现在位置:范文先生网>教案大全>物理教案>高三物理教案

高三物理教案

时间:2022-11-22 10:50:54 物理教案 我要投稿

高三物理教案精选15篇

  作为一名为他人授业解惑的教育工作者,就难以避免地要准备教案,教案有助于学生理解并掌握系统的知识。那么问题来了,教案应该怎么写?以下是小编整理的高三物理教案,仅供参考,大家一起来看看吧。

高三物理教案精选15篇

高三物理教案1

  1、知识与技能

  (1)通过实验了解光电效应的实验规律。

  (2)知道爱因斯坦光电效应方程以及意义。

  (3)了解康普顿效应,了解光子的动量

  2、过程与方法:经历科学探究过程,认识科学探究的意义,尝试应用科学探究的方法研究物理问题,验证物理规律。

  3、情感、态度与价值观:领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。

  教学重点:光电效应的实验规律

  教学难点:爱因斯坦光电效应方程以及意义

  教学方法:教师启发、引导,学生讨论、交流。

  教学用具:投影片,多媒体辅助教学设备

  (一)引入新课

  回顾前面的学习,总结人类对光的本性的认识的发展过程?

  (多媒体投影,见课件。)光的干涉、衍射现象说明光是电磁波,光的偏振现象进一步说明光还是横波。19世纪60年代,麦克斯韦又从理论上确定了光的电磁波本质。然而,出人意料的是,正当人们以为光的波动理论似乎非常完美的时候,又发现了用波动说无法解释的新现象——光电效应现象。对这一现象及其他相关问题的研究,使得人们对光的又一本质性认识得到了发展。

  (二)进行新课

  1、光电效应

  实验演示1:(课件辅助讲述)用弧光灯照射擦得很亮的锌板,(注意用导线与不带电的验电器相连),使验电器张角增大到约为30度时,再用与丝绸磨擦过的玻璃棒去靠近锌板,则验电器的指针张角会变大。上述实验说明了什么?(表明锌板在射线照射下失去电子而带正电)

  概念:在光(包括不可见光)的照射下,从物体发射电子的现象叫做光电效应。发射出来的电子叫做光电子。

  2、光电效应的实验规律

  (1)光电效应实验

  如图所示,光线经石英窗照在阴极上,便有电子逸出----光电子。光电子在电场作用下形成光电流。

  概念:遏止电压,将换向开关反接,电场反向,则光电子离开阴极后将受反向电场阻碍作用。当K、A间加反向电压,光电子克服电场力作功,当电压达到某一值Uc时,光电流恰为0。Uc称遏止电压。

  根据动能定理,有:

  (2)光电效应实验规律

  ①光电流与光强的关系:饱和光电流强度与入射光强度成正比。

  ②截止频率νc----极限频率,对于每种金属材料,都相应的有一确定的截止频率νc,当入射光频率ν>νc时,电子才能逸出金属表面;当入射光频率ν<νc时,无论光强多大也无电子逸出金属表面。

  ③光电效应是瞬时的。从光开始照射到光电子逸出所需时间<10-9s。

  3、光电效应解释中的疑难

  经典理论无法解释光电效应的实验结果。

  经典理论认为,按照经典电磁理论,入射光的.光强越大,光波的电场强度的振幅也越大,作用在金属中电子上的力也就越大,光电子逸出的能量也应该越大。也就是说,光电子的能量应该随着光强度的增加而增大,不应该与入射光的频率有关,更不应该有什么截止频率。

  光电效应实验表明:饱和电流不仅与光强有关而且与频率有关,光电子初动能也与频率有关。只要频率高于极限频率,即使光强很弱也有光电流;频率低于极限频率时,无论光强再大也没有光电流。

  光电效应具有瞬时性。而经典认为光能量分布在波面上,吸收能量要时间,即需能量的积累过程。

  为了解释光电效应,爱因斯坦在能量子假说的基础上提出光子理论,提出了光量子假设。

  4、爱因斯坦的光量子假设

  (1)内容

  光不仅在发射和吸收时以能量为hν的微粒形式出现,而且在空间传播时也是如此。也就是说,频率为ν的光是由大量能量为E=hν的光子组成的粒子流,这些光子沿光的传播方向以光速c运动。

  (2)爱因斯坦光电效应方程

  在光电效应中金属中的电子吸收了光子的能量,一部分消耗在电子逸出功W0,另一部分变为光电子逸出后的动能Ek。由能量守恒可得出:

  W0为电子逸出金属表面所需做的功,称为逸出功。Wk为光电子的最大初动能。

  (3)爱因斯坦对光电效应的解释

  ①光强大,光子数多,释放的光电子也多,所以光电流也大。

  ②电子只要吸收一个光子就可以从金属表面逸出,所以不需时间的累积。

  ③从方程可以看出光电子初动能和照射光的频率成线性关系

  ④从光电效应方程中,当初动能为零时,可得极限频率:

  爱因斯坦光子假说圆满解释了光电效应,但当时并未被物理学家们广泛承认,因为它完全违背了光的波动理论。

  5、光电效应理论的验证

  美国物理学家密立根,花了十年时间做了“光电效应”实验,结果在1915年证实了爱因斯坦光电效应方程,h的值与理论值完全一致,又一次证明了“光量子”理论的正确。

  6、展示演示文稿资料:爱因斯坦和密立根

  由于爱因斯坦提出的光子假说成功地说明了光电效应的实验规律,荣获1921年诺贝尔物理学奖。

  密立根由于研究基本电荷和光电效应,特别是通过著名的油滴实验,证明电荷有最小单位。获得1923年诺贝尔物理学奖。

  点评:应用物理学家的历史资料,不仅有真实感,增强了说服力,同时也能对学生进行发放教育,有利于培养学生的科学态度和科学精神,激发学生的探索精神。

  光电效应在近代技术中的应用

  (1)光控继电器

  可以用于自动控制,自动计数、自动报警、自动跟踪等。

  (2)光电倍增管

  可对微弱光线进行放大,可使光电流放大105~108倍,灵敏度高,用在工程、天文、科研、军事等方面。

高三物理教案2

  经过一年的复习教学,送走了又一届高三学生,回想这一年来的工作,我觉得反思使我的教学有了长足的进步,成文如下:

  一、反思学生的基础,学习习惯

  学生的力学学习得太差,好几次在讲例子时,学生就说听不懂,也就在班主任面前说某老师教来我听不懂,要求与上位老师一样,换掉,我当然不明白其中的理由,之后才明白,我在解题时中间有一个计算步骤我省略了,我以为学生没有问题,就一个数学运算就应没问题,可哪里明白这个班的学生天生就习惯理解,自己从不主动去思考动手解决问题,我开始反思,怎样才能使学生听得懂?做得来?原先学生的基础差,底子薄,务必从简单的、基本的抓起,于是,我决定,少而精的讲例子,每讲一个例子,得每一步在黑板上板书,然后针对学生的水平做一个类似的题目,渐渐地学生学会做一些题目了,也就不觉得听不懂了

