现在位置:范文先生网>教案大全>数学教案>七年级数学教案>七年级数学教案

七年级数学教案

时间:2022-11-19 17:16:43 七年级数学教案 我要投稿
  • 相关推荐

七年级数学教案(汇编15篇)

  作为一位杰出的教职工,编写教案是必不可少的,教案是实施教学的主要依据,有着至关重要的作用。我们该怎么去写教案呢?以下是小编帮大家整理的七年级数学教案,欢迎大家分享。

七年级数学教案(汇编15篇)

七年级数学教案1

  教学目的:

  (一)知识点目标:

  1.了解正数和负数是怎样产生的。

  2.知道什么是正数和负数。

  3.理解数0表示的量的意义。

  (二)能力训练目标:

  1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。

  2.会用正、负数表示具有相反意义的量。

  (三)情感与价值观要求:

  通过师生合作,联系实际,激发学生学好数学的热情。

  教学重点:

  知道什么是正数和负数,理解数0表示的量的.意义。

  教学难点:

  理解负数,数0表示的量的意义。

  教学方法:

  师生互动与教师讲解相结合。

  教具准备:

  地图册(中国地形图)。

  教学过程:

  引入新课:

  1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、?

  内容:老师说出指令:

  向前两步,向后两步;

  向前一步,向后三步;

  向前两步,向后一步;

  向前四步,向后两步。

  如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。

  [师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。

  讲授新课:

  1.自然数的产生、分数的产生。

  2.章头图。问题见教材。让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。

  3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。根据需要有时在正数前面也加上“十”(正号)表示正数。

  举例说明:3、2、0.5、等是正数(也可加上“十”)

  -3、-2、-0.5、-等是负数。

  4、数0既不是正,也不是负数,0是正数和负数的分界。

  0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。

  5、让学生举例说明正、负数在实际中的应用。展示图片(又见教材P5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的本地X银行的存折,说出你知道的信息。

  巩固提高:练习:课本P5练习

  课时小结:这节课我们学习了哪些知识?你能说一说吗?

  课后作业:课本P7习题1.1的第1、2、4、5题。

  活动与探究:在一次数学测验中,X班的平均分为85分,把高于平均分的高出部分记为正数。

  (1)美美得95分,应记为多少?

  (2)多多被记作一12分,他实际得分是多少?

七年级数学教案2

  学习目标:

  1、引导学生正确区分“线段、射线、直线”,掌握其表示方法,理解并能运用相关性质、公理。

  2、了解线段中点的概念,能借助刻度尺、圆规等画图工具画一条线段等于已知线段。

  3、引领学生在感受美妙多变的图形世界中,培养他们的观察、分析、比较、探究等能力。

  重点与难点:了解线段中点的概念,能画一条线段等于已知线段。发展学生有条理的思考,并能正确地表述。

  学习过程:

  一、课前预习导学

  1、如图,点a、b、c、d在直线ab上,则图中能用字母表示的共有条线段,有条射线,有条直线。

  2、从a到b地有①、②、③三条路可以走,每条路长分别为:,则第条路最短,另两条路的长短关系是。

  第1题

  第2题

  3、如图,若是中点,是中点,

  (1)若,_________;

  (2)若,_________。

  二、课堂学习1、议一议:

  (1)、在平面内画一个点,过这个点画直线,能画多少条?

  (2)、要在墙上钉牢一根木条,至少要用几个钉子?为什么?

  (3)、如果平面内有两个点,过这两个点画直线,又能画多少条?

  总结:“过两点有______,并且____ ”

  思考:过平面上三点中的每两点画直线,可画多少条?

  2、做一做:已知两点a、b

  (1)画线段ab(连接ab)

  (2)延长线段ab到点c,使bc=ab

  注意:我们把上图中的点b叫做线段ac的。

  3、想一想:(1)如果点b是线段ac的.中点,那么线段ab、bc、ac之间有怎样的数量关系?与同学交流。

  (2)如何用符号语言表述中点的概念?

