【精】高一数学教案
在教学工作者实际的教学活动中,通常会被要求编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么什么样的教案才是好的呢?以下是小编为大家整理的高一数学教案,希望对大家有所帮助。
高一数学教案1
学 习 目 标
1明确空间直角坐标系是如何建立;明确空间中任意一点如何表示;
2 能够在空间直角坐标系中求出点坐标
教 学 过 程
一 自 主 学 习
1平面直角坐标系建立方法,点坐标确定过程、表示方法?
2一个点在平面怎么表示?在空间呢?
3关于一些对称点坐标求法
关于坐标平面 对称点 ;
关于坐标平面 对称点 ;
关于坐标平面 对称点 ;
关于 轴对称点 ;
关于 对轴称点 ;
关于 轴对称点 ;
二 师 生 互动
例1在长方体 中, , 写出 四点坐标
讨论:若以 点为原点,以射线 方向分别为 轴,建立空间直角坐标系,则各顶点坐标又是怎样呢?
变式:已知 ,描出它在空间位置
例2 为正四棱锥, 为底面中心,若 ,试建立空间直角坐标系,并确定各顶点坐标
练1 建立适当直角坐标系,确定棱长为3正四面体各顶点坐标
练2 已知 是棱长为2正方体, 分别为 和 中点,建立适当空间直角坐标系,试写出图中各中点坐标
三 巩 固 练 习
1 关于空间直角坐标系叙述正确是( )
A 中 位置是可以互换
B空间直角坐标系中点与一个三元有序数组是一种一一对应关系
C空间直角坐标系中三条坐标轴把空间分为八个部分
D某点在不同空间直角坐标系中坐标位置可以相同
2 已知点 ,则点 关于原点对称点坐标为( )
A B C D
3 已知 三个顶点坐标分别为 ,则 重心坐标为( )
A B C D
4 已知 为平行四边形,且 , 则顶点 坐标
5 方程 几何意义是
四 课 后 反 思
五 课 后 巩 固 练 习
1 在空间直角坐标系中,给定点 ,求它分别关于坐标平面,坐标轴和原点对称点坐标
2 设有长方体 ,长、宽、高分别为 是线段 中点分别以 所在直线为 轴, 轴, 轴,建立空间直角坐标系
⑴求 坐标;
⑵求 坐标;
高一数学教案2
1.1 集合含义及其表示
教学目标:理解集合的概念;掌握集合的三种表示方法,理解集合中元素的三性及元素与集合的关系;掌握有关符号及术语。
教学过程:
一、阅读下列语句:
1) 全体自然数0,1,2,3,4,5,
2) 代数式 .
3) 抛物线 上所有的点
4) 今年本校高一(1)(或(2))班的全体学生
5) 本校实验室的所有天平
6) 本班级全体高个子同学
7) 著名的科学家
上述每组语句所描述的对象是否是确定的?
二、1)集合:
2)集合的元素:
3)集合按元素的'个数分,可分为1)__________2)_________
三、集合中元素的三个性质:
1)___________2)___________3)_____________
四、元素与集合的关系:1)____________2)____________
五、特殊数集专用记号:
1)非负整数集(或自然数集)______2)正整数集_____3)整数集_______
4)有理数集______5)实数集_____ 6)空集____
六、集合的表示方法:
1)
2)
3)
七、例题讲解:
例1、 中三个元素可构成某一个三角形的三边长,那么此三角形一定不是 ( )
A,直角三角形 B,锐角三角形 C,钝角三角形 D,等腰三角形
例2、用适当的方法表示下列集合,然后说出它们是有限集还是无限集?
1)地球上的四大洋构成的集合;
2)函数 的全体 值的集合;
3)函数 的全体自变量 的集合;
4)方程组 解的集合;
5)方程 解的集合;
6)不等式 的解的集合;
7)所有大于0且小于10的奇数组成的集合;
8)所有正偶数组成的集合;
例3、用符号 或 填空:
1) ______Q ,0_____N, _____Z,0_____
2) ______ , _____
3)3_____ ,
4)设 , , 则
例4、用列举法表示下列集合;
1.
2.
3.
4.
例5、用描述法表示下列集合
1.所有被3整除的数
2.图中阴影部分点(含边界)的坐标的集合
课堂练习:
例6、设含有三个实数的集合既可以表示为 ,也可以表示为 ,则 的值等于___________
例7、已知: ,若 中元素至多只有一个,求 的取值范围。
思考题:数集A满足:若 ,则 ,证明1):若2 ,则集合中还有另外两个元素;2)若 则集合A不可能是单元素集合。
小结:
作业 班级 姓名 学号
1. 下列集合中,表示同一个集合的是 ( )
A . M= ,N= B. M= ,N=
C. M= ,N= D. M= ,N=
2. M= ,X= ,Y= , , .则 ( )
A . B. C. D.
3. 方程组 的解集是____________________.
4. 在(1)难解的题目,(2)方程 在实数集内的解,(3)直角坐标平面内第四象限的一些点,(4)很多多项式。能够组成集合的序号是________________.
5. 设集合 A= , B= ,
C= , D= ,E= 。
其中有限集的个数是____________.