  二、反思教学困惑,构成教学论文

  在复习动能定理时,常常遇到连接体问题,要学生对多个质点运用动能定理,公式多,学生感到拿手,经常出错,于是我想;能不能使问题简化呢?在高中阶段,常常是连接两物体的力的功的代数和为零,我想到把多个动能定理的公式相加,消去了连接物体的力的功,得到质点组动能定理,把它介绍给学生,说明它的适用范围,学生很容易掌握,于是我把它构成论文;在讲振动和波动时,学生对振动图像和波动图像容易混淆,在做作业的过程中经常出错,而近几年又经常考振动和波动相结合的题,怎样才能使学生更好的区别呢?我反思后写了《正确处理振动和波动的内在关系》一文,像这种类似的反思很多,我发表十多篇反思构成的文章,透过反思文章,使学生的知识难点得到了突破。

  三、反思思想方法,培养建模潜力

  在总复习中,除认真复习知识之外,我还要推荐同学们务必重视对各种物理思想方法的进一步了解和掌握。表面看,这似乎与知识的复习不搭界,其实这才是一项更高层次、更高效率的复习方法。那么,有哪些思想方法需要好好小结呢?我认为至少有以下一些:例如解静力学、动力学问题常用的隔离法、整体法;处理复杂运动常用的运动合成法;追溯解题出发点的`分析法;简单明了的图线法;以易代难的等效代换法等等,均为中学物理中基本的思维方法。当然,也还有其它一些属于更巧、更简捷的思维方法。然而两者相比,我主张更要关心基本的常用的思想方法。这些思想方法,一般说,在复习课上老师都会提及,一些写得好的参考书中也会有介绍。同学们在听课和阅读中除关心知识点之外,务请注意这些思维方法的实际应用,要好好消化、吸收,化为己有,再在练习中有意识运用,进一步熟悉它们。此外,在讲课中,要讲清怎样建立物理模型;怎样随着审题而描绘物理情景;怎样分析物理过程;怎样寻找临界状态及与其相应的条件;如何挖掘隐含物理量等等。这些,都是远比列出物理方程完成解题任务更有价值的东西。实践告诉我们,在高三学年,同学们毕竟比高一、高二时有了更强的理解潜力,有了更强的综合分析潜力的优势。一旦领悟掌

  握了方法,就如虎添翼,往往能发挥出比老师更强、更敏捷的思维潜力。

  四、反思教法,听同事授课相互交流

  在复习教学中,经常感到复习课上法单一,没有新意,为了防止长时间的教学方法的单一带来的负面影响,我们高三的几位教师采取了经常听课的方式,只要有时间,就去听同行老师的课,不分场合,不举形式听随堂课,学习他人的教学方法和教学手段,吸取他人的长处,为我所用,听他人是怎样上这些资料的,自己是怎样上的,自己的课有什么不足,别人的课有哪些优点,下一次在上那里时我要怎样上才好,透过这样的相互听课,相互学习,提高自我,提高复习课的质量。

  五、反思作业训练规范练习

  练习在总复习中是举足轻重的一环,要想透过练习到达巩固知识、提高潜力的目的,力求规范地解题是就应遵循的一个原则。具体说务求做到两条:①要规范地使用物理规律。不少同学常从生活经验角度去解物理题,比如用动能定理时习惯从功、能的数值上加加减减来得到结果,而不问列式的物理好处。这种不规范的混乱的思维方式,只能使认知水平停滞在生活经验的层次上,正是复习中一大障碍。物理学自有本身固有的思维规律和方法,像动能定理的应用,首先要求弄清所研究的过程及研究对象在此过程中的受力状况,然后区别各力做功的正、负,再搞清过程的初态和终态,最后按外力功的代数和等于动能增量列出方程,这之后的代数运算便容易了。如果在平时练习中始终能坚持这样规范地使用物理定律、定理,时间久了必然会加深对规律的理解,潜力必须会上升到新的层次。②要将题做完整。我接触过一些学生,做练习“浮而不实”,列出几个物理方程便丢手不做或整理到代数式但懒于代入数字运算等,都不肯将题解到底。他们之中不乏最后失败的实例,均因为他们没有从日常的练习中得到收益。许多物理题,粗一看解题方向似乎很明显,仔细一解才发现里边隐含着重要的变化及关键。再说,一个完整的解题要有严密的逻辑过程;要有简明

  扼要的文字表述;有单位的处理;有数字的运算……所有这些,无不涉及双基知识及个人的素养和潜力,都是要透过训练来加以提高改善的。那种蜻蜓点水式的解题,不可能在这些方面得到不断启发和训练,题解得再多,然而水平提高不快、工作不实,最后必定导致复习工作的低效率。

  教学只有在不断的反思中才会有所进步,也只有学会反思的教师,所谓“亲其师,信其道”,只有不断反思的教师,才会获得学生的喜爱,才会立于教学不败之地。

高三物理教案3

  1、与技能:掌握运用动量守恒定律的一般步骤。

  2、过程与:知道运用动量守恒定律解决问题应注意的问题,并知道运用动量守恒定律解决有关问题的优点。

  3、情感、态度与价值观:学会用动量守恒定律分析解决碰撞、爆炸等物体相互作用的问题,培养。

  教学重点:运用动量守恒定律的一般步骤。

  教学难点:动量守恒定律的应用。

  教学方法:启发、引导,讨论、交流。

  教学用具:投影片、多媒体辅助教学设备。

  (一)引入新课

  动量守恒定律的内容是什么?分析动量守恒定律成立条件有哪些?(①F合=0(严格条件)②F内 远大于F外(近似条件,③某方向上合力为0,在这个方向上成立。)

  (二)进行新课

  1、动量守恒定律与牛顿运动定律

  用牛顿定律自己推导出动量守恒定律的表达式。

  (1)推导过程:

  根据牛顿第二定律,碰撞过程中1、2两球的加速度分别是:

  根据牛顿第三定律,F1、F2等大反响,即 F1= - F2 所以:

  碰撞时两球间的作用时间极短,用 表示,则有:

  代入 并整理得

  这就是动量守恒定律的`表达式。

  (2)动量守恒定律的重要意义

  从现代物理学的理论高度来认识,动量守恒定律是物理学中最基本的普适原理之一。(另一个最基本的普适原理就是能量守恒定律。)从科学实践的角度来看,迄今为止,人们尚未发现动量守恒定律有任何例外。相反,每当在实验中观察到似乎是违反动量守恒定律的现象时,物理学家们就会提出新的假设来补救,最后总是以有新的发现而胜利告终。例如静止的原子核发生β衰变放出电子时,按动量守恒,反冲核应该沿电子的反方向运动。但云室照片显示,两者径迹不在一条直线上。为解释这一反常现象,1930年泡利提出了中微子假说。由于中微子既不带电又几乎无质量,在实验中极难测量,直到1956年人们才首次证明了中微子的存在。(20xx年综合题23 ②就是根据这一事实设计的)。又如人们发现,两个运动着的带电粒子在电磁相互作用下动量似乎也是不守恒的。这时物理学家把动量的概念推广到了电磁场,把电磁场的动量也考虑进去,总动量就又守恒了。

