初一数学教案

时间:2022-11-21 17:15:58 七年级数学教案 我要投稿

初一数学教案(集锦15篇)

  作为一名优秀的教育工作者,有必要进行细致的教案准备工作,教案是保证教学取得成功、提高教学质量的基本条件。那要怎么写好教案呢?以下是小编为大家整理的初一数学教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

初一数学教案(集锦15篇)

初一数学教案1

  教学目的

  通过天平实验,让学生在观察、思考的基础上归纳出方程的两种变形,并能利用它们将简单的方程变形以求出未知数的值。

  重点、难点

  1.重点:方程的两种变形。

  2.难点:由具体实例抽象出方程的两种变形。

  教学过程

  一、引入

  上一节课我们学习了列方程解简单的应用题,列出的方程有的我们不会解,我们知道解方程就是把方程变形成x=a形式,本节课,我们将学习如何将方程变形。

  二、新授

  让我们先做个实验,拿出预先准备好的天平和若干砝码。

  测量一些物体的质量时,我们将它放在天干的左盘内,在右盘内放上砝码,当天平处于平衡状态时,显然两边的质量相等。

  如果我们在两盘内同时加入相同质量的砝码,这时天平仍然平衡,天平两边盘内同时拿去相同质量的砝码,天平仍然平衡。

  如果把天平看成一个方程,课本第4页上的图,你能从天平上砝码的变化联想到方程的变形吗?

  让同学们观察图(1)的左边的天平;天平的左盘内有一个大砝码和2个小砝码,右盘上有5个小砝码,天平平衡,表示左右两盘的质量相等。如果我们用x表示大砝码的质量,1表示小砝码的质量,那么可用方程x+2=5表示天平两盘内物体的质量关系。

  问:图(1)右边的天平内的砝码是怎样由左边天平变化而来的?它所表示的方程如何由方程x+2=5变形得到的?

  学生回答后,教师归纳:方程两边都减去同一个数,方程的解不变。

  问:若把方程两边都加上同一个数,方程的解有没有变?如果把方程两边都加上(或减去)同一个整式呢?

  让同学们看图(2)。左天平两盘内的砝码的质量关系可用方程表示为3x=2x+2,右边的天平内的砝码是怎样由左边天平变化而来的`?

  把天平两边都拿去2个大砝码,相当于把方程3x=2x+2两边都减去2x,得到的方程的解变化了吗?如果把方程两边都加上2x呢?

  由图(1)、(2)可归结为;

  方程两边都加上或都减去同一个数或同一个整式,方程的解不变。

  让学生观察(3),由学生自己得出方程的第二个变形。

  即方程两边都乘以或除以同一个不为零的数,方程的解不变:

  通过对方程进行适当的变形.可以求得方程的解。

  例1.解下列方程

  (1)x-5=7 (2)4x=3x-4

  (1)解两边都加上5,x,x=7+5 即 x=12

  (2)两边都减去3x,x=3x-4-3x 即 x=-4

  请同学们分别将x=7+5与原方程x-5=7;x=3x-4-3,与原方程4x=3x-4比较,你发现了这些方程的变形。有什么共同特点?

  这就是说把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。

  注意:“移项’’是指将方程的某一项从等号的左边移到右边或从右边移到左边,移项时要先变号后移项。

  例2.解下列方程

  (1)-5x=2 (2) x=

  这里的变形通常称为“将未知数的系数化为1”。

  以上两个例题都是对方程进行适当的变形,得到x=a的形式。

  练习:

  课本第6页练习1、2、3。

  练习中的第3题,即第2页中的方程①先让学生讨论、交流。

  鼓励学生采用不同的方法,要他们说出每一步变形的根据,由他们自己得出采用哪种方法简便,体会方程的不同解法中所经历的转化思想,让学生自己体验成功的感觉。

  三、巩固练习

  教科书第7页,练习

  四、小结

  本节课我们通过天平实验,得出方程的两种变形:

  1.把方程两边都加上或减去同一个数或整式方程的解不变。

  2.把方程两边都乘以或除以(不等零)的同一个数,方程的解不变。第①种变形又叫移项,移项别忘了要先变号,注意移项与在方程的一边交换两项的位置有本质的区别。

  五、作业

  教科书第7—8页习题6.2.1第1、2、3。

初一数学教案2

  一、教学目标

  1.通过七巧板的制作,拼摆等活动,进一步丰富对平行,垂直及角等有关内容的认识,积累数学活动经验。

  2.能用适当的图形和语言表示自己的思考结果。

  二、教学重点和难点

  本堂内容的重点是七巧板的制作和拼摆,难点是拼图所要表现的几何图形,对已学过的平行,垂直及角等有关内容的有机联系和语言表达。

  三、教学手段

  引导活动讨论

  引导:意在教师讲解七巧板的历史,七巧板制作的方法。

  活动:人人参与制作七巧板,拼摆七巧板的图案。

  讨论:对自己所拼摆的图形与同伴交流,与全班同学交流(利用多媒体工具)与老师进行交流。

  四、教学方法

  启发式教学

  五、教学过程

  1 创设情景,引入新课

  先用多媒体显示各种已拼摆好的动物,交通工具,植物等等然后介绍它是由怎样的一副拼板拼摆而成的(不一定要七巧板)。紧接着就介绍七巧板的历史,制作方法,让学生制作一副七巧板,并涂上不同的颜色。

  2 合作交流,探索新知

  利用所做的七巧板拼出两个不同的图案,并与同伴交流,与全班同学交流,与老师交流。

  (1) 你的拼图用了什么形状的'板?你想表现什么?

  (2) 在你的拼出的图案中,指出三组互相平行或垂直的线段,并将它们间的关系表示出来。

  (3) 在你拼出的图案中,找出一个锐角、一个直角、一个钝角,并将它们表示出来,它们分别是多少度。

  通过学生的展示,教师作适时的评价,树立榜样,培养学生之间的竞争意识。

  3 范例教学

  介绍老师制作的3副游戏板,并用多媒体显示十几种的拼摆图案,通过生动有趣的图案,激发学生的创造欲望,提出你还有材料吗?有信心凭自己的智慧制作一副游戏板吗?意在充分发挥学生的创造能力、想象能力、合作交流能力(可由附近的同学四人小组制作完成)。

  4 反馈练习

  由四人小组制作的游戏板,拼摆二个不同图案,利用多媒体,展示给全体同学,用语言表示拼图所表现的内容,与所学的知识的联系,呈现平行,垂直及角的有关知识。

  5 归纳小结

  通过制作七巧板及游戏板进一步学会了画平行线段、垂线段、找线段中点的方法,通过拼摆丰富了对平行、垂直及角等有关内容的认识,积累数学活动的经验,提高了空间观念和观察、分析、概括表达的能力。

  六、练习设计

  利用20cm20cm的硬纸板做一副游戏板,利用它拼出5个自己喜欢的图案,并把它画下来,布置教室的环境。

  七、板书设计

  4.7有趣的七巧板

  (一)知识回顾 (三)例题解析 (五)课堂小结

  (二)观察发现 (四)课堂练习 练习设计

初一数学教案3

  学习目标:

  理解多项式乘法法则,会利用法则进行简单的多项式乘法运算。

  学习重点:

  多项式乘法法则及其应用。

  学习难点:

  理解运算法则及其探索过程。

  一、课前训练:

  (1)-3a2b+2b2+3a2b-14b2 = ,(2)- = ;

  (3)3a2b2 ab3 = , (4) = ;

  (5)- = ,(6) = 。

  二、探索练习:

  (1)如图1大长方形,其面积用四个小长方形面积

  表示为: ;

  (2)大长方形的长为 ,宽为 ,要

  计算其面积就是 ,其中包含的

  运算为 。

  由上面的问题可发现:( )( )=

  多项式乘以多项式法则:多项式与多项式相乘,先用一个多项式的' 以另一个多项式的每一项,再把所得的积 。

  三.运用法则规范解题。

  四.巩固练习:

  3.计算:① ,

  4.计算:

  五.提高拓展练习:

  5.若 求m,n的值.

  6.已知 的结果中不含 项和 项,求m,n的值.

  7.计算(a+b+c)(c+d+e),你有什么发现?

  六.晚间训练:

  (7) 2a2(-a)4 + 2a45a2 (8)

  3、(1)观察:4×6=24

  14×16=224

  24×26=624

  34×36=1224

  你发现其中的规律吗?你能用代数式表示这一规律吗?