6. 设 ,则集合 中所有元素的和为
7. 设x,y,z都是非零实数,则用列举法将 所有可能的值组成的集合表示为
8. 已知f(x)=x2-ax+b,(a,b R),A= ,B= ,
若A= ,试用列举法表示集合B=
9. 把下列集合用另一种方法表示出来:
(1) (2)
(3) (4)
10. 设a,b为整数,把形如a+b 的一切数构成的集合记为M,设 ,试判断x+y,x-y,xy是否属于M,说明理由。
11. 已知集合A=
(1) 若A中只有一个元素,求a的值,并求出这个元素;
(2) 若A中至多只有一个元素,求a的取值集合。
12.若-3 ,求实数a的值。
【总结】20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文高一数学教案:集合含义及其表示能给您带来帮助!
高一数学教案3
一、学习目标:
知识与技能:理解直线与平面、平面与平面平行的性质定理的含义, 并会应用性质解决问题
过程与方法:能应用文字语言、符号语言、图形语言准确地描述直线与平面、平面与平面的性质定理
情感态度与价值观:通过自主学习、主动参与、积极探究的学习过程,激发学生学习数学的自信心和积极性,培养学生良好的思维习惯,渗透化归与转化的数学思想,体会事物之间相互转化和理论联系实际的辩证唯物主义思想方法
二、学习重、难点
学习重点: 直线与平面、平面与平面平行的性质及其应用
学习难点: 将空间问题转化为平面问题的方法,
三、学法指导及要求:
1、限定45分钟完成,注意逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。
2、把学案中自己易忘、易出错的知识点和疑难问题以及解题方法规律,及时整理在解题本,多复习记忆。3、A:自主学习;B:合作探究;C:能力提升4、小班、重点班完成全部,平行班完成A.B类题
四、知识链接:
1.空间直线与直线的位置关系
2.直线与平面的位置关系
3.平面与平面的位置关系
4.直线与平面平行的判定定理的符号表示
5.平面与平面平行的判定定理的符号表示
五、学习过程:
A问题1:
1)如果一条直线与一个平面平行,那么这条直线与这个平面内的直线有哪些位置关系?
(观察长方体)
2)如果一条直线和一个平面平行,如何在这个平面内做一条直线与已知直线平行?
(可观察教室内灯管和地面)
A问题2: 一条直线与平面平行,这条直线和这个平面内直线的位置关系有几种可能?
A问题3:如果一条直线 与平面平行,在什么条件下直线 与平面内的直线平行呢?
由于直线 与平面内的任何直线无公共点,所以过直线 的`某一平面,若与平面相交,则直线 就平行于这条交线
B自主探究1:已知: ∥, ,=b。求证: ∥b。
直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行
符号语言:
线面平行性质定理作用:证明两直线平行
思想:线面平行 线线平行
例1:有一块木料如图,已知棱BC平行于面AC(1)要经过木料表面ABCD 内的一点P和棱BC将木料锯开,应怎样画线?(2)所画的线和面AC有什么关系?
例2:已知平面外的两条平行直线中的一条平行于这个平面,求证:另一条也平行于这个平面。
问题5:两个平面平行,那么其中一个平面内的直线与另一平面有什么样的关系?两个平面平行,那么其中一个平面内的直线与另一平面内的直线有何关系?
自主探究2:如图,平面,,满足∥,=a,=b,求证:a∥b
平面与平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行
符号语言:
面面平行性质定理作用:证明两直线平行
思想:面面平行 线线平行
例3 求证:夹在两个平行平面间的平行线段相等
六、达标检测:
A1.61页练习
A2.下列判断正确的是( )
A. ∥, ,则 ∥b B. =P,b ,则 与b不平行
C. ,则a∥ D. ∥,b∥,则 ∥b
B3.直线 ∥平面,P,过点P平行于 的直线( )
A.只有一条,不在平面内 B.有无数条,不一定在内
C.只有一条,且在平面内 D.有无数条,一定在内
B4.下列命题错误的是 ( )
A. 平行于同一条直线的两个平面平行或相交
B. 平行于同一个平面的两个平面平行
C. 平行于同一条直线的两条直线平行
D. 平行于同一个平面的两条直线平行或相交
B5. 平行四边形EFGH的四个顶点E、F、G、H、分别在空间四边形ABCD的四条边AB、BC、CD、AD、上,又EF∥BD,则 ( )
A. EH∥BD,BD不平行与FG
B. FG∥BD,EH不平行于BD
C. EH∥BD,FG∥BD
D. 以上都不对
B6.若直线 ∥b, ∥平面,则直线b与平面的位置关系是
B7一个平面上有两点到另一个平面的距离相等,则这两个平面
七、小结与反思:
高一数学教案4
一、教学目标
1.知识与技能
(1)解二分法求解方程的近似解的思想方法,会用二分法求解具体方程的近似解;
(2)体会程序化解决问题的思想,为算法的学习作准备。
2.过程与方法
(1)让学生在求解方程近似解的实例中感知二分发思想;
(2)让学生归纳整理本节所学的知识。
3.情感、态度与价值观
①体会二分法的程序化解决问题的思想,认识二分法的价值所在,使学生更加热爱数学;
②培养学生认真、耐心、严谨的数学品质。
二、 教学重点、难点
重点:用二分法求解函数f(x)的零点近似值的步骤。
难点:为何由︱a - b ︳< 便可判断零点的近似值为a(或b)?