  2、应用动量守恒定律解决问题的基本思路和一般方法

  (1)分析题意,明确研究对象

  在分析相互作用的物体总动量是否守恒时,通常把这些被研究的物体总称为系统.对于比较复杂的物理过程,要采用程序法对全过程进行分段分析,要明确在哪些阶段中,哪些物体发生相互作用,从而确定所研究的系统是由哪些物体组成的。

  (2)要对各阶段所选系统内的物体进行受力分析

  弄清哪些是系统内部物体之间相互作用的内力,哪些是系统外物体对系统内物体作用的外力。在受力分析的基础上根据动量守恒定律条件,判断能否应用动量守恒。

  (3)明确所研究的相互作用过程,确定过程的始、末状态

  即系统内各个物体的初动量和末动量的量值或表达式。

  注意:在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系。

  (4)确定好正方向建立动量守恒方程求解。

  3、动量守恒定律的应用举例

  例2:如图所示,在光滑水平面上有A、B两辆小车,水平面的左侧有一竖直墙,在小车B上坐着一个小孩,小孩与B车的总质量是A车质量的10倍。两车开始都处于静止状态,小孩把A车以相对于地面的速度v推出,A车与墙壁碰后仍以原速率返回,小孩接到A车后,又把它以相对于地面的速度v推出。每次推出,A车相对于地面的速度都是v,方向向左。则小孩把A车推出几次后,A车返回时小孩不能再接到A车?

  分析:此题过程比较复杂,情景难以接受,所以在讲解之前,教师应多带领学生分析物理过程,创设情景,降低理解难度。

  解:取水平向右为正方向 高一,小孩第一次

  推出A车时:mBv1-mAv=0

  即: v1=

  第n次推出A车时:mAv +mBvn-1=-mAv+mBvn

  则: vn-vn-1= ,

  所以: vn=v1+(n-1)

  当vn≥v时,再也接不到小车,由以上各式得n≥5.5 取n=6

  点评:关于n的取值也是应引导学生仔细分析的问题,告诫学生不能盲目地对结果进行“四舍五入”,一定要注意结论的物理意义。

高三物理教案4

  教学目标

  1、知识与技能

  (1)了解康普顿效应,了解光子的动量

  (2)了解光既具有波动性,又具有粒子性;

  (3)知道实物粒子和光子一样具有波粒二象性;

  (4)了解光是一种概率波。

  2、过程与方法:

  (1)了解物理真知形成的历史过程;

  (2)了解物理学研究的基础是实验事实以及实验对于物理研究的重要性;

  (3)知道某一物质在不同环境下所表现的不同规律特性。

  3、情感、态度与价值观:

  领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。

  教学重点:

  实物粒子和光子一样具有波粒二象性

  教学难点:

  实物粒子的波动性的理解。

  教学方法:

  教师启发、引导,学生讨论、交流。

  教学用具:

  投影片,多媒体辅助教学设备

  (一)引入新课

  提问:前面我们学习了有关光的一些特性和相应的事实表现,那么我们究竟怎样来认识光的本质和把握其特性呢?(光是一种物质,它既具有粒子性,又具有波动性。在不同条件下表现出不同特性,分别举出有关光的干涉衍射和光电效应等实验事实)。

  我们不能片面地认识事物,能举出本学科或其他学科或生活中类似的事或物吗?

  (二)进行新课

  1、康普顿效应

  (1)光的散射:光在介质中与物质微粒相互作用,因而传播方向发生改变,这种现象叫做光的散射。

  (2)康普顿效应

  1923年康普顿在做 X 射线通过物质散射的实验时,发现散射线中除有与入射线波长相同的射线外,还有比入射线波长更长的射线,其波长的改变量与散射角有关,而与入射线波长和散射物质都无关。

  (3)康普顿散射的实验装置与规律:

  按经典电磁理论:如果入射X光是某种波长的电磁波,散射光的波长是不会改变的!散射中出现 的现象,称为康普顿散射。

  康普顿散射曲线的特点:

  ① 除原波长 外出现了移向长波方向的新的散射波长

  ② 新波长 随散射角的增大而增大。波长的偏移为

  波长的偏移只与散射角 有关,而与散射物质种类及入射的X射线的波长 无关,

  = 0.0241=2.4110-3nm(实验值)

  称为电子的Compton波长

  只有当入射波长 与 可比拟时,康普顿效应才显著,因此要用X射线才能观察到康普顿散射,用可见光观察不到康普顿散射。

  (4)经典电磁理论在解释康普顿效应时遇到的困难

  ①根据经典电磁波理论,当电磁波通过物质时,物质中带电粒子将作受迫振动,其频率等于入射光频率,所以它所发射的散射光频率应等于入射光频率。

  ②无法解释波长改变和散射角的关系。

  (5)光子理论对康普顿效应的解释

  ①若光子和外层电子相碰撞,光子有一部分能量传给电子,散射光子的能量减少,于是散射光的波长大于入射光的波长。

  ②若光子和束缚很紧的内层电子相碰撞,光子将与整个原子交换能量,由于光子质量远小于原子质量,根据碰撞理论, 碰撞前后光子能量几乎不变,波长不变。

  ③因为碰撞中交换的能量和碰撞的角度有关,所以波长改变和散射角有关。

  (6)康普顿散射实验的意义

  ①有力地支持了爱因斯坦光量子假设;

  ②首次在实验上证实了光子具有动量的假设;③证实了在微观世界的单个碰撞事件中,动量和能量守恒定律仍然是成立的。

  2、光的波粒二象性

  讲述光的波粒二象性,进行归纳整理。

  (1)我们所学的`大量事实说明:光是一种波,同时也是一种粒子,光具有波粒二象性。光的分立性和连续性是相对的,是不同条件下的表现,光子的行为服从统计规律。

  (2)光子在空间各点出现的概率遵从波动规律,物理学中把光波叫做概率波。

  3、光的波动性与粒子性是不同条件下的表现:

  大量光子行为显示波动性;个别光子行为显示粒子性;光的波长越长,波动性越强;光的波长越短,粒子性越强。光的波动性不是光子之间相互作用引起的,是光子本身的一种属性。

  例题:已知每秒从太阳射到地球上垂直于太阳光的每平方米截面上的辐射能为1.4103J,其中可见光部分约占45%,假设认为可见光的波长均为0.55m,太阳向各个方向的辐射是均匀的,日地之间距离为R=1.51011m,估算出太阳每秒辐射出的可见光的光子数。(保留两位有效数字)

高三物理教案5

  1.某金属在一黄光照射下,正好有电子逸出,下述说法中,哪种是正确的 ( )