  (2)利用(1)中的规律计算124×126。

  4、如图,AB= ,P是线段AB上一点,分别以AP,BP为边作正方形。

  (1)设AP= ,求两个正方形的面积之和S;

  (2)当AP分别 时,比较S的大小。

初一数学教案4

  【教学内容】

  第二章 2.1 正数与负数 2.2 数轴

  【教学目标】

  1、会判断一个数是正数还是负数,理解负数的意义。

  2、会把已知数在数轴上表示,能说出已知点所表示的数。

  3、了解数轴的原点、正方向、单位长度,能画出数轴。

  4、会比较数轴上数的大小。

  【知识讲解】

  一、本讲主要学习内容

  1、负数的意义及表示 2、零的位置和地位

  3、有理数的分类 4、数轴概念及三要素

  5、数轴上数与点的对应关系 6、数轴上数的'比较大小

  其中,负数的概念,数轴的概念及其三要素以及数轴上数的比较大小是重点。负数的意义是难点。

  下面概述一下这六点的主要内容

  1、负数的意义及表示

  把大于0的数叫正数如5,3,+3等。在正数前加上“-”号的数叫做负数如-5,-3,- 等。负数是表示相反意义的量,如:低于海平面-155米表示为-155m,亏损50元表示-50元。

  2、零的位置和地位

  零既不是正数,也不是负数,但它是自然数。它可以表示没有,也可以在数轴上分隔正数和分数,甚至可以表示始点,表示缺位,这将在下面详细介绍。

  3、有理数的分类

  正整数、零、负整数统称为整数,正分数、负分数统称为分数,整数和分数统称为有理数。

  正整数

  整数 零 正有理数

  有理数 负整数 或 有理数 零

  分数 正分数 负有理数

  负分数

初一数学教案5

  教学目标

  1.使学生正确理解数轴的意义,掌握数轴的三要素;

  2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;

  3.使学生初步理解数形结合的思想方法.

  教学重点和难点

  重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.

  难点:正确理解有理数与数轴上点的对应关系.

  课堂教学过程设计

  一、从学生原有认知结构提出问题

  1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?

  2.用“射线”能不能表示有理数?为什么?

  3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?

  待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴.

  二、讲授新课

  让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.

  与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):

  1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);

  2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);

  3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…

  提问:我们能不能用这条直线表示任何有理数?(可列举几个数)

  在此基础上,给出数轴的.定义,即规定了原点、正方向和单位长度的直线叫做数轴.

  进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?

  通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.

  三、运用举例变式练习

  例1画一个数轴,并在数轴上画出表示下列各数的点:

  例2指出数轴上A,B,C,D,E各点分别表示什么数.

  课堂练习

  示出来.

  2.说出下面数轴上A,B,C,D,O,M各点表示什么数?

  最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.

  四、小结

  指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.

  本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.

  五、作业

  1.在下面数轴上:

  (1)分别指出表示-2,3,-4,0,1各数的点.

  (2)A,H,D,E,O各点分别表示什么数?

  2.在下面数轴上,A,B,C,D各点分别表示什么数?

  3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:

  (1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};

初一数学教案6

  教学目标

  1,整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;

  2,能区分两种不同意义的量,会用符号表示正数和负数;

  3,体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。

  教学难点:正确区分两种不同意义的量。

  知识重点:两种相反意义的量

  教学过程:(师生活动)设计理念

  设置情境

  引入课题上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生

  活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考.

  师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XX,身高1.73米,体重58.5千克,今年40岁.我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…

  问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?

  学生活动:思考,交流

  师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).

  问题2:在生活中,仅有整数和分数够用了吗?

  请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。

  (也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)

  学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多

  地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴

  趣,所以创设如下的问题情境,以尽量贴近学生的实际.

  这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。

  以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。

  分析问题

  探究新知问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?

  这些问题都必须要求学生理解.

  教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流.

  这阶段主要是让学生学会正数和负数的表示.

  强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量.这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。

  举一反三思维拓展经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.

  问题4:请同学们举出用正数和负数表示的例子.

  问题5:你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明.

  能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性

  课堂练习教科书第5页练习

  小结与作业

  课堂小结围绕下面两点,以师生共同交流的方式进行:

  1, 0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了;

  2,正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”。

  本课作业教科书第7页习题1.1 第1,2,4,5(第3题作为下节课的思考题。

  作业可设必做题和选 做题,体现要求的层次性,以满足不同学生的需要

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  密切联系生活实际,创设学习情境.本课是有理数的第一节课时.引人负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的`顺应过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的.为了接受这个新的数,就必须对原有的数的结构进行整理,引人币的举例就是这个目的.