三、 学法与教学用具
1.想-想。
2.教学用具:计算器。
四、教学设想
(一)、创设情景,揭示课题
提出问题:
(1)一元二次方程可以用公式求根,但是没有公式可以用来求解放程 ㏑x+2x-6=0的根;联系函数的零点与相应方程根的关系,能否利用函数的有关知识来求她的根呢?
(2)通过前面一节课的学习,函数f(x)=㏑x+2x-6在区间内有零点;进一步的问题是,如何找到这个零点呢?
(二)、研讨新知
一个直观的想法是:如果能够将零点所在的范围尽量的缩小,那么在一定的精确度的要求下,我们可以得到零点的近似值;为了方便,我们通过“取中点”的方法逐步缩小零点所在的范围。
取区间(2,3)的中点2.5,用计算器算得f(2.5)≈-0.084,因为f(2.5)xf(3)<0,所以零点在区间(2.5,3)内;
再取区间(2.5,3)的中点2.75,用计算器算得f(2.75)≈0.512,因为f(2.75)xf(2.5)<0,所以零点在(2.5,2.75)内;
由于(2,3),(2.5,3),(2.5,2.75)越来越小,所以零点所在范围确实越来越小了;重复上述步骤,那么零点所在范围会越来越小,这样在有限次重复相同的步骤后,在一定的精确度下,将所得到的零点所在区间上任意的一点作为零点的近似值,特别地可以将区间的端点作为零点的近似值。例如,当精确度为0.01时,由于∣2.5390625-2.53125∣=0.0078125<0.01,所以我们可以将x=2.54作为函数f(x)=㏑x+2x-6零点的近似值,也就是方程㏑x+2x-6=0近似值。
这种求零点近似值的方法叫做二分法。
1.师:引导学生仔细体会上边的这段文字,结合课本上的相关部分,感悟其中的.思想方法.
生:认真理解二分法的函数思想,并根据课本上二分法的一般步骤,探索其求法。
2.为什么由︱a - b ︳<便可判断零点的近似值为a(或b)?
先由学生思考几分钟,然后作如下说明:
设函数零点为x0,则a<x0<b,则:
0<x0-a<b-a,a-b<x0-b<0;
由于︱a - b ︳<,所以
︱x0 - a ︳<b-a<,︱x0 - b ︳<∣ a-b∣<,
即a或b 作为零点x0的近似值都达到了给定的精确度。
(三)、巩固深化,发展思维
1.学生在老师引导启发下完成下面的例题
例2.借助计算器用二分法求方程2x+3x=7的近似解(精确到0.01)
问题:原方程的近似解和哪个函数的零点是等价的?
师:引导学生在方程右边的常数移到左边,把左边的式子令为f(x),则原方程的解就是f(x)的零点。
生:借助计算机或计算器画出函数的图象,结合图象确定零点所在的区间,然后利用二分法求解.
(四)、归纳整理,整体认识
在师生的互动中,让学生了解或体会下列问题:
(1)本节我们学过哪些知识内容?
(2)你认为学习“二分法”有什么意义?
(3)在本节课的学习过程中,还有哪些不明白的地方?
(五)、布置作业
P92习题3.1A组第四题,第五题。
高一数学教案5
一、指导思想:
使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。
1。获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2。提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3。提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4。发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5。提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6。具有一定的数学视野,逐步认识数学的.科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二、教材特点:
我们所使用的教材是人教版《普通高中课程标准实验教科书数学(a版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:
1。亲和力:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。
2。问题性:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。
3。科学性与思想性:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。
4。时代性与应用性:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。
三、教法分析:
1。选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。
2。通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3。在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
四、学情分析:
1、基本情况:12班共人,男生人,女生人;本班相对而言,数学尖子约人,中上等生约人,中等生约人,中下生约人,后进生约人。
14班共人,男生人,女生人;本班相对而言,数学尖子约人,中上等生约人,中等生约人,中下生约人,后进生约人。
2、两个班均属普高班,学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。
五、教学措施:
1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。
2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。
4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。
6、重视数学应用意识及应用能力的培养。
高一数学教案6
教学目标:
1、理解对数的概念,能够进行对数式与指数式的互化;
2、渗透应用意识,培养归纳思维能力和逻辑推理能力,提高数学发现能力。
教学重点:
对数的概念
教学过程:
一、问题情境:
1、(1)庄子:一尺之棰,日取其半,万世不竭、①取5次,还有多长?②取多少次,还有0、125尺?
(2)假设20xx年我国国民生产总值为a亿元,如果每年平均增长8%,那么经过多少年国民生产总值是20xx年的2倍?
抽象出:1、=?,=0、125x=?2、=2x=?
2、问题:已知底数和幂的值,如何求指数?你能看得出来吗?