  A.增大光强,而不改变光的频率,光电子的最大初动能将不变

  B.用一束更大强度的红光代替黄光,仍能发生光电效应

  C.用强度相同的紫光代替黄光,光电流强度将不变

  D.用强度较弱的紫光代替黄光,有可能不发生光电效应

  答案 A

  要点二 光的波粒二象性

  2.物理学家做了一个有趣的实验:在光屏处放上照相用的底片.若减弱光的强度,使光子只能一个一个地通过狭缝.实验结果表明,如果曝光时间不太长,底片只能出现一些不规则的点子;如果曝光时间足够长,底片上就会出现规则的干涉条纹.对这个实验结果有下列认识,其中正确的是 ( )

  A.曝光时间不太长时,底片上只能出现一些不规则的点子,表现出光的波动性

  B.单个光子通过双缝后的落点可以预测

  C.只有大量光子的行为才能表现出光的粒子性

  D.干涉条纹中明亮的部分是光子到达机会较多的地方

  答案 D

  题型1 对光电效应规律的理解

  【例1】关于光电效应,下列说法正确的是 ( )

  A.光电子的最大初动能与入射光的频率成正比

  B.光电子的动能越大,光电子形成的电流强度就越大

  C.用不可见光照射金属一定比用可见光照射同种金属产生的光电子的初动能要大

  D.对于任何一种金属都存在一个最大波长,入射光的波长必须小于这个波长,才能产生光电 效应

  答案 D

  题型2 光电效应方程的应用

  【例2】如图所示,一光电管的'阴极用极限波长为 0的钠制成.用波长为的紫外线照射阴极,光电管阳极A和阴极K之间的电势差为U,光电流的饱和值为I.

  (1)求每秒由K极发射的电子数.

  (2)求电子到达A极时的最大动能.(普朗克常量为h,电子的电荷量为e)?

  答案 (1)

  题型3 光子说的应用

  【例3】根据量子理论,光子的能量E和动量p之间的关系式为E=pc,其中c表示光速,由于光子有动量,照到物体表面的光子被物体吸收或反射时都会对物体产生压强,这就是光压,用I表示.

  (1)一台二氧化碳气体激光器发出的激光,功率为P0,射出光束的横截面积为S,当它垂直照射到一物体表面并被物体全部反射时,激光对物体表面的压力F=2pN,其中p表示光子的动量,N表示单位时间内激光器射出的光子数,试用P0和S表示该束激光对物体产生的光压I.

  (2)有人设想在宇宙探测中用光作为动力推动探测器加速,探测器上安装有面积极大、反射率极高的薄膜,并让它正对太阳,已知太阳光照射薄膜对每1 m2面积上的辐射功率为1.35 kW,探测器和薄膜的总质量为M=100 kg,薄膜面积为4104 m2,求此时探测器的加速度大小(不考虑万有引力等其他的力)?

  答案 (1)I= (2)3.610-3 m/s2

  题型4 光电结合问题

  【例4】波长为 =0.17m的紫外线照射至金属筒上能使其发射光电子,光电子在磁感应强度为B的匀强磁场中,做最大半径为r的匀速圆周运动时,已知rB=5.610-6 Tm,光电子质量m=9.110-31 kg,电荷量e=1.610-19 C.求:

  (1)光电子的最大动能.

  (2)金属筒的逸出功.

  答案 (1)4.4110-19 J (2)7.310-19?J

高三物理教案6

  相对论指出,物体的能量(E)和质量(m)之间存在着密切的关系,即E=mc2式中,c为真空中的光速。爱因斯坦质能方程表明:物体所具有的`能量跟它的质量成正比。由于c2这个数值十分巨大,因而物体的能量是十分可观的。

高三物理教案7

  第四课时 电磁感应中的力学问题

  【知识要点回顾】

  1.基本思路

  ①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向;

  ②求回路电流;

  ③分析导体受力情况(包含安培力,用左手定则确定其方向);

  ④列出动力学方程或平衡方程并求解.

  2. 动态问题分析

  (1)由于安培力和导体中的电流、运动速度均有关,所以对磁场中运动导体进行动态分析十分必要,当磁场中导体受安培力发生变化时,导致导体受到的合外力发生变化,进而导致加速度、速度等发生变化;反之,由于运动状态的变化又引起感应电流、安培力、合外力的变化,这样可能使导体达到稳定状态.

  (2)思考路线:导体受力运动产生感应电动势感应电流通电导体受安培力合外力变化加速度变化速度变化最终明确导体达到何种稳定运动状态.分析时,要画好受力图,注意抓住a=0时速度v达到最值的特点.

  【要点讲练】

  [例1]如图所示,在一均匀磁场中有一U形导线框abcd,线框处于水平面内,磁场与线框平面垂直,R为一电阻,ef为垂直于ab的一根导体杆,它可在ab、cd上无摩擦地滑动.杆ef及线框中导线的电阻都可不计.开始时,给ef一个向右的初速度,则( )

  A.ef将减速向右运动,但不是匀减速

  B.ef将匀减速向右运动,最后停止

  C.ef将匀速向右运动

  D.ef将往返运动

  [例2]如图甲所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为的绝缘斜面上,两导轨间距为L.M、P两点间接有阻值为R的电阻.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.

  (1)由b向a方向看到的装置如图乙所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图.

  (2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电流及其加速度的大小;

  (3)求在下滑过程中,ab杆可以达到的速度最大值.

  [例3]如图所示,两条互相平行的光滑导轨位于水平面内,距离为l=0.2m,在导轨的一端接有阻值为R=0.5的电阻,在x0处有一水平面垂直的均匀磁场,磁感应强度B=0.5T.一质量为m=0.1kg的金属直杆垂直放置在导轨上,并以v0=2m/s的初速度进入磁场,在安培力和一垂直于直杆的水平外力F的共同作用下做匀变速直线运动,加速度大小为a=2m/s2、方向与初速度方向相反.设导轨和金属杆的电阻都可以忽略,且连接良好.求:

  (1)电流为零时金属杆所处的位置;

  (2)电流为最大值的一半时施加在金属杆上外力F的大小和方向;

  (3)保持其他条件不变,而初速度v0取不同值,求开始时F的方向与初速度v0取得的关系.

  [例4]如图所示,水平面上有两电阻不计的光滑金属导轨平行固定放置,间距d 为0.5米,左端通过导线与阻值为2欧姆的电阻R连接,右端通过导线与阻值为4欧姆的小灯泡L连接;在CDEF矩形区域内有竖直向上均匀磁场,CE长为2米,CDEF区域内磁场的磁感应强度B如图所示随时间t变化;在t=0s时,一阻值为2欧姆的金属棒在恒力F作用下由静止从AB位置沿导轨向右运动,当金属棒从AB位置运动到EF位置过程中,小灯泡的亮度没有发生变化.求:

  (1)通过的小灯泡的电流强度;

  (2)恒力F的大小;

  (3)金属棒的质量.

