米,其6和7都是精确的,而8是估计的,即是近似的

  [生]从刚才这位同学的分析,很容易看出小颖测量的结果要比小明的更精确一些

  [师]同学们分析得很精细,同桌的小明和小颖共收集了12片树叶,测得刚才那片树叶的长度的值分别约为6.8厘米和6.78厘米、在这一收集数据的过程中,哪些数据是精确的,哪些数据是近似的呢?

  [生]他们一共收集了12片树叶,这个数据是精确的,而测量的树叶的长度的值是近似的

  [师]大家还可以用你的刻度尺测量一下桌子的长度、厚度,数学课本的长度、厚度,又可以读出一些数据,它们是精确的还是近似的?

  [生]我测得我的课桌的长度是80.5厘米,它是近似的

  [生]我测得课桌的长度是80.45厘米,它也是近似数

  [师]由此,我们可知测量得出的结果都是近似的,例如珠峰的高度是8848米,是测量得出的,它是近似数

  在生活中,除了测量的结果是近似数以外,还有没有其他数据也是近似的?

  [生]有,例如方便面袋子上写着:总净含量110克,数据110克是近似的

  [生]饮料桶标注的净含量是350 mL也是近似数

  [生]天气预报中报到今天的最高气温是28℃,“28℃”这个数据也是近似数

  [生]咱们这本教科书字数是202千字,“202千字”这个数据也是近似的

  [师]真棒,同学们能列举生活中这么多的近似数据,说明同学们平时很留心观察一些事物,这一点很值得肯定

  2、议一议

  图3-2

  (1)上面的数据,哪些是精确的?哪些是近似的?

  (2)举例说明生活中哪些数据是精确的?哪些数据是近似的?

  [生](1)2000年第五次人口普查表明,我国人口总数为12.9533亿,人口总数为12.9533亿这个数据是近似数

  [师]为什么呢?(Why?)

  [生]因为我国地域辽阔,客观条件就决定了在人口普查的过程中是无法或难以得到精确数据的

  [师]的确如此,在测量过程中,我们难以得到精确数据,尽管现在科技的发展,有了更为精密的仪器、在人口普查中,由于客观条件等的限制,也难以或无法取到精确值

  [生]第二幅图是精确值

  [生]第三幅图中,年级共有97人是精确值,而买门票大约需要800元是近似值、

  [师]回答正确、这里的“800元”也是近似值,但这个近似值不是无法或难以得到精确数据,而是根据实际情况要估算一下大约需多少钱,无需得到精确值

  你还能举出生活中一些例子说明哪些数据是精确的?哪些数据是近似的吗?

  [生]小明的身高是1.58米,体重40公斤,年龄14岁,这些数据都是近似数

  [生]小明今天上了6节课,是精确的

  [生]一条草鱼重2.854千克,这个数据也是近似数

  [生]我们班有25个女生,这个数据是精确数

  [师]我们了解了生活中存在着这么多的近似数和精确数,下面我们来看一看如何根据具体情况和要求采用四舍五入法求一个数的近似数、

  3、做一做

  例1小明量得课桌长为1.025米,请按下列要求取这个数的近似数:

  (1)四舍五入到百分位;

  (2)四舍五入到十分位;

  (3)四舍五入到个位、

  [分析]用四舍五入法求一个数的近似数,关键是看四舍五入到哪一位,看这一位后面一位的数够五不够五,来决定取舍,特别注意近似数1.0,末尾的0不能随意去掉、

  解:(1)四舍五入到百分位为1.03米;

  (2)四舍五入到十分位为1.0米;

  (3)四舍五入到个位为1米

  例2小丽与小明在讨论问题

  小丽:如果你把7498近似到千位数,你就会得到7000

  小明:不,我有另外一种解答方法,可以得到不同的答案、首先,将7498近似到百位,得到7500,接着把7500近似到千位,就得到了8000

  小丽:……

  你怎样评价小丽和小明的说法呢?

  [生]小丽的说法是正确的因为一个数近似到千位,要一次做完,看百位上的数决定四舍五入,而不能先近似到百位,再近似到千位

  例3中国国土面积约为9596960千米2,美国和罗马尼亚的国土面积约为9364000千米2(四舍五入到千位)和240000千米2(四舍五入到万位)如果要将中国国土面积与它们相比较,那么中国国土面积分别四舍五入到哪一位时,比较起来的误差可能会小些?

  [分析]对数据进行比较是培养数感的一个重要方面、在对数据进行比较时,有时可以根据需要选择各自的近似数进行比较、在选择近似数时,一般数据要四舍五入到同一数位,这样出现较大误差的可能性会小一些

  解:当与美国的国土面积比较时,可将中国国土面积四舍五入到千位,得到9597000千米2,因为它们同时四舍五入到了千位,这样比较起来误差会小一些

  类似地,当与罗马尼亚国土面积相比较时,可以将中国国土面积四舍五入到万位,得到9600000千米2、

  Ⅲ、课时小结

  [师]通过这节课的学习,你有何体会和收获呢?

  [生]我们知道了测量所得的数据都是近似数

  [生]生活中既有精确的数据,也有近似的数据,因此我们的生活丰富多彩、

  [生]能根据具体情况和要求求一个数的近似数

  [生]用四舍五入法取近似数时,不能随便将小数末尾的零去掉、例如2.03取近似数,四舍五入到十分位,得到近似数2.0,不能把零去掉、

  板书设计

  一、生活中的数据——近似数和精确数

  1、实验测量所得的结果都是近似的(测量树叶的长度)

  2、议一议

  二、根据具体情况,采用四舍五入求一个数的近似数(师生共析,由学生板演)。

【七年级数学下册教案】相关文章:

七年级数学下册教案04-23

七年级数学下册教案01-01

数学下册教案03-16

七年级下册数学教案12-05

(经典)七年级下册数学教案11-07

七年级下册数学教案01-24

七年级数学下册教案湘教版11-04

七年级数学下册教案【精品】11-25

人教版七年级数学下册教案02-21

七年级数学下册优秀教案03-26