二、学生活动:
1、讨论问题,探究求法、
2、概括内容,总结对数概念、
3、研究指数与对数的关系、
三、建构数学:
1)引导学生自己总结并给出对数的概念、
2)介绍对数的表示方法,底数、真数的含义、
3)指数式与对数式的'关系、
4)常用对数与自然对数、
探究:
⑴负数与零没有对数、
⑵,、
⑶对数恒等式(教材P58练习6)
①;②、
⑷两种对数:
①常用对数:;
②自然对数:、
(5)底数的取值范围为;真数的取值范围为、
四、数学运用:
1、例题:
例1、(教材P57例1)将下列指数式改写成对数式:
(1)=16;(2)=;(3)=20;(4)=0、45、
例2、(教材P57例2)将下列对数式改写成指数式:
(1);(2)3=—2;(3);(4)(补充)ln10=2、303
例3、(教材P57例3)求下列各式的值:
⑴;⑵;⑶(补充)、
2、练习:
P58(练习)1,2,3,4,5、
五、回顾小结:
本节课学习了以下内容:
⑴对数的定义;
⑵指数式与对数式互换;
⑶求对数式的值(利用计算器求对数值)、
六、课外作业:P63习题1,2,3,4、
高一数学教案7
第二十四教时
教材:倍角公式,推导和差化积及积化和差公式
目的:继续复习巩固倍角公式,加强对公式灵活运用的训练;同时,让学生推导出和差化积和积化和差公式,并对此有所了解。
过程:
一、 复习倍角公式、半角公式和万能公式的推导过程:
例一、 已知 , ,tan = ,tan = ,求2 +
(《教学与测试》P115 例三)
解:
又∵tan2 0,tan 0 ,
2 + =
例二、 已知sin cos = , ,求 和tan的值
解:∵sin cos =
化简得:
∵ 即
二、 积化和差公式的推导
sin( + ) + sin( ) = 2sincos sincos = [sin( + ) + sin( )]
sin( + ) sin( ) = 2cossin cossin = [sin( + ) sin( )]
cos( + ) + cos( ) = 2coscos coscos = [cos( + ) + cos( )]
cos( + ) cos( ) = 2sinsin sinsin = [cos( + ) cos( )]
这套公式称为三角函数积化和差公式,熟悉结构,不要求记忆,它的优点在于将积式化为和差,有利于简化计算。(在告知公式前提下)
例三、 求证:sin3sin3 + cos3cos3 = cos32
证:左边 = (sin3sin)sin2 + (cos3cos)cos2
= (cos4 cos2)sin2 + (cos4 + cos2)cos2
= cos4sin2 + cos2sin2 + cos4cos2 + cos2cos2
= cos4cos2 + cos2 = cos2(cos4 + 1)
= cos22cos22 = cos32 = 右边
原式得证
三、 和差化积公式的推导
若令 + = , = ,则 , 代入得:
这套公式称为和差化积公式,其特点是同名的'正(余)弦才能使用,它与积化和差公式相辅相成,配合使用。
例四、 已知cos cos = ,sin sin = ,求sin( + )的值
解:∵cos cos = , ①
sin sin = , ②
四、 小结:和差化积,积化和差
五、 作业:《课课练》P3637 例题推荐 13
P3839 例题推荐 13
P40 例题推荐 13
高一数学教案8
一、教学思想:
使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。
1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。 6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二、教材特点:
我们所使用的教材是人教版《普通高中课程标准实验教科书·数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:
1.“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。
2.“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。
3.“科学性”与“思想性”:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。
4.“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。
三、教法分析:
1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的'冲动,以达到培养其兴趣的目的。
2.通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
四、学情分析:
两个班一个普高一个职高,学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。
五、教学措施:
1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。
2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。
4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。
6、重视数学应用意识及应用能力的培养。
高一数学教案9
一:【课前预习】
(一):【知识梳理】
1.直角三角形的边角关系(如图)
(1)边的关系(勾股定理):AC2+BC2=AB2;
(2)角的关系:B=
(3)边角关系:
①:
②:锐角三角函数:
A的正弦= ;
A的余弦= ,
A的正切=
注:三角函数值是一个比值.
2.特殊角的三角函数值.
3.三角函数的关系
(1) 互为余角的三角函数关系.
sin(90○-A)=cosA, cos(90○-A)=sin A tan(90○-A)= cotA
(2) 同角的三角函数关系.
平方关系:sin2 A+cos2A=l
4.三角函数的大小比较
①正弦、正切是增函数.三角函数值随角的增大而增大,随角的减小而减小.
②余弦是减函数.三角函数值随角的增大而减小,随角的减小而增大。
(二):【课前练习】
1.等腰直角三角形一个锐角的余弦为( )
A. D.l
2.点M(tan60,-cos60)关于x轴的对称点M的.坐标是( )
3.在 △ABC中,已知C=90,sinB=0.6,则cosA的值是( )
4.已知A为锐角,且cosA0.5,那么( )
A.060 B.6090 C.030 D.3090
二:【经典考题剖析】
1.如图,在Rt△ABC中,C=90,A=45,点D在AC上,BDC=60,AD=l,求BD、DC的长.
2.先化简,再求其值, 其中x=tan45-cos30
3. 计算:①sin248○+ sin242○-tan44○tan45○tan 46○ ②cos 255○+ cos235○
4.比较大小(在空格处填写或或=)
若=45○,则sin________cos
若45○,则sin cos
若45,则 sin cos.
5.⑴如图①、②锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律;
⑵根据你探索到的规律,试比较18○、34○、50○、61○、88○这些锐角的正弦值的大小和余弦值的大小.
三:【课后训练】
1. 2sin60-cos30tan45的结果为( )
A. D.0
2.在△ABC中,A为锐角,已知 cos(90-A)= ,sin(90-B)= ,则△ABC一定是( )
A.锐角三角形;B.直角三角形;C.钝角三角形;D.等腰三角形
3.如图,在平面直角坐标系中,已知A(3,0)点B(0,-4),则cosOAB等于__________
4.cos2+sin242○ =1,则锐角=______.