  例5.如图所示,有两根和水平方向成.角的光滑平行的金属轨道,上端接有可变电阻R,下端足够长,空间有垂直于轨道平面的`匀强磁场,磁感强度为及一根质量为m的金属杆从轨道上由静止滑下.经过足够长的时间后,金属杆的速度会趋近于一个最大速度vm,则 ( )

  A.如果B增大,vm将变大

  B.如果变大,vm将变大

  C.如果R变大,vm将变大

  D.如果m变小,vm将变大

  例6.如图所示,A线圈接一灵敏电流计,B线框放在匀强磁场中,B线框的电阻不计,具有一定电阻的导体棒可沿线框无摩擦滑动,今用一恒力F向右拉CD由静止开始运动,B线框足够长,则通过电流计中的电流方向和大小变化是( )

  A.G中电流向上,强度逐渐增强

  B.G中电流向下,强度逐渐增强

  C.G中电流向上,强度逐渐减弱,最后为零

  D.G中电流向下,强度逐渐减弱,最后为零

  例7.如图所示,一边长为L的正方形闭合导线框,下落中穿过一宽度为d(dL)的匀强磁场区,设导线框在穿过磁场区的过程中,不计空气阻力,它的上下两边保持水平,线框平面始终与磁场方向垂直做加速运动,若线框在位置Ⅰ、Ⅱ、Ⅲ时,其加速度a1,a2,a3的方向均竖直向下,则( )

  A.a1=a3

  B.a1=a3

  C.a1

  D.a3

  例8.如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1m,导轨平面与水平面成=37o角,下端连接阻值为R的电阻,匀强磁场方向与导轨平面垂直,质量为0.2kg,电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.

  (1)求金属棒沿导轨由静止开始下滑时的加速度大小;

  (2)当金属棒下滑速度达到稳定时,电阻R消耗的功率为8W,求该速度的大小;

  (3)在上问中,若R=2,金属棒中的电流方向由a到b,求磁感应强度的大小与方向.(g=10m/s2,sin37o=0.6,cos37o=0.8)

高三物理教案8

  一、教学目标:

  1、知道平抛运动的定义及物体做平抛运动的条件。

  2、理解平抛运动可以看作水平方向的匀速直线运动与竖直方向的自由落体运动的合运动。

  3、掌握平抛运动的规律。

  4、树立严谨,实事求是,理论联系实际的科学态度。

  5、渗透物理学“建立理想化模型”、“化繁为简”“等效代替”等思想。

  教学重难点

  重点:平抛运动的规律。

  难点:对平抛运动的两个分运动的理解。

  教学过程:

  引入

  通过柯受良飞越黄河精彩视频和生活中常见抛体运动的'图片引入到抛体运动,在对抛体运动进行了解的基础上回忆以前学过的抛体运动;对抛体运动进行分类。由抛体运动引入平抛运动。

  (一)知道什么样的运动是平抛运动?

  1.定义:物体以一定的初速度水平方向上抛出,仅在重力作用下所做的运动,叫做平抛运动。

  2.物体做平抛运动的条件

  (1)有水平初速度,

  (2)只受重力作用。

  通过活动让学生理解平抛运动是一个理想化模型。

  让学生体会研究问题时,要“抓住主要因素,忽略次要因素”的思想。

  (二)实验探究平抛运动

  问题1:平抛运动是怎样的运动?

  问题2:怎样分解平抛运动?

  探究一:平抛运动的水平分运动是什么样的运动?(学生演示,提醒注意观察实验现象)

  【演示实验】同时释放两个相同小球,其中一个小球从高处做平抛运动,另一个小球从较低的地方同时开始做匀速直线运动。

  现象:在初速度相同的情况下,两个小球都会撞在一起(学生回答)

  结论:平抛运动水平方向的分运动是匀速直线运动(师生共同总结)

  探究二:平抛运动的竖直分运动是什么样的运动?(分组探究,提醒:a小球是带有小孔的小球;b装置靠近水槽;c观察两小球落到水槽中的情况)

  【分组实验】用小锤打击弹性金属片时,前方小球向水平方向飞出,做平抛运动,而同时后方小球被释放,做自由落体运动。

  现象:两小球球同时落地。(学生回答)

  结论:平抛运动的竖直分运动是自由落体运动(师生共同总结)

高三物理教案9

  一、动量

  1、动量:运动物体的质量和速度的乘积叫做动量.是矢量,方向与速度方向相同;动量的合成与分解,按平行四边形法则、三角形法则.是状态量;通常说物体的动量是指运动物体某一时刻的动量,计算物体此时的动量应取这一时刻的瞬时速度。是相对量;物体的动量亦与参照物的选取有关,常情况下,指相对地面的动量。单位是kg

  2、动量和动能的区别和联系

  ①动量的大小与速度大小成正比,动能的大小与速度的大小平方成正比。即动量相同而质量不同的物体,其动能不同;动能相同而质量不同的物体其动量不同。

  ②动量是矢量,而动能是标量。因此,物体的动量变化时,其动能不一定变化;而物体的动能变化时,其动量一定变化。

  ③因动量是矢量,故引起动量变化的原因也是矢量,即物体受到外力的冲量;动能是标量,引起动能变化的原因亦是标量,即外力对物体做功。

  ④动量和动能都与物体的质量和速度有关,两者从不同的角度描述了运动物体的特性,且二者大小间存在关系式:P2=2mEk

  3、动量的变化及其计算方法

  动量的变化是指物体末态的动量减去初态的动量,是矢量,对应于某一过程(或某一段时间),是一个非常重要的物理量,其计算方法:

  (1)P=Pt一P0,主要计算P0、Pt在一条直线上的情况。

  (2)利用动量定理 P=Ft,通常用来解决P0、Pt;不在一条直线上或F为恒力的情况。

  二、冲量

  1、冲量:力和力的作用时间的乘积叫做该力的冲量.是矢量,如果在力的作用时间内,力的方向不变,则力的方向就是冲量的方向;冲量的合成与分解,按平行四边形法则与三角形法则.冲量不仅由力的决定,还由力的作用时间决定。而力和时间都跟参照物的选择无关,所以力的冲量也与参照物的选择无关。单位是N

  2、冲量的计算方法

  (1)I=Ft.采用定义式直接计算、主要解决恒力的冲量计算问题。

  (2)利用动量定理 Ft=P.主要解决变力的冲量计算问题,但要注意上式中F为合外力(或某一方向上的.合外力)。

  三、动量定理

  1、动量定理:物体受到合外力的冲量等于物体动量的变化.Ft=mv/一mv或 Ft=p/-p;该定理由牛顿第二定律推导出来:(质点m在短时间t内受合力为F合,合力的冲量是F合质点的初、未动量是 mv0、mvt,动量的变化量是P=(mv)=mvt-mv0.根据动量定理得:F合=(mv)/t)

  2.单位:牛秒与千克米/秒统一:l千克米/秒=1千克米/秒2秒=牛

  3.理解:(1)上式中F为研究对象所受的包括重力在内的所有外力的合力。

  (2)动量定理中的冲量和动量都是矢量。定理的表达式为一矢量式,等号的两边不但大小相同,而且方向相同,在高中阶段,动量定理的应用只限于一维的情况。这时可规定一个正方向,注意力和速度的正负,这样就把大量运算转化为代数运算。

  (3)动量定理的研究对象一般是单个质点。求变力的冲量时,可借助动量定理求,不可直接用冲量定义式.