  负数的产生主要是因为原有的数不够用了(不能正确简洁地表示数量),书本的例子或图片中出现的负数就是让学生去感受和体验这一点.使学生接受生活生产实际中确实存在着两种相反意义的量是本课的教学难点,所以在教学中可以多举几个这方面的例子,并且所举的例子又应该符合学生的年龄和思维特点。当学生接受了这个事实后,引入负数(为了区分这两种相反意义的量)就是顺理成章的事了.

  这个教学设计突出了数学与实际生活的紧密联系,使学生体会到数学的应用价值,

  体现了学生自主学习、合作交流的教学理念,书本中的图片和例子都是生活生产中常见的事实,学生容易接受,所以应该让学生自己看书、学习,并且鼓励学生讨论交流,教师作适当引导就可以了。

初一数学教案7

  教学目标1,整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;

  2,能区分两种不同意义的量,会用符号表示正数和负数;

  3,体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。

  教学难点正确区分两种不同意义的量。

  知识重点两种相反意义的量

  教学过程(师生活动)设计理念

  设置情境

  引入课题上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生

  活中仅有这些“以前学过的数”够用了吗?下面的例子

  仅供参考。

  师:今天我们已经是七年级的学生了,我是你们的数学老师。下面我先向你们做一下自我介绍,我的名字是——,身高1。73米,体重58。5千克,今年40岁。我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…

  问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?

  学生活动:思考,交流

  师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数)。

  问题2:在生活中,仅有整数和分数够用了吗?

  请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。

  (也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)

  学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“—”的新数。先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严

  密性,但对于学生来说,更多

  地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴

  趣,所以创设如下的问题情境,以尽量贴近学生的实际。

  这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。

  以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。

  分析问题

  探究新知问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?

  这些问题都必须要求学生理解。

  教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流。

  这阶段主要是让学生学会正数和负数的表示。

  强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量。这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。

  举一反三思维拓展经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维。

  问题4:请同学们举出用正数和负数表示的例子。

  问题5:你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明。

  能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性

  课堂练习教科书第5页练习

  小结与作业

  课堂小结围绕下面两点,以师生共同交流的方式进行:

  1,0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了;

  2,正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“—”。

  本课作业教科书第7页习题1。1第1,2,4,5(第3题作为下节课的思考题。

  作业可设必做题和选做题,体现要求的层次性,以满足不同学生的需要

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  密切联系生活实际,创设学习情境。本课是有理数的第一节课时。引人负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的为了接受这个新的数,就必须对原有的`数的结构进行整理,引人币的举例就是这个目的

  负数的产生主要是因为原有的数不够用了(不能正确简洁地表示数量),书本的例子

  或图片中出现的负数就是让学生去感受和体验这一点。使学生接受生活生产实际中确实

  存在着两种相反意义的量是本课的教学难点,所以在教学中可以多举几个这方面的例

  子,并且所举的例子又应该符合学生的年龄和思维特点。当学生接受了这个事实后,引入负数(为了区分这两种相反意义的量)就是顺理成章的事了。

  这个教学设计突出了数学与实际生活的紧密联系,使学生体会到数学的应用价值,

  体现了学生自主学习、合作交流的教学理念,书本中的图片和例子都是生活生产中常见

  的事实,学生容易接受,所以应该让学生自己看书、学习,并且鼓励学生讨论交流,教师作适当引导就可以了。

初一数学教案8

  一、 学情分析:

  在此之前,本班学生已有探索有理数加法法则的经验,多数学生能在教师指导下探索问题。由于学生已了解利用数轴表示加法运算过程,不太熟悉水位变化,故改为用数轴表示乘法运算过程。

  二、 课前准备

  把学生按组间同质、组内异质分为10个小组,以便组内合作学习、组间竞争学习,形成良好的学习气氛。

  三、 教学目标

  1、 知识与技能目标

  掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

  2、 能力与过程目标

  经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

  3、 情感与态度目标

  通过学生自己探索出法则,让学生获得成功的喜悦。

  四、 教学重点、难点

  重点:运用有理数乘法法则正确进行计算。

  难点:有理数乘法法则的探索过程,符号法则及对法则的理解。

  五、 教学过程

  1、 创设问题情景,激发学生的求知欲望,导入新课。

  教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?

  学生:26米。

  教师:能写出算式吗?