5.在下列不等式中,错误的是( )
A.sin45○sin30○;B.cos60○tan30○;D.cot30○
6.如图,在△ABC中,AC=3,BC=4,AB=5,则tanB的值是()
7.如图所示,在菱形ABCD中,AEBC于 E点,EC=1,B=30,求菱形ABCD的周长.
8.如图所示,在△ABC中,ACB=90,BC=6,AC=8 ,CDAB,求:①sinACD 的值;②tanBCD的值
9.如图 ,某风景区的湖心岛有一凉亭A,其正东方向有一棵大树B,小明想测量A/B之间的距离,他从湖边的C处测得A在北偏西45方向上,测得B在北偏东32方向上,且量得B、C之间的距离为100米,根据上述测量结果,请你帮小明计算A山之间的距离是多少?(结果精确至1米.参考数据:sin32○0.5299,cos32○0.8480)
10.某住宅小区修了一个塔形建筑物AB,如图所示,在与建筑物底部同一水平线的C处,测得点A的仰角为45,然后向塔方向前进8米到达D处,在D处测得点A的仰角为60,求建筑物的高度.(精确0.1米)
高一数学教案10
一、教学目标
1、知识与技能
(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2、过程与方法
(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3、情感态度与价值观
(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点
重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。 难点:柱、锥、台、球的结构特征的`概括。
三、教学用具
(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪 四、教学思路
(一)创设情景,揭示课题
1、教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。
2、所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
(二)、研探新知
1、引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
2、观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?
3、组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。
(1)有两个面互相平行;
(2)其余各面都是平行四边形;
(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。
4、教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
5、提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?
请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?
6、以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
7、让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。
8、引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
9、教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
10、现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?
(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。
1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)
2、棱柱的何两个平面都可以作为棱柱的底面吗?
3、课本P8,习题1.1 A组第1题。
4、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?
5、棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?
四、巩固深化
练习:课本P7 练习1、2(1)(2) 课本P8 习题1.1 第2、3、4题 五、归纳整理
由学生整理学习了哪些内容 六、布置作业
课本P8 练习题1.1 B组第1题
课外练习 课本P8 习题1.1 B组第2题
高一数学教案11
教学目标
1、掌握平面向量的数量积及其几何意义;
2、掌握平面向量数量积的重要性质及运算律;
3、了解用平面向量的数量积可以处理垂直的问题;
4、掌握向量垂直的条件、
教学重难点
教学重点:平面向量的数量积定义
教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用
教学过程
1、平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,
则数量|a||b|cosq叫a与b的数量积,记作a×b,即有a×b=|a||b|cosq,(0≤θ≤π)、
并规定0向量与任何向量的数量积为0、
×探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?
2、两个向量的数量积与实数乘向量的'积有什么区别?
(1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定、
(2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分、符号“·”在向量运算中不是乘号,既不能省略,也不能用“×”代替、
(3)在实数中,若a?0,且a×b=0,则b=0;但是在数量积中,若a?0,且a×b=0,不能推出b=0、因为其中cosq有可能为0、
高一数学教案12
教学目标:
1、掌握平面向量的数量积及其几何意义;
2、掌握平面向量数量积的重要性质及运算律;
3、了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;
4、掌握向量垂直的'条件、
教学重难点:
教学重点:平面向量的数量积定义
教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用
教学工具:
投影仪
教学过程:
一、复习引入:
1、向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ
五,课堂小结
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
六、课后作业
P107习题2、4A组2、7题
课后小结
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
课后习题
高一数学教案13
教学目标:
使学生理解函数的概念,明确决定函数的三个要素,学会求某些函数的定义域,掌握判定两个函数是否相同的方法;使学生理解静与动的辩证关系.
教学重点:
函数的概念,函数定义域的求法.
教学难点:
函数概念的理解.
教学过程:
Ⅰ.课题导入
[师]在初中,我们已经学习了函数的概念,请同学们回忆一下,它是怎样表述的?
(几位学生试着表述,之后,教师将学生的回答梳理,再表述或者启示学生将表述补充完整再条理表述).
设在一个变化的过程中有两个变量x和y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说y是x的函数,x叫做自变量.
[师]我们学习了函数的概念,并且具体研究了正比例函数,反比例函数,一次函数,二次函数,请同学们思考下面两个问题:
问题一:y=1(xR)是函数吗?
问题二:y=x与y=x2x 是同一个函数吗?
(学生思考,很难回答)
[师]显然,仅用上述函数概念很难回答这些问题,因此,需要从新的高度来认识函数概念(板书课题).
Ⅱ.讲授新课
[师]下面我们先看两个非空集合A、B的元素之间的一些对应关系的例子.
在(1)中,对应关系是乘2,即对于集合A中的每一个数n,集合B中都有一个数2n和它对应.
在(2)中,对应关系是求平方,即对于集合A中的每一个数m,集合B中都有一个平方数m2和它对应.
在(3)中,对应关系是求倒数,即对于集合A中的每一个数x,集合B中都有一个数 1x 和它对应.
请同学们观察3个对应,它们分别是怎样形式的对应呢?
[生]一对一、二对一、一对一.