  4.应用动量定理的思路:

  (1)明确研究对象和受力的时间(明确质量m和时间t);

  (2)分析对象受力和对象初、末速度(明确冲量I合,和初、未动量P0,Pt);

  (3)规定正方向,目的是将矢量运算转化为代数运算;

  (4)根据动量定理列方程

  (5)解方程。

  四、动量定理应用的注意事项

  1.动量定理的研究对象是单个物体或可看作单个物体的系统,当研究对象为物体系时,物体系的总动量的增量等于相应时间内物体系所受外力的合力的冲量,所谓物体系总动量的增量是指系统内各个的体动量变化量的矢量和。而物体系所受的合外力的冲量是把系统内各个物体所受的一切外力的冲量的矢量和。

  2.动量定理公式中的F是研究对象所受的包括重力在内的所有外力的合力。它可以是恒力,也可以是变力。当合外力为变力时F则是合外力对作用时间的平均值。

  3.动量定理公式中的(mv)是研究对象的动量的增量,是过程终态的动量减去过程始态的动量(要考虑方向),切不能颠倒始、终态的顺序。

  4.动量定理公式中的等号表明合外力的冲量与研究对象的动量增量的数值相等,方向一致,单位相同。但考生不能认为合外力的冲量就是动量的增量,合外力的冲量是导致研究对象运动改变的外因,而动量的增量却是研究对象受外部冲量作用后的必然结果。

  5.用动量定理解题,只能选取地球或相对地球做匀速直线运动的物体做参照物。忽视冲量和动量的方向性,造成I与P正负取值的混乱,或忽视动量的相对性,选取相对地球做变速运动的物体做参照物,是解题错误的常见情况。

高三物理教案10

  物体贮藏着巨大的能量是不容置疑的,但是如何使这样巨大的能量释放出来?从爱因斯坦质能方程同样可以得出,物体的能量变化△E与物体的质量变化△m的关系:△E=Δmc2

  单个的质子、中子的质量已经精确测定。用质谱仪或其他仪器测定某种原子核的质量,与同等数量的质子、中子的'质量之和相比较,看一看两条途径得到的质量之差,就能推知原子核的结合能。

  说明:

  ①物体的质量包括静止质量和运动质量,质量亏损指的是静止质量的减少,减少的静止质量转化为和辐射能量有关的运动质量。

  ②质量亏损并不是这部分质量消失或转变为能量,只是静止质量的减少。

  ③在核反应中仍然遵守质量守恒定律、能量守恒定律。

  ④质量只是物体具有能量多少及能量转变多少的一种量度。

  阅读原子核的比结合能,指出中等大小的核的比结合能最大(平均每个核子的质量亏损最大),这些核最稳定。另一方面如果使较重的核分裂成中等大小的核,或者把较小的核合并成中等大小的核,核子的比结合能都会增加,这样可以释放能量供人使用。

  巩固练习

  已知:1个质子的质量mp=1.007277u,1个中子的质量mn=1.008665u.氦核的质量为4.001509u.这里u表示原子质量单位,1u=1.660566×10-27kg.由上述数值,计算2个质子和2个中子结合成氦核时释放的能量。(28.3MeV)

高三物理教案11

  核力与核能

  三维教学目标

  1、知识与技能

  (1)知道核力的概念、特点及自然界存在的四种基本相互作用;

  (2)知道稳定原子核中质子与中子的比例随着原子序数的增大而减小;

  (3)理解结合能的概念,知道核反应中的质量亏损;

  (4)知道爱因斯坦的质能方程,理解质量与能量的关系。

  2、过程与方法

  (1)会根据质能方程和质量亏损的概念计算核反应中释放的核能;

  (2)培养学生的理解能力、推理能力、及数学计算能力。

  3、情感、态度与价值观

  (1)使学生树立起实践是检验真理的标准、科学理论对实践有着指导和预见作用的能力;

  (2)认识开发和利用核能对解决人类能源危机的重要意义。

  教学重点:质量亏损及爱因斯坦的质能方程的理解。

  教学难点:结合能的概念、爱因斯坦的质能方程、质量与能量的关系。

  教学方法:教师启发、引导,学生讨论、交流。

  教学用具:多媒体教学设备一套:可供实物投影、放像、课件播放等。

  (一)引入新课

  提问1:氦原子核中有两个质子,质子质量为mp=1.67×10-27kg,带电量为元电荷e=1.6×10-19C,原子核的直径的数量级为10-15m,那么两个质子之间的库仑斥力与万有引力两者相差多少倍?(两者相差1036倍)

  提问2:在原子核那样狭小的空间里,带正电的质子之间的库仑斥力为万有引力的1036倍,那么质子为什么能挤在一起而不飞散?会不会在原子核中有一种过去不知道的力,把核子束缚在一起了呢?今天就来学习这方面的内容。

  (二)进行新课

  1、核力与四种基本相互作用

  提示:20世纪初人们只知道自然界存在着两种力:一种是万有引力,另一种是电磁力(库仑力是一种电磁力)。在相同的距离上,这两种力的强度差别很大。电磁力大约要比万有引力强1036倍。

  基于这两种力的性质,原子核中的质子要靠自身的引力来抗衡相互间的库仑斥力是不可能的。核物理学家猜想,原子核里的核子间有第三种相互作用存在,即存在着一种核力,是核力把核子紧紧地束缚在核内,形成稳定的原子核,后来的实验证实了科学家的猜测。

  提问

  1:那么核力有怎样特点呢?

  (1)核力特点:

  第一、核力是强相互作用(强力)的一种表现。

  第二、核力是短程力,作用范围在1.5×10-15m之内。

  第三、核力存在于核子之间,每个核子只跟相邻的核子发生核力作用,这种性质称为核力的饱和性。

  总结:除核力外,核物理学家还在原子核内发现了自然界的第四种相互作用—弱相互作用(弱力),弱相互作用是引起原子核β衰变的原因,即引起中子转变质子的原因。弱相互作用也是短程力,其力程比强力更短,为10-18m,作用强度则比电磁力小。

  (2)四种基本相互作用力:

  弱力、强力、电磁力、引力和分别在不同的尺度上发挥作用:

  ①弱力(弱相互作用):弱相互作用是引起原子核β衰变的原因→短程力;

  ②强力(强相互作用):在原子核内,强力将核子束缚在一起→短程力;

  ③电磁力:电磁力在原子核外,电磁力使电子不脱离原子核而形成原子,使原了结合成分子,使分子结合成液体和固体→长程力;

  ④引力:引力主要在宏观和宇观尺度上“独领风骚”。是引力使行星绕着恒星转,并且联系着星系团,决定着宇宙的现状→长程力。

  2、原子核中质子与中子的比例

  随着原子序数的增加,稳定原子核中的中子数大于质子数。

  思考:随着原子序数的增加,稳定原子核中的质子数和中子数有怎样的关系?(随着原子序数的`增加,较轻的原子核质子数与中子数大致相等,但对于较重的原子核中子数大于质子数,越重的元素,两者相差越多)

  思考:为什么随着原子序数的增加,稳定原子核中的中子数大于质子数?