  学生:……

  教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题(教师板书课题)

  2、 小组探索、归纳法则

  (1)教师出示以下问题,学生以组为单位探索。

  以原点为起点,规定向东的方向为正方向,向西的方向为负方向。

  a. 2 ×3

  2看作向东运动2米,×3看作向原方向运动3次。

  结果:向 运动 米

  2 ×3=

  b. -2 ×3

  -2看作向西运动2米,×3看作向原方向运动3次。

  结果:向 运动 米

  -2 ×3=

  c. 2 ×(-3)

  2看作向东运动2米,×(-3)看作向反方向运动3次。

  结果:向 运动 米

  2 ×(-3)=

  d. (-2) ×(-3)

  -2看作向西运动2米,×(-3)看作向反方向运动3次。

  结果:向 运动 米

  (-2) ×(-3)=

  e.被乘数是零或乘数是零,结果是人仍在原处。

  (2)学生归纳法则

  a.符号:在上述4个式子中,我们只看符号,有什么规律?

  (+)×(+)= 同号得

  (-)×(+)= 异号得

  (+)×(-)= 异号得

  (-)×(-)= 同号得

  b.积的绝对值等于 。

  c.任何数与零相乘,积仍为 。

  (3)师生共同用文字叙述有理数乘法法则。

  3、 运用法则计算,巩固法则。

  (1)教师按课本P75 例1板书,要求学生述说每一步理由。

  (2)引导学生观察、分析例1中(3)(4)小题两因数的关系,得出两个有理数互为倒数,它们的积为 。

  (3)学生做 P76 练习1(1)(3),教师评析。

  (4)教师引导学生做P75 例2,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。多个因数相乘,积的符号由 决定,当负因数个数有 ,积为 ; 当负因数个数有 ,积为 ;只要有一个因数为零,积就为 。

  4、 讨论对比,使学生知识系统化。


有理数乘法有理数加法
同号得正取相同的`符号
把绝对值相乘
(-2)×(-3)=6
把绝对值相加
(-2)+(-3)=-5
异号得负取绝对值大的加数的符号
把绝对值相乘
(-2)×3= -6
(-2)+3=1
用较大的绝对值减小的绝对值
任何数与零得零得任何数

  5、 分层作业,巩固提高。

初一数学教案9

  一、教学内容:

  人教版教材五年级上册第五单元多边形的面积整理与复习

  二、教学目标:

  1、使学生进一步熟练掌握已学图形各面积公式,能灵活地应用多种方法解决生活中简单的有关平面图形面积的实际问题。

  2、使学生感受数学方法和思想的重要性及其应用的广泛性。体会数学的价值,培养对数学学习的热爱

  三、教学重、难点

  重点:使学生进一步熟练掌握已学图形各面积公式,能灵活地应用多种方法解决生活中简单的'有关平面图形面积的实际问题。

  难点:引导学生整理多边形面积的推导过程,掌握转化的数学思想方法,建构知识网络。

  四、教学准备:多媒体课件,多边形纸模

  五、教学步骤与过程

  (一)导入复习

  师:同学们,我们学过哪些平面图形的面积计算公式?(正方形、长方形、平行四边形、三角形、梯形)

  师:这节课我们就来重点整理和复习有关这些多边形的面积的知识。

  板书课题:多边形面积计算复习课

  (二)回顾整理,建构网络

  1.复习平行四边形、三角形、梯形面积公式的推导过程。

  ⑴请大家回忆一下:平行四边形、三角形、梯形面积的计算公式是怎样经过平移、旋转等方法转化成我们已经学过的图形,从而推导出它们的面积计算公式的。

  ⑵根据学生的回答,出示每个公式的推导过程。

  六、课堂练习

  学生独立计算。指名学生板演,集体订正七、说一说,你学会了什么?从整理图中能看出各种图形之间的关系吗?

  七,作业布置:练习十九

  板书设计

  S=ah÷2

  S=abS=ah

  S=(a+b)h÷2

初一数学教案10

  教学目标

  1,通过对数“零”的意义的探讨,进一步理解正数和负数的概念;

  2,利用正负数正确表示相反意义的量(规定了指定方向变化的量)

  3,进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。

  教学难点:深化对正负数概念的理解

  知识重点:正确理解和表示向指定方向变化的量

  教学过程:(师生活动)设计理念

  知识回顾与深化回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.这就是说:数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负数的数呢?

  问题1:有没有一种既不是正数又不是负数的数呢?

  学生思考并讨论

  (数0既不是正数又不是负数,是正数和负数的分

  界,是基准.这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)

  例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的最高温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数 .

  那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数

  问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类?“数0耽不是正数,也不是负数”也应看作是负数定义的一部分.在引入

  负数后,0除了表示一个也没有以外,还是正数和负数的分界.了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理毅概念的建立都有帮助。

  所举的例子,要考虑学生的可接受性.“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明.这个问题只要初步认识即可,不必深究.