[师]这3个对应的共同特点是什么呢?
[生甲]对于集合A中的任意一个数,按照某种对应关系,集合B中都有惟一的数和它对应.
[师]生甲回答的很好,不但找到了3个对应的共同特点,还特别强调了对应关系,事实上,一个集合中的数与另一集合中的数的对应是按照一定的关系对应的,这是不能忽略的. 实际上,函数就是从自变量x的集合到函数值y的集合的一种对应关系.
现在我们把函数的概念进一步叙述如下:(板书)
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有惟一确定的数f(x)和它对应,那么就称f︰AB为从集合A到集合B的一个函数.
记作:y=f(x),xA
其中x叫自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{y|y=f(x),xA}叫函数的值域.
一次函数f(x)=ax+b(a0)的定义域是R,值域也是R.对于R中的任意一个数x,在R中都有一个数f(x)=ax+b(a0)和它对应.
反比例函数f(x)=kx (k0)的定义域是A={x|x0},值域是B={f(x)|f(x)0},对于A中的任意一个实数x,在B中都有一个实数f(x)= kx (k0)和它对应.
二次函数f(x)=ax2+bx+c(a0)的定义域是R,值域是当a0时B={f(x)|f(x)4ac-b24a };当a0时,B={f(x)|f(x)4ac-b24a },它使得R中的.任意一个数x与B中的数f(x)=ax2+bx+c(a0)对应.
函数概念用集合、对应的语言叙述后,我们就很容易回答前面所提出的两个问题.
y=1(xR)是函数,因为对于实数集R中的任何一个数x,按照对应关系函数值是1,在R中y都有惟一确定的值1与它对应,所以说y是x的函数.
Y=x与y=x2x 不是同一个函数,因为尽管它们的对应关系一样,但y=x的定义域是R,而y=x2x 的定义域是{x|x0}. 所以y=x与y=x2x 不是同一个函数.
[师]理解函数的定义,我们应该注意些什么呢?
(教师提出问题,启发、引导学生思考、讨论,并和学生一起归纳、总结)
注意:①函数是非空数集到非空数集上的一种对应.
②符号f:AB表示A到B的一个函数,它有三个要素;定义域、值域、对应关系,三者缺一不可.
③集合A中数的任意性,集合B中数的惟一性.
④f表示对应关系,在不同的函数中,f的具体含义不一样.
⑤f(x)是一个符号,绝对不能理解为f与x的乘积.
[师]在研究函数时,除用符号f(x)表示函数外,还常用g(x) 、F(x)、G(x)等符号来表示
Ⅲ.例题分析
[例1]求下列函数的定义域.
(1)f(x)=1x-2 (2)f(x)=3x+2 (3)f(x)=x+1 +12-x
分析:函数的定义域通常由问题的实际背景确定.如果只给出解析式y=f(x),而没有指明它的定义域.那么函数的定义域就是指能使这个式子有意义的实数x的集合.
解:(1)x-20,即x2时,1x-2 有意义
这个函数的定义域是{x|x2}
(2)3x+20,即x-23 时3x+2 有意义
函数y=3x+2 的定义域是[-23 ,+)
(3) x+10 x2
这个函数的定义域是{x|x{x|x2}=[-1,2)(2,+).
注意:函数的定义域可用三种方法表示:不等式、集合、区间.
从上例可以看出,当确定用解析式y=f(x)表示的函数的定义域时,常有以下几种情况:
(1)如果f(x)是整式,那么函数的定义域是实数集R;
(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合;
(3)如果f(x)是偶次根式,那么函数的定义域是使根号内的式子不小于零的实数的集合;
(4)如果f(x)是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合(即使每个部分有意义的实数的集合的交集);
(5)如果f(x)是由实际问题列出的,那么函数的定义域是使解析式本身有意义且符合实际意义的实数的集合.
例如:一矩形的宽为x m,长是宽的2倍,其面积为y=2x2,此函数定义域为x0而不是全体实数.
由以上分析可知:函数的定义域由数学式子本身的意义和问题的实际意义决定.
[师]自变量x在定义域中任取一个确定的值a时,对应的函数值用符号f(a)来表示.例如,函数f(x)=x2+3x+1,当x=2时的函数值是f(2)=22+32+1=11
注意:f(a)是常量,f(x)是变量 ,f(a)是函数f(x)中当自变量x=a时的函数值.
下面我们来看求函数式的值应该怎样进行呢?
[生甲]求函数式的值,严格地说是求函数式中自变量x为某一确定的值时函数式的值,因此,求函数式的值,只要把函数式中的x换为相应确定的数(或字母,或式子)进行计算即可.
[师]回答正确,不过要准确地求出函数式的值,计算时万万不可粗心大意噢!
[生乙]判定两个函数是否相同,就看其定义域或对应关系是否完全一致,完全一致时,这两个函数就相同;不完全一致时,这两个函数就不同.
[师]生乙的回答完整吗?
[生]完整!(课本上就是如生乙所述那样写的).
[师]大家说,判定两个函数是否相同的依据是什么?
[生]函数的定义.
[师]函数的定义有三个要素:定义域、值域、对应关系,我们判定两个函数是否相同为什么只看两个要素:定义域和对应关系,而不看值域呢?
(学生窃窃私语:是啊,函数的三个要素不是缺一不可吗?怎不看值域呢?)