  总结:如果点b是线段ac的中点,那么;

  如果,那么b是线段ac的中点。

  4、知识运用:

  例1、如图,线段ab=8cm,c是ab的中点,点d在cb上,db=1.5cm.求线段cd的长度。

  练习:1、如图ab=8cm,点c是ab的中点,

  点d是cb的中点,则ad=____cm

  2、如图,下列说法,不能判断点c是线段ab的中点的是( )

  a、ac=cb b、ab=2ac c、ac+cb=ab d、cb=0.5ab

  3、已知线段ab=8cm,点c是线段ab上任意一点,点m,n分别是线段ac与线段bc的中点,求线段mn的长。

  三、课堂检测1.下列说法中,正确的是()

  a.射线oa和射线ao表示同一条射线;b.延长直线ab;

  c.经过两点有一条直线,并且只有一条直线;d.如果ac=bc,那么点c是线段ab的中点.

  2.如果要在墙上固定一根木条,你认为至少要钉子()

  a.1根b.2根c.3根d.4根

  3.如图,若是中点,是中点,

  (1)若,,_________;(2)若,_________。

  4.如图在平面内有a、b、c、d四点,按要求画图。

  (1)画直线ab、射线bc、线段bd

  (2)连结ac交bd于点o

  (3)画射线cd并反向延长射线cd,

  (4)连结ad并延长至点e,使ad=de。

  四、课后作业

  1、下列说法中正确的是()

  a、连结两点的线段叫做两点之间的距离b、直线没有端点,射线至少有一个端点

  c、经过平面内两点有且只有一条直线d、运动场上的300m赛跑,表示起点和终点之间的距离是300米

  2、如图,b是线段ad上一点,c是线段bd的中点,ad=10,bc=3,求线段cd、ab的长度

  3、如图,线段ad=8,ab=cd=3,e、f分别是ab、cd的中点,求线段ef的长。

  4、已知线段mn=7,点p在直线mn上,且mp=3,则np= 。

  5、一条直线上有a,b,c三点,其中ab=4cm,bc=3cm,若o是线段ac的中点,求线段ob的长度。

七年级数学教案3

  一、教学目标

  1、知识目标:掌握数轴三要素,会画数轴。

  2、能力目标:能将已知数在数轴上表示,能说出数轴上的点表示的数,知道有理数都可以用数轴上的点表示;

  3、情感目标:向学生渗透数形结合的思想。

  二、教学重难点

  教学重点:数轴的三要素和用数轴上的点表示有理数。

  教学难点:有理数与数轴上点的对应关系。

  三、教法

  主要采用启发式教学,引导学生自主探索去观察、比较、交流。

  四、教学过程

  (一)创设情境激活思维

  1.学生观看钟祥二中相关背景视频

  意图:吸引学生注意力,激发学生自豪感。

  2.联系实际,提出问题。

  问题1:钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。

  师生活动:学生思考解决问题的方法,学生代表画图演示。

  学生画图后提问:

  1.马路用什么几何图形代表?(直线)

  2.文中相关地点用什么代表?(直线上的点)

  3.学校大门起什么作用?(基准点、参照物)

  4.你是如何确定问题中各地点的位置的?(方向和距离)

  设计意图:“三要素”为定向,用直线、点、方向、距离等几何符号表示实际问题,这是实际问题的第一次数学抽象。

  问题2:上面的问题中,“南”和“北”具有相反意义。我们知道,正数和负数可以表示两种具有相反意义的量,我们能不能直接用数来表示这些地理位置和学校大门的相对位置关系呢?

  师生活动:

  学生思考后回答解决方法,学生代表画图。

  学生画图后提问:

  1.0代表什么?

  2.数的符号的实际意义是什么?

  3.-75表示什么?100表示什么?

  设计意图:继续以三要素为定向,将点用数表示,实现第二次抽象,为定义数轴概念提供直观基础。

  问题3:生活中常见的温度计,你能描述一下它的结构吗?