  分析问题

  解决问题问题3:教科书第6页例题

  说明:这是一个用正负数描述向指定方向变化情况的例子, 通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。

  归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页).

  类似的例子很多,如:

  水位上升-3m,实际表示什么意思呢?

  收人增加-10%,实际表示什么意思呢?

  可视教学中的实际情况进行补充.

  这种用正负数描述向指定方向变化情况的例子,在实际生活中有广泛的应用,按题意找准哪种意义的量应该用正数表示是解题的关健.这种描述具有相反数的影子,例如第(1)题中小明的体重可说成是减少-2kg,但现在不必向学生提出.

  巩固练习教科书第6页练习

  阅读思考

  教科书第8页阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流

  小结与作业

  课堂小结以问题的形式,要求学生思考交流:

  1,引人负数后,你是怎样认识数0的,数0的意义有哪些变化?

  2,怎样用正负数表示具有相反意义的量?

  (用正数表示其中一种意义的.量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.)

  本课作业

  1,必做题:教科书第7页习题1.1第3,6,7,8题

  2,选做题:教师自行安排

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1,本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指定方向变化的量。

  2,“数0既不是正数,也不是负数,’(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分.在引人负数后,除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助.由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课.

  3,教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解.

  4,本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识.通过实际例子的学习激发学生学习数学的兴趣.

初一数学教案11

  7.3.1多边形

  [教学目标]

  1.了解多边形及有关概念,理解正多边形及其有关概念.

  2.区别凸多边形与凹多边形.

  [教学重点、难点]

  1.重点:

  (1)了解多边形及其有关概念,理解正多边形及其有关概念.

  (2)区别凸多边形和凹多边形.

  2.难点:

  多边形定义的准确理解.

  [教学过程]

  一、新课讲授

  投影:图形见课本P84图7.3一l.

  你能从投影里找出几个由一些线段围成的图形吗?

  上面三图中让同学边看、边议.

  在同学议论的基础上,老师给以总结,这些线段围成的图形有何特性?

  (1)它们在同一平面内.

  (2)它们是由不在同一条直线上的几条线段首尾顺次相接组成的.

  这些图形中有三角形、四边形、五边形、六边形、八边形,那么什么叫做多边形呢?

  提问:三角形的定义.

  你能仿照三角形的定义给多边形定义吗?

  1.在平面内,由一些线段首位顺次相接组成的图形叫做多边形.

  如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.)

  2.多边形的边、顶点、内角和外角.

  多边形相邻两边组成的角叫做多边形的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角.

  3.多边形的.对角线

  连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线.

  让学生画出五边形的所有对角线.

  4.凸多边形与凹多边形

  看投影:图形见课本P85.7.3—6.

  在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画BD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形,今后我们在习题、练习中提到的多边形都是凸多边形.

  5.正多边形

  由正方形的特征出发,得出正多边形的概念.

  各个角都相等,各条边都相等的多边形叫做正多边形.

  二、课堂练习

  课本P86练习1.2.

  三、课堂小结

  引导学生总结本节课的相关概念.

  四、课后作业

  课本P90第1题.

  备用题:

  一、判断题.

  1.由四条线段首尾顺次相接组成的图形叫四边形.()

  2.由不在一直线上四条线段首尾次顺次相接组成的图形叫四边形.()

  3.由不在一直线上四条线段首尾顺次接组成的图形,且其中任何一条线段所在的直线、使整个图形都在这直线的同一侧,叫做四边形.()

  4.在同一平面内,四条线段首尾顺次连接组成的图形叫四边形.()

  二、填空题.

  1.连接多边形的线段,叫做多边形的对角线.

  2.多边形的任何整个多边形都在这条直线的,这样的多边形叫凸多边形.

  3.各个角,各条边的多边形,叫正多边形.

  三、解答题.

  1.画出图(1)中的六边形ABCDEF的所有对角线.

  2.如图(2),O为四边形ABCD内一点,连接OA、OB、OC、OD可以得几个三角形?它与边数有何关系?

  3.如图(3),O在五边形ABCDE的AB上,连接OC、OD、OE,可以得到几个三角形?它与边数有何关系?

  4.如图(4),过A作六边形ABCDEF的对角线,可以得到几个三角形?它与边数有何关系?