(无人回答)
[师]同学们预习时还是欠仔细,欠思考!我们做事情,看问题都要多问几个为什么!函数的值域是由什么决定的,不就是由函数的定义域与对应关系决定的吗!关注了函数的定义域与对应关系,三者就全看了!
(生恍然大悟,我们怎么就没想到呢?)
[例2]求下列函数的值域
(1)y=1-2x (xR) (2)y=|x|-1 x{-2,-1,0,1,2}
(3)y=x2+4x+3 (-31)
分析:求函数的值域应确定相应的定义域后再根据函数的具体形式及运算确定其值域.
对于(1)(2)可用直接法根据它们的定义域及对应法则得到(1)(2)的值域.
对于(3)可借助数形结合思想利用它们的图象得到值域,即图象法.
解:(1)yR
(2)y{1,0,-1}
(3)画出y=x2+4x+3(-31)的图象,如图所示,
当x[-3,1]时,得y[-1,8]
Ⅳ.课堂练习
课本P24练习17.
Ⅴ.课时小结
本节课我们学习了函数的定义(包括定义域、值域的概念)、区间的概念及求函数定义域的方法.学习函数定义应注意的问题及求定义域时的各种情形应该予以重视.(本小结的内容可由学生自己来归纳)
Ⅵ.课后作业
课本P28,习题1、2. 文 章来
高一数学教案14
学习目标 1.函数奇偶性的概念
2.由函数图象研究函数的奇偶性
3.函数奇偶性的判断
重点:能运用函数奇偶性的定义判断函数的奇偶性
难点:理解函数的奇偶性
知识梳理:
1.轴对称图形:
2中心对称图形:
【概念探究】
1、 画出函数 ,与 的图像;并观察两个函数图像的对称性。
2、 求出 , 时的函数值,写出 , 。
结论: 。
3、 奇函数:___________________________________________________
4、 偶函数:______________________________________________________
【概念深化】
(1)、强调定义中任意二字,奇偶性是函数在定义域上的整体性质。
(2)、奇函数偶函数的定义域关于原点对称。
5、奇函数与偶函数图像的对称性:
如果一个函数是奇函数,则这个函数的图像是以坐标原点为对称中心的__________。反之,如果一个函数的图像是以坐标原点为对称中心的中心对称图形,则这个函数是___________。
如果一个函数是偶函数,则这个函数的图像是以 轴为对称轴的__________。反之,如果一个函数的图像是关于 轴对称,则这个函数是___________。
6. 根据函数的奇偶性,函数可以分为____________________________________.
题型一:判定函数的奇偶性。
例1、判断下列函数的奇偶性:
(1) (2) (3)
(4) (5)
练习:教材第49页,练习A第1题
总结:根据例题,你能给出用定义判断函数奇偶性的步骤?
题型二:利用奇偶性求函数解析式
例2:若f(x)是定义在R上的奇函数,当x0时,f(x)=x(1-x),求当 时f(x)的解析式。
练习:若f(x)是定义在R上的奇函数,当x0时,f(x)=x|x-2|,求当x0时f(x)的解析式。
已知定义在实数集 上的奇函数 满足:当x0时, ,求 的.表达式
题型三:利用奇偶性作函数图像
例3 研究函数 的性质并作出它的图像
练习:教材第49练习A第3,4,5题,练习B第1,2题
当堂检测
1 已知 是定义在R上的奇函数,则( D )
A. B. C. D.
2 如果偶函数 在区间 上是减函数,且最大值为7,那么 在区间 上是( B )
A. 增函数且最小值为-7 B. 增函数且最大值为7
C. 减函数且最小值为-7 D. 减函数且最大值为7
3 函数 是定义在区间 上的偶函数,且 ,则下列各式一定成立的是(C )