  提示:学生从电磁力和核力的作用范围去考虑。

  总结:

  若质子与中子成对地人工构建原子核,随原子核的增大,核子间的距离增大,核力和电磁力都会减小,但核力减小得更快。所以当原子核增大到一定程度时,相距较远的质子间的核力不足以平衡它们之间的库仑力,这个原子核就不稳定了;

  若只增加中子,中子与其他核子没有库仑斥力,但有相互吸引的核力,所以有助于维系原子核的稳定,所以稳定的重原子核中子数要比质子数多。

  由于核力的作用范围是有限的,以及核力的饱和性,若再增大原子核,一些核子间的距离会大到其间恨本没有核力的作用,这时候再增加中子,形成的核也一定是不稳定的。因此只有200多种稳定的原子核长久地留了下来。

  3、结合能

  由于核子间存在着强大的核力,原子核是一个坚固的集合体。要把原子核拆散成核子,需要克服核力做巨大的功,或者需要巨大的能量。例如用强大的γ光子照射氘核,可以使它分解为一个质子和一个中子。

  从实验知道只有当光子能量等于或大于2.22MeV时,这个反应才会发生。相反的过程一个质子和一个中子结合成氘核,要放出2.22MeV的能量。这表明要把原子核分开成核子要吸收能量,核子结合成原子核要放出能量,这个能量叫做原子核的结合能。

  原子核越大,它的结合能越高,因此有意义的是它的结合能与核子数之比,称做比结合能,也叫平均结合能。比结合能越大,表示原子核中核子结合得越牢固,原子核越稳定。

  那么如何求原子核的结合能呢?爱因斯坦从相对论得出了物体能量与它的质量的关系,指出了求原子核的结合能的方法。

  4、质量亏损

  (1)质量亏损

  科学家研究证明在核反应中原子核的总质量并不相等,例如精确计算表明:氘核的质量比一个中子和一个质子的质量之和要小一些,这种现象叫做质量亏损,质量亏损只有在核反应中才能明显的表现出来。

  回顾质量、能量的定义、单位,向学生指出质量不是能量、能量也不是质量,质量不能转化能量,能量也不能转化质量,质量只是物体具有能量多少及能量转变多少的一种量度。

高三物理教案12

  研究性实验:(1) 研究匀变速运动练习使用打点计时器:

  1.构造:见教材。

  2.操作要点:接50HZ,4---6伏的交流电 S1 S2 S3 S4

  正确标取记:在纸带中间部分选5个点 。T 。T 。 T 。 T 。

  3.重点:纸带的分析 0 1 2 3 4

  a.判断物体运动情况:

  在误差范围内:如果S1=S2=S3=......,则物体作匀速直线运动。

  如果?S1=?S2=?S3= .......=常数, 则物体作匀变速直线运动。

  b.测定加速度:

  公式法: 先求?S,再由?S= aT2求加速度。

  图象法: 作v-t图,求a=直线的斜率

  c.测定即时速度: V1=(S1+S2)/2T V2=(S2+S3)/2T

  测定匀变速直线运动的加速度:

  1.原理::?S=aT2

  2.实验条件:

  a.合力恒定,细线与木板是平行的。

  b.接50HZ,4-6伏交流电。

  3.实验器材:电磁打点计时器、纸带、复写纸片、低压交流电源、小车、细绳、一端附有滑轮的长木板、刻度尺、钩码、导线、两根导线。

  4.主要测量:

  选择纸带,标出记数点,测出每个时间间隔内的位移S1、S2、S3 。。。。图中O是任一点。

  5. 数据处理: 0 1 2 3 4 5 6

  根据测出的S1、S2、S3....... 。S1 。S2 。 S3 。S4 。 S5 。 S6 。

  用逐差法处理数据求出加速度:

  S4-S1=3a1T2 , S5-S2=3a2T2 , S6-S3=3a3T2

  a=(a1+a2+a3)/3=(S4+S5+S6- S1-S2-S3)/9T2

  测匀变速运动的`即时速度:(同上)

  (2) 研究平抛运动

  1.实验原理:

  用一定的方法描出平抛小球在空中的轨迹曲线,再根据轨迹上某些点的位置坐标,由h=求出t,再由x=v0t求v0,并求v0的平均值。

  2.实验器材:

  木板,白纸,图钉,未端水平的斜槽,小球,刻度尺,附有小孔的卡片,重锤线。

  3.实验条件:

  a. 固定白纸的木板要竖直。

  b. 斜槽未端的切线水平,在白纸上准确记下槽口位置。

  c.小球每次从槽上同一位置由静止滑下。

  (3) 研究弹力与形变关系

  方法归纳:

  (1)用悬挂砝码的方法给弹簧施加压力

  (2)用列表法来记录和分析数据(如何设计实验记录表格)

  (3)用图象法来分析实验数据关系

  步骤:

  1以力为纵坐标、弹簧伸长为横坐标建立坐标系

  2根据所测数据在坐标纸上描点

  3按照图中各点的分布和走向,尝试作出一条平滑的曲线(包括直线)

  4以弹簧的伸重工业自变量,写出曲线所代表的函数,首先尝试一次函数,如不行则考虑二次函数,如看似象反比例函数,则变相关的量为倒数再研究一下是否为正比关系(图象是否可变为直线)----化曲为直的方法等。

  5解释函数表达式中常数的意义。

  2. 注意事项:所加砝码不要过多(大)以免弹簧超出其弹性限度

高三物理教案13

  【考点自清】

  一、平衡物体的动态问题

  (1)动态平衡:

  指通过控制某些物理量使物体的状态发生缓慢变化。在这个过程中物体始终处于一系列平衡状态中。

  (2)动态平衡特征:

  一般为三力作用,其中一个力的大小和方向均不变化,一个力的大小变化而方向不变,另一个力的大小和方向均变化。

  (3)平衡物体动态问题分析方法:

  解动态问题的关键是抓住不变量,依据不变的量来确定其他量的变化规律,常用的分析方法有解析法和图解法。

  解析法的基本程序是:对研究对象的任一状态进行受力分析,建立平衡方程,求出应变物理量与自变物理量的一般函数关系式,然后根据自变量的`变化情况及变化区间确定应变物理量的变化情况。

  图解法的基本程序是:对研究对象的状态变化过程中的若干状态进行受力分析,依据某一参量的变化(一般为某一角),在同一图中作出物体在若干状态下的平衡力图(力的平形四边形或三角形),再由动态的力的平行四边形或三角形的边的长度变化及角度变化确定某些力的大小及方向的变化情况。

  二、物体平衡中的临界和极值问题

  1、临界问题:

  (1)平衡物体的临界状态:物体的平衡状态将要变化的状态。

  物理系统由于某些原因而发生突变(从一种物理现象转变为另一种物理现象,或从一种物理过程转入到另一物理过程的状态)时所处的状态,叫临界状态。

  临界状态也可理解为恰好出现和恰好不出现某种现象的状态。

  (2)临界条件:涉及物体临界状态的问题,解决时一定要注意恰好出现或恰好不出现等临界条件。

  平衡物体的临界问题的求解方法一般是采用假设推理法,即先假设怎样,然后再根据平衡条件及有关知识列方程求解。解决这类问题关键是要注意恰好出现或恰好不出现。

  2、极值问题:

  极值是指平衡问题中某些物理量变化时出现最大值或最小值。

  平衡物体的极值,一般指在力的变化过程中的最大值和最小值问题。

高三物理教案14

  1、研究带电物体在电场中运动的两条主要途径

  带电物体在电场中的运动,是一个综合力和能量的力学问题,研究的方法与质点动力学相同(仅仅增加了电场力),它同样遵循运动的合成与分解、力的独立作用原理、牛顿运动定律、动能定理、功能原理等力学规律.研究时,主要可以按以下两条途径分析:

  (1)力和运动的关系--牛顿第二定律

  根据带电物体受到的电场力和其它力,用牛顿第二定律求出加速度,结合运动学公式确定带电物体的速度、位移等.这条线索通常适用于恒力作用下做匀变速运动的情况.

  (2)功和能的关系--动能定理

  根据电场力对带电物体所做的功,引起带电物体的能量发生变化,利用动能定理或从全过程中能量的转化,研究带电物体的速度变化,经历的位移等.这条线索同样也适用于不均匀的.电场.

  2、研究带电物体在电场中运动的两类重要方法

  (1)类比与等效

  电场力和重力都是恒力,在电场力作用下的运动可与重力作用下的运动类比.例如,垂直射入平行板电场中的带电物体的运动可类比于平抛,带电单摆在竖直方向匀强电场中的运动可等效于重力场强度g值的变化等.

  (2)整体法(全过程法)

  电荷间的相互作用是成对出现的,把电荷系统的整体作为研究对象,就可以不必考虑其间的相互作用.

  电场力的功与重力的功一样,都只与始末位置有关,与路径无关.它们分别引起电荷电势能的变化和重力势能的变化,从电荷运动的全过程中功能关系出发(尤其从静止出发末速度为零的问题)往往能迅速找到解题切入点或简化计算

高三物理教案15

  本章安排6课时,每节安排1课时。

  一、能源

  本节教学,应抓住能源、常规能源、新能源三个概念和常规能源不能满足当今人类社会进步的需求,这一问题展开。教学方式方法可采用阅读、讨论并配合讲授进行。课堂教学结构参见下面的方框图。

  二、原子核的组成

  1.放射性现象

  首先向学生介绍科学家在探索原子核的组成的过程中,曾经通过实验研究放射性元素放出的射线究竟是什么?接着介绍课本图14-4的装置以及实验中所看到的现象,进而介绍课本上所讲述的α射线、β射线、γ射线的性质。

  简单介绍由于γ射线穿透物质的本领很强,因此在工农业生产以及医疗方面都有一些应用。

  让学生知道过量的射线照射对人体有伤害,在利用放射线时应注意射线的防护,以及防止放射性物质泄漏,造成对环境的污染。

  2.原子核的组成

  这里用讲授的方法,在分析课本图实验的基础上,使学生知道放射现象告诉我们,小小的原子核也有内部结构,因为放射性元素放出的三种射线只可能是从原子核里放出来的。

  关于原子核的组成,主要使学生知道原子核是由质子和中子组成的。质子带正电荷,电量跟电子电荷相等,质子的质量大约是电子的1836倍。中子不带电,质量跟质子的质量几乎相同。

  接着按照课本图的示意图,向学生介绍结构比较简单的氢、氦、锂、铍的原子和原子核的结构,使学生对原子和原子核的组成有一个比较具体的了解。

  三、核能

  本节教学应以讲授为主。由于核能、裂变、聚变、链式反应、核反应堆等概念均涉及到核反应知识,而学生头脑里,这部分知识是一个空白,所以,讲授过程中要贯彻通俗性原则,不引深,不拔高,尽可能地采取恰当的比喻来帮助学生理解这些知识。

  例如,教材中对裂变作了一个比喻,好比用火柴点燃木材,木材燃烧放出能量。这一比喻,不仅使学生对裂变形成初步认识,而且对认识链式反应也有帮助。

  聚变学生更难认识。这里建议用浓硫酸与水结合释放热量的例子来比喻,可能会收到较好的效果。

  总之,本节课教学应达到三个目的。一是让学生知道核能、裂变、聚变、链式反应的基本意思;二是让学生知道原子内部储藏了巨大的能量;三是知道世界各国包括我国在内,正在加强研究开发和利用核能,并取得了可喜的进展,激发学生去想象人类开发利用核能的美好前景。

  四、核电站

  本节教学要扣住两个环节,一是核电站的工作原理;一是核电站的特点或优越性。通过本节教学,使学生对核电站有初步的认识。第一环节,核电站的原理介绍,教师要充分应用挂图、模型,有条件的学校可放映核电站的幻灯片、录像片或电影片配合教学,使学生明白核电站是怎样将核能转化为内能,再把内能转化为电能的。第二环节,组织好学生阅读讨论并概括出核电站用很少的'核燃料可以产生大量的电能;可以大大减少燃料的运输量;适于缺少常规能源(化石燃料)的地区等主要的优越性。

  五、太阳能

  本节教学,建议采用自学指导的方法进行。上课时,教师可用幻灯或小黑板出示指导学生自学的问题。接着让学生带着问题阅读教材。最后要求学生回答问题,并且提出自己弄不明白或弄不懂的问题。配合教学,可以放映教学录像带“太阳能”。

  指导学生自学的问题建议如下:

  ①人类直接利用太阳能有哪些重要意义?

  ②举例说明,人类目前直接利用太阳能有哪些途径?你是否有新的途径提出来?

  ③要大规模地开发和利用太阳能还存在哪些困难?人类要克服这些困难,必须依靠什么?

  六、节能

  本节教学,建议采用问题讨论的方式进行。上课时,教师首先出示需要讨论的问题。接着要求学生阅读教材内容并分组讨论,然后由小组代表汇报讨论结果,最后教师对学生讨论的结果作进一步归纳,即为本节课的小结。

  讨论的问题建议如下:

  ①举例说明什么是能源的利用率?

  ②提高能源的利用率、节约能源的根本措施是什么?

  ③人类从根本上解决能源问题的出路在哪里?

  ④如果每人年节约用电1千瓦时,那么,全国近12亿人口节约用电,相当多少吨标准煤燃烧释放的能量?(标准煤燃烧值为2.93×107焦/千克)

  (计算结果是相当1.47×108千克,这个数字是可观的!)

【高三物理教案】相关文章:

高三物理教案11-04

高三物理教案教学反思11-09

高三物理教案15篇11-05

高三物理教案(15篇)11-06

高三物理教案(集合15篇)11-22

高三物理教案合集15篇12-09

高三物理教案(汇编15篇)11-29

高三物理教案汇编15篇11-29

高三物理教案(集锦15篇)11-08