初一数学教案12

  相交线

  课型:新授课 备课人:徐新齐 审核人:霍红超

  学习目标

  1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念毛

  2.在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角

  重点、难点

  重点:邻补角、对顶角的概念,对顶角性质与应用.

  难点:理解对顶角相等的性质的探索.

  教学过程

  一、复习导入

  教师在轻松欢快的音乐中演示第五章章首图片为主体的课件.

  学生欣赏图片,阅读其中的文字.

  师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质, 研究平行线的性质和平行的判定以及图形的平移问题.

  二、自学指导

  观察剪刀剪布的'过程,引入两条相交直线所成的角

  握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.

  三、 问题导学

  认识邻补角和对顶角,探索对顶角性质

  (1).学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?

  学生思考并在小组内交流,全班交流.

  ∠AOC和∠BOC有一条公共边OC,它们的另一边互为反向延长线.

  ∠AOC和∠BOD有公共的顶点O,而是∠AOC的两边分别是∠BOD两边的反向延长线.

  ( 2).学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有"相邻"关系的两角互补,"对顶"关系的两角相等.

  (3).概括形成邻补角、对顶角概念.

  有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.

  如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.

  四、典题训练

  1.例:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.

  2.:判断下列图中是否存在对顶角.

  小结

初一数学教案13

  大家都听说过一句名言:“世界上不是缺少美,而是缺少发现美的眼睛”,大家知道这句话是谁说的吗?不知道没关系,大家记住下一句名言就好:“世界上不是缺少数学,而是缺少发现数学的眼睛——李老师语录”,那这个著名的李老师是谁呢?远在天边,近在眼前。不要太惊讶,想要签名的下课来找我就行。

  好,那我们接下来就用发现数学的眼睛来看一看,生活中常见的几何体都有哪些物体,分别是什么形状?水杯,篮球,冰激凌,金字塔,黑板擦。分别对应圆柱,球,圆锥,棱锥,棱柱。其中长方体,正方体是特殊的棱柱。

  好了,几何体我们都了解了,面对这些杂乱无章的几何体是不是感觉很乱,接下来我们就给几何体分分类:

  一、常见几何体分类

  1、 按照柱、锥、球分类

  圆柱

  柱生活中的立体图形 球 棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱。

  锥圆锥

  棱锥

  2、 按照有无顶点分类

  生活中的立体图形

  3、 按照有无曲面分类

  二、棱柱(直)

  1、 基本概念

  (1) 棱:在棱柱中,任何相邻的两个面的交线叫做棱。

  (2) 侧棱:在棱柱中,相邻两个侧面的交线叫做侧棱。

  2、 特征

  (1) 棱柱的所有侧棱长相等。

  (2) 棱柱的上下底面完全相同且都是多边形。

  (3) 棱柱的侧面都是长方形。

  (4) n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

  3、 分类

  按照底面多边形的边数分类,底面几边形就是几棱柱。

  三、图形的构成元素

  点:线与线橡胶的地方就是点。

  1 线:面与面相交的'地方就是线。

  面:包围着体的是面。

  2、联系

  点动成线,线动成面,面动成体。

  展开与折叠

  一、正方体的展开图(11种)

  1-4-1型:(6种)

  2-3-1型(3种)

  2-2-2型(1种)

  3-3型(

  1种)

  二、正方体的折叠

  展开图中不出现一字型、田字形、凹字形,2-4型,若有此形状的展开图则折不成正方体。

  三、总结规律:

  一线不过四,

  田凹应弃之;

  相间、Z端是对面,

  间二、拐角邻面知。

  四、常见几何体的展开图

  三、截一个几何体

  一、正方体的截面

  用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

  可能出现的:锐角三角型、等边、等腰三角形, 正方形、矩形、非矩形的平行四边形、 非等腰梯形、 等腰梯形、五边形、六边形、正六边形

  不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形

  二、常见几何体截面

  四、从三个方向看物体的形状

  一、三视图

  物体的三视图指主视图、俯视图、左视图。

  主视图:从正面看到的图,叫做主视图。

  左视图:从左面看到的图,叫做左视图。

  俯视图:从上面看到的图,叫做俯视图。

  二、联系

  主俯长对正,主左高平齐,俯左宽相等。

  三、画法

  一看,二画,三查(尺寸,虚实)

初一数学教案14

  教学目标

  (一)教学知识点

  1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

  2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.

  3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.

  (二)能力训练要求

  1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.

  2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.

  3.通过学生共同观察和讨论,培养大家的合作交流意识.