A. B. C. D.
4 已知函数 为奇函数,若 ,则 -1
5 若 是偶函数,则 的单调增区间是
6 下列函数中不是偶函数的是(D )
A B C D
7 设f(x)是R上的偶函数,切在 上单调递减,则f(-2),f(- ),f(3)的大小关系是( A )
A B f(- )f(-2) f(3) C f(- )
8 奇函数 的图像必经过点( C )
A (a,f(-a)) B (-a,f(a)) C (-a,-f(a)) D (a,f( ))
9 已知函数 为偶函数,其图像与x轴有四个交点,则方程f(x)=0的所有实根之和是( A )
A 0 B 1 C 2 D 4
10 设f(x)是定义在R上的奇函数,且x0时,f(x)= ,则f(-2)=_-5__
11若f(x)在 上是奇函数,且f(3)_f(-1)
12.解答题
用定义判断函数 的奇偶性。
13定义证明函数的奇偶性
已知函数 在区间D上是奇函数,函数 在区间D上是偶函数,求证: 是奇函数
14利用函数的奇偶性求函数的解析式:
已知分段函数 是奇函数,当 时的解析式为 ,求这个函数在区间 上的解析表达式。
高一数学教案15
一、教材分析
1、 教材的地位和作用:
函数是数学中最主要的概念之一,而函数概念贯穿在中学数学的始终,概念是数学的基础,概念性强是函数理论的一个显著特点,只有对概念作到深刻理解,才能正确灵活地加以应用。本课中对函数概念理解的程度会直接影响其它知识的学习,所以函数的第一课时非常的重要。
2、 教学目标及确立的依据:
教学目标:
(1) 教学知识目标:了解对应和映射概念、理解函数的近代定义、函数三要素,以及对函数抽象符号的理解。
(2) 能力训练目标:通过教学培养的抽象概括能力、逻辑思维能力。
(3) 德育渗透目标:使懂得一切事物都是在不断变化、相互联系和相互制约的辩证唯物主义观点。
教学目标确立的依据:
函数是数学中最主要的概念之一,而函数概念贯穿整个中学数学,如:数、式、方程、函数、排列组合、数列极限等都是以函数为中心的代数。加强函数教学可帮助学好其他的内容。而掌握好函数的概念是学好函数的基石。
3、教学重点难点及确立的依据:
教学重点:映射的概念,函数的近代概念、函数的三要素及函数符号的理解。
教学难点:映射的概念,函数近代概念,及函数符号的理解。
重点难点确立的依据:
映射的概念和函数的近代定义抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的来说不易理解。而且由于函数在高考中可以以低、中、高挡题出现,所以近年来有一种“函数热”的趋势,所以本节的重点难点必然落在映射的概念和函数的近代定义及函数符号的理解与运用上。
二、教材的处理:
将映射的定义及类比手法的运用作为本课突破难点的关键。 函数的定义,是以集合、映射的观点给出,这与初中教材变量值与对应观点给出不一样了,从而给本身就很抽象的函数概念的理解带来更大的困难。为解决这难点,主要是从实际出发调动学生的学习热情与参与意识,运用引导对比的手法,启发引导学生进行有目的的反复比较几个概念的异同,使真正对函数的概念有很准确的认识。
三、教学方法和学法
教学方法:讲授为主,自主预习为辅。
依据是:因为以新的观点认识函数概念及函数符号与运用时,更重要的是必须给学生讲清楚概念及注意事项,并通过师生的共同讨论来帮助学生深刻理解,这样才能使函数的概念及符号的运用在学生的思想和知识结构中打上深刻的烙印,为能学好后面的知识打下坚实的基础。
学法:四、教学程序
一、课程导入
通过举以下一个通俗的例子引出通过某个对应法则可以将两个非空集合联系在一起。
例1:把高一(12)班和高一(11)全体同学分别看成是两个集合,问,通过“找好朋友”这个对应法则是否能将这两个集合的某些元素联系在一起?
二. 新课讲授:
(1) 接着再通过幻灯片给出六组学生熟悉的数集的对应关系引导学生归纳它们的共同性质(一对一,多对一),进而给出映射的概念,表示符号f:a→b,及原像和像的定义。强调指出非空集合a到非空集合b的映射包括三部分即非空集合a、b和a到b的对应法则 f。进一步引导判断一个从a到b的对应是否为映射的关键是看a中的任意一个元素通过对应法则f在b中是否有唯一确定的元素与之对应。
(2)巩固练习课本52页第八题。
此练习能让更深刻的认识到映射可以“一对多,多对一”但不能是“一对多”。
例1. 给出学生初中学过的函数的传统定义和几个简单的一次、二次函数,通过画图表示这些函数的对应关系,引导发现它们是特殊的映射进而给出函数的近代定义(设a、b是两个非空集合,如果按照某种对应法则f,使得a中的任何一个元素在集合b中都有唯一的元素与之对应则这样的对应叫做集合a到集合b的映射,它包括非空集合a和b以及从a到b的对应法则f),并说明把函f:a→b记为y=f(x),其中自变量x的取值范围a叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{ f(x):x∈a}叫做函数的值域。
并把函数的近代定义与映射定义比较使认识到函数与映射的区别与联系。(函数是非空数集到非空数集的.映射)。
再以让判断的方式给出以下关于函数近代定义的注意事项:2. 函数是非空数集到非空数集的映射。
3. f表示对应关系,在不同的函数中f的具体含义不一样。
4. f(x)是一个符号,不表示f与x的乘积,而表示x经过f作用后的结果。
5. 集合a中的数的任意性,集合b中数的唯一性。
66. “f:a→b”表示一个函数有三要素:法则f(是核心),定义域a(要优先),值域c(上函数值的集合且c∈b)。
三.讲解例题
例1.问y=1(x∈a)是不是函数?
解:y=1可以化为y=0*x+1
画图可以知道从x的取值范围到y的取值范围的对应是“多对一”是从非空数集到非空数集的映射,所以它是函数。
[注]:引导从集合,映射的观点认识函数的定义。
四.课时小结:
1. 映射的定义。
2. 函数的近代定义。
3. 函数的三要素及符号的正确理解和应用。
4. 函数近代定义的五大注意点。
五.课后作业及板书设计
书本p51 习题2.1的1、2写在书上3、4、5上交。
预习函数三要素的定义域,并能求简单函数的定义域。
函数(一)
一、映射:
2.函数近代定义: 例题练习
二、函数的定义 [注]1—5
1.函数传统定义
三、作业:
【高一数学教案】相关文章:
高一优秀数学教案09-28
高一数学教案11-05
人教版高一数学教案06-10
高一数学教案【热门】11-28
高一数学教案【荐】12-02
高一数学教案【热】12-03
【热门】高一数学教案11-26
【荐】高一数学教案11-27
高一数学教案【精】11-29