  设计意图:借助生活中的常用工具,说明正数和负数的作用,引导学生用三要素表达,为定义数轴的概念提供直观基础。

  问题4:你能说说上述2个实例的.共同点吗?

  设计意图:进一步明确“三要素”的意义,体会“用点表示数”和“用数表示点的思想方法,为定义数轴概念提供又一个直观基础。

  (二)自主学习探究新知

  学生活动:带着以下问题自学课本第8页:

  1.什么样的直线叫数轴?它具备什么条件。

  2.如何画数轴?

  3.根据上述实例的经验,“原点”起什么作用?

  4.你是怎么理解“选取适当的长度为单位长度”的?

  师生活动:

  学生自学完后,请代表上黑板画一条数轴,讲解画数轴的一般步骤。

  设计意图:明确画数轴的步骤,使数轴的三要素在同学们的头脑中留下更深刻的印象,同时得到数轴的定义。

  至此,学生已会画数轴,师生共同归纳总结(板书)

  ①数轴的定义。

  ②数轴三要素。

  练习:(媒体展示)

  1.判断下列图形是否是数轴。

  2.口答:数轴上各点表示的数。

  3.在数轴上描出下列各点:1.5,-2,-2.5,2,2.5,0,-1.5。

  (三)小组合作交流展示

  问题:观察数轴上的点,你有什么发现?

  数轴上表示3的点在原点的哪一侧?与原点的距离是多少个单位长度?表示-2的点在原点的哪一侧?与原点的距离是多少个单位长度?设a是一个正数,对表示a的点和-a的点进行同样的讨论。

  设计意图:通过从特殊到一般的方法归纳出数轴上不同位置点的特点,培养学生的抽象概括能力。

  (四)归纳总结反思提高

  师生共同回顾本节课所学主要内容,回答以下问题:

  1.什么是数轴?

  2.数轴的“三要素”各指什么?

  3.数轴的画法。

  设计意图:梳理本节课内容,掌握本节课的核心――数轴“三要素”。

  (五)目标检测设计

  1.下列命题正确的是()

  A.数轴上的点都表示整数。

  B.数轴上表示4与-4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。

  C.数轴包括原点与正方向两个要素。

  D.数轴上的点只能表示正数和零。

  2.画数轴,在数轴上标出-5和+5之间的所有整数,列举到原点的距离小于3的所有整数。

  3.画数轴,表示下列有理数数的点中,观察数轴,在原点左边的点有_______个。4.在数轴上点A表示-4,如果把原点O向负方向移动1.5个单位,那么在新数轴上点A表示的数是_______。

  五、板书

  1.数轴的定义。

  2.数轴的三要素(图)。

  3.数轴的画法。

  4.性质。

  六、课后反思

  附:活动单

  活动一:画一画

  钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。

  思考:如何简明地用数表示这些地理位置与学校大门的相对位置关系?

  活动二:读一读

  带着以下问题阅读教科书P8页:

  1.什么样的直线叫数轴?

  定义:规定了_______、_______、_______的直线叫数轴。

  数轴的三要素:_______、_______、_______。

  2.画数轴的步骤是什么?

  3.“原点”起什么作用?_______

  4.你是怎么理解“选取适当的长度为单位长度”的?

  练习:

  1.画一条数轴

  2.在你画好的数轴上表示下列有理数:1.5,-2,-2.5,2,2.5,0,-1.5

  活动三:议一议

  小组讨论:观察你所画的数轴上的点,你有什么发现?

  归纳:一般地,设a是一个正数,则数轴上表示数a在原点的_______边,与原点的距离是_______个单位长度;表示数-a的点在原点的_______边,与原点的距离是_______个单位长度.

  练习:

  1.数轴上表示-3的点在原点的_______侧,距原点的距离是_______;表示6的点在原点的_______侧,距原点的距离是_______;两点之间的距离为_______个单位长度。

  2.距离原点距离为5个单位的点表示的数是_______。

  3.在数轴上,把表示3的点沿着数轴负方向移动5个单位长度,到达点B,则点B表示的数是_______。

  附:目标检测

  1.下列命题正确的是( )

  A.数轴上的点都表示整数。

  B.数轴上表示4与-4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。

  C.数轴包括原点与正方向两个要素。

  D.数轴上的点只能表示正数和零。

  2.画数轴,在数轴上标出-5和+5之间的所有整数.列举到原点的距离小于3的所有整数。

  3.画数轴,观察数轴,在原点左边的点有_______个。

  4.在数轴上点A表示-4,如果把原点O向负方向移动1.5个单位,那么在新数轴上点A表示的数是_______。

七年级数学教案4

  设计说明

  1.游戏导入,激发兴趣。

  “世界通过游戏展现在孩子面前,人的创造才能也常常在游戏中表现出来,没有游戏也就没有充分的智力发展。”用游戏导入新课,可使数学知识在游戏中愉快地、自然地被学生所接受和理解。上课伊始,设计了老师说时间,学生用动作表示时间的游戏,这样不仅唤起了学生对时间的回忆,同时也激发了学生学习新课的兴趣。

  2.直观演示与动手操作相结合。

  重视直观演示和动手操作,是发展学生思维,培养学生数学能力的有效途径之一。本设计通过课件的直观演示,以及学生动手操作,使学生理解时间与时刻的意义及12时计时法与24时计时法的联系。通过例题进行比较,使学生明确用24时计时法表示时间比较简明、方便,经历由直观到抽象的过程,渗透比较的数学思想。

  3.注重从日常生活的各个场景入手,加深对24时计时法的理解和掌握。

  24时计时法在生活中有着广泛的应用,与人们的日常生活紧密联系。学生学习这部分知识有着重要的现实意义。整节课以“一天”为主线,贯穿始终。出示主题图展示生活中的一天;通过春节晚会倒计时,了解一天的开始;探究一天有多少个小时。从生活中梳理出数学知识,既能加深学生对知识的理解,又能帮助他们提高学以致用的能力。

  课前准备

  教师准备ppt课件时钟模型

  学生准备时钟模型

  教学过程

  ⊙创设情境,导入新课

  1.做游戏,认时间。

  师:老师和大家做个游戏,老师说一个时间,大家不用口述,用动作告诉老师这时你在做什么,看谁表演的好。

  (1)老师先说一个时刻:中午12时,用动作示范一下。

  (2)老师报出下列时刻:凌晨3时、早上6时、上午11时30分、下午4时、晚上9时。(教师边板书边提问)

  2.导入。

  师:刚才我们说的是生活中常用的表示时刻的方法,叫做12时计时法。如果同学们用12时计时法表示时刻,那么应加“上午、中午、下午、晚上或凌晨”等限制词。有没有一种不用加文字说明的计时方法呢?今天我们就学习一种新的计时法——24时计时法。(板书课题)

  设计意图:通过游戏,激活学生的生活经验,分析、归纳出12时计时法的特点,并理解12时计时法在现实生活中的作用。了解12时计时法在实际运用时要有限制词,从而激发学生的认知冲突,寻找表示时间的更为简便的计时方法——24时计时法,引入新知,激发学生学习新知的兴趣。

  ⊙经历过程,体验感知

  1.体验生活中的.“一天”。

  师:请同学们看大屏幕(课件出示教材82页主题图),引导学生说出在主题图中获得的信息。

  (学生汇报小女孩在一天中的作息时间)

  2.认识一天的开始——0时。

  师:大家知道一天是从什么时刻开始的吗?(学生发表意见,教师不作答复)

  师:一天的开始到底是什么时刻呢?还是让我们一起来看一段录像吧!这是春节联欢晚会上大家在一起迎接新年第一天开始的情境。(课件播放倒计时的录像)

  师:新年的第一天开始了,钟面上是几时?(12时)是什么时候的12时?(夜里12时)

  师:到了夜里12时,就表示这一天结束了,同时又表示新的一天开始了。作为新的一天的开始,我们一般又把夜里12时说成0时。

  师:0时我们通常在做什么呢?(睡觉)现在知道一天的开始是什么时刻了吗?一起说说看。(0时)

  3.运用课件创设情境,感受一天的经过。

  师:一天的时间有多长呢?让我们来感受一下吧!大家可以一边看,一边随着画面和音乐表演。(课件演示)现在是0时,在睡梦中我们开始了新的一天。

  师:(钟面显示早晨6时45分)天亮了,太阳升起来了,现在是什么时候?小女孩在做什么?

  师:(钟面显示上午10时15分)现在是什么时候?小女孩在做什么?

  师:(钟面显示中午12时)时间真快,现在是什么时候?到吃午饭的时间了。

  师:(钟面显示下午3时30分)小女孩和同学们在跳绳。

  师:(钟面显示下午6时)现在是什么时候?到吃晚饭的时间了。

  师:(钟面显示晚上7时25分)现在是什么时候?小女孩在做什么?

  师:大家在睡梦中,时间又不知不觉到了什么时候?(夜里12时)到了夜里12时,这一天就结束了,新的一天又开始了!

七年级数学教案5

  一、教学目标

  【知识与技能】

  了解数轴的概念,能用数轴上的点准确地表示有理数。

  【过程与方法】

  通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。

  【情感、态度与价值观】

  在数与形结合的过程中,体会数学学习的乐趣。

  二、教学重难点

  【教学重点】

  数轴的三要素,用数轴上的点表示有理数。

  【教学难点】

  数形结合的思想方法。

  三、教学过程

  (一)引入新课

  提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的.轴,它就是我们今天学习的数轴。

  (二)探索新知

  学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:

  提问1:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义。我们知道,正数和负数可以表示具有相反意义的量,那么,如何用数表示这些树、电线杆与汽车站牌的相对位置呢?

  学生活动:画图表示后提问。

  提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。

  教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。

  提问3:你是如何理解数轴三要素的?

  师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。

  (三)课堂练习

  如图,写出数轴上点A,B,C,D,E表示的数。

  (四)小结作业

  提问:今天有什么收获?

  引导学生回顾:数轴的三要素,用数轴表示数。

  课后作业:

  课后练习题第二题;思考:到原点距离相等的两个点有什么特点?

七年级数学教案6

  一元一次不等式组

  教学目标

  1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;

  2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力;

  3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的.价值。

  教学难点

  正确分析实际问题中的不等关系,列出不等式组。

  知识重点

  建立不等式组解实际问题的数学模型。

  探究实际问题

  出示教科书第145页例2(略)

  问:(1)你是怎样理解“不能完成任务”的数量含义的?

  (2)你是怎样理解“提前完成任务”的数量含义的?

  (3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?

  师生一起讨论解决例2.

  归纳小结

  1、教科书146页“归纳”(略).

  2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?

  在讨论或议论的基础上老师揭示:

  步法一致(设、列、解、答);本质有区别.(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表。

七年级数学教案7

  一、教学内容分析

  1。2有理数1。2。2数轴。这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导,及不等式的求解。同时,也是学习直角坐标系的基础,从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学、学好数学的方法。日常生活中带见的用温度计度量温度,已为学习数轴概念打下了一定的基础。通过问题情境类比得到数轴的概念,是这节课的主要学习方法。同时,数轴又能将数的分类直观的表现出来,是学生领悟分类思想的基础。

  二、学生学习情况分析

  (1)知识掌握上,七年级的学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述;

  (2)学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析;

  (3)由于七年级学生的理解能力和思维特征和生理特征,学生的好动性,注意力容易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,一发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生的主动性。

  三、设计思想

  从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则。小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识。直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的。例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等。

  四、教学目标

  (一)知识与技能

  1、掌握数轴的三要素,能正确画出数轴。

  2、能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。

  (二)过程与方法

  1、使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识。

  2、对学生渗透数形结合的思想方法。

  (三)情感、态度与价值观

  1、使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点。

  2、通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

  五、教学重点及难点

  1、重点:正确掌握数轴画法和用数轴上的点表示有理数。

  2、难点:有理数和数轴上的点的对应关系。

  六、教学建议

  1、重点、难点分析

  本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小。难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础。

  2、知识结构

  有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的方法,本课知识要点如下:

  定义规定了原点、正方向、单位长度的直线叫数轴

  三要素原点正方向单位长度

  应用数形结合

  七、学法引导

  1、教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法。

  2、学生学法:动手画数轴,动脑概括数轴的三要素,动手、动脑做练习。

  八、课时安排

  1课时

  九、教具学具准备

  电脑、投影仪、三角板

  十、师生互动活动设计

  讲授新课

  (出示投影1)

  问题1:三个温度计。其中一个温度计的液面在0上2个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度。

  师:三个温度计所表示的温度是多少?

  生:2℃,—5℃,0℃。

  问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7。5m处分别有一棵柳树和一棵杨树,汽车站西3m和4。8m处分别有一棵槐树和一根电线杆,试画图表示这一情境。(小组讨论,交流合作,动手操作)

  师:我们能否用类似的图形表示有理数呢?

  师:这种表示数的图形就是今天我们要学的内容—数轴(板书课题)。

  师:与温度计类似,我们也可以在一条直线上画出刻度,标上读

  数,用直线上的点表示正数、负数和零。具体方法如下

  (边说边画):

  1。画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的.都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);

  2。规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);

  3。选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为—1,—2,—3,…

  师问:我们能不能用这条直线表示任何有理数?(可列举几个数)

  让学生观察画好的直线,思考以下问题:

  (出示投影2)

  (1)原点表示什么数?

  (2)原点右方表示什么数?原点左方表示什么数?

  (3)表示+2的点在什么位置?表示—1的点在什么位置?

  (4)原点向右0。5个单位长度的A点表示什么数?

  原点向左1。5个单位长度的B点表示什么数?

  根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义。

  师:在此基础上,给出数轴的定义,即规定了原点、正方向和单

  位长度的直线叫做数轴。

  进而提问学生:在数轴上,已知一点P表示数—5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是—5?如果单位长度改变呢?如果直线的正方向改变呢?

  通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可。

  【教法说明】通过“观察—类比—思考—概括—表达”展现知识的形成是从感性认识上升到理性认识的过程,让学生在获取知识的过程中,领会数学思想和思维方法,并有意识地训练学生归纳概括和口头表达能力。

  师生同步画数轴,学生概括数轴三要素,师出示投影,生动手动脑练习

  尝试反馈,巩固练习

  (出示投影3)。画出数轴并表示下列有理数:

  1、1。5,—2。2,—2。5,,,0。

  2。写出数轴上点A,B,C,D,E所表示的数:

  请大家回答下列问题:

  (出示投影4)

  (1)有人说一条直线是一条数轴,对不对?为什么?

  (2)下列所画数轴对不对?如果不对,指出错在哪里?

  【教法说明】此组练习的目的是巩固数轴的概念。

  十一、小结

  本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究。

  十二、课后练习习题1。2第2题

  十三、教学反思

  1、数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

  2、教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

  3、注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

七年级数学教案8

  教学目标

  1. 使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来;

  2. 初步培养学生观察、分析和抽象思维的能力.

  教学重点和难点

  重点:列代数式.

  难点:弄清楚语句中各数量的意义及相互关系.

  课堂教学过程设计

  一、从学生原有的认知结构提出问题

  1?用代数式表示乙数:(投影)

  (1)乙数比x大5;(x+5)

  (2)乙数比x的2倍小3;(2x-3)

  (3)乙数比x的倒数小7;( -7)

  (4)乙数比x大16%?((1+16%)x)

  (应用引导的方法启发学生解答本题)

  2?在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式?本节课我们就来一起学习这个问题?

  二、讲授新课

  例1 用代数式表示乙数:

  (1)乙数比甲数大5; (2)乙数比甲数的2倍小3;

  (3)乙数比甲数的