  (三)情感与价值观要求

  1.经历探索二次函数与一元二次方程的关系的'过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.

  2.具有初步的创新精神和实践能力.

  教学重点

  1.体会方程与函数之间的联系.

  2.理解何时方程有两个不等的实根,两个相等的实数和没有实根.

  3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.

  教学难点

  1.探索方程与函数之间的联系的过程.

  2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.

  教学方法

  讨论探索法.

  教具准备

  投影片二张

  第一张:(记作§2.8.1A)

  第二张:(记作§2.8.1B)

  教学过程

  Ⅰ.创设问题情境,引入新课

  [师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解.

  现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题。

  通过学生的讨论,使学生更清楚以下事实:

  (1)分解因式与整式的乘法是一种互逆关系;

  (2)分解因式的结果要以积的形式表示;

  (3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式的次数;

  (4)必须分解到每个多项式不能再分解为止。

  活动5:应用新知

  例题学习:

  P166例1、例2(略)

  在教师的引导下,学生应用提公因式法共同完成例题。

  让学生进一步理解提公因式法进行因式分解。

  活动6:课堂练习

  1.P167练习;

  2.看谁连得准

  x2-y2 (x+1)2

  9-25 x 2 y(x -y)

  x 2+2x+1 (3-5 x)(3+5 x)

  xy-y2 (x+y)(x-y)

  3.下列哪些变形是因式分解,为什么?

  (1)(a+3)(a -3)= a 2-9

  (2)a 2-4=( a +2)( a -2)

  (3)a 2-b2+1=( a +b)( a -b)+1

  (4)2πR+2πr=2π(R+r)

  学生自主完成练习。

  通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。

  活动7:课堂小结

  从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?

  学生发言。

  通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解。

  活动8:课后作业

  课本P170习题的第1、4大题。

  学生自主完成

  通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。

  板书设计(需要一直留在黑板上主板书)

  15.4.1提公因式法例题

  1.因式分解的定义

  2.提公因式法

初一数学教案15

  学习目标

  1.理解平行线的意义两条直线的两种位置关系;

  2.理解并掌握平行公理及其推论的内容;

  3.会根据几何语句画图,会用直尺和三角板画平行线;

  学习重点

  探索和掌握平行公理及其推论.

  学习难点

  对平行线本质属性的理解,用几何语言描述图形的性质

  一、学习过程:预习提问

  两条直线相交有几个交点?

  平面内两条直线的位置关系除相交外,还有哪些呢?

  (一)画平行线

  1、 工具:直尺、三角板

  2、 方法:一"落";二"靠";三"移";四"画"。

  3、请你根据此方法练习画平行线:

  已知:直线a,点B,点C.

  (1)过点B画直线a的平行线,能画几条?

  (2)过点C画直线a的平行线,它与过点B的平行线平行吗?

  (二)平行公理及推论

  1、思考:上图中,①过点B画直线a的平行线,能画 条;

  ②过点C画直线a的平行线,能画 条;

  ③你画的直线有什么位置关系? 。

  ②探索:如图,P是直线AB外一点,CD与EF相交于P.若CD与AB平行,则EF与AB平行吗?为什么?

  二、自我检测:

  (一)选择题:

  1、下列推理正确的.是 ( )

  A、因为a//d, b//c,所以c//d B、因为a//c, b//d,所以c//d

  C、因为a//b, a//c,所以b//c D、因为a//b, d//c,所以a//c

  2.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为( )

  A.0个 B.1个 C.2个 D.3个

  (二)填空题:

  1、在同一平面内,与已知直线L平行的直线有 条,而经过L外一点,与已知直线L平行的直线有且只有 条。

  2、在同一平面内,直线L1与L2满足下列条件,写出其对应的位置关系:

  (1)L1与L2 没有公共点,则 L1与L2 ;

  (2)L1与L2有且只有一个公共点,则L1与L2 ;

  (3)L1与L2有两个公共点,则L1与L2 。

  3、在同一平面内,一个角的两边与另一个角的两边分别平行,那么这两个角的大小关系是 。

  4、平面内有a 、b、c三条直线,则它们的交点个数可能是 个。

  三、CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°.

【初一数学教案】相关文章:

初一数学教案08-27

初一数学教案11-04

初一数学教案【热门】12-01

【精】初一数学教案12-02

初一数学教案【推荐】12-11

【热】初一数学教案12-12

【推荐】初一数学教案12-03

【荐】初一数学教案12-04

【热门】初一数学教案12-12

初一数学教案【荐】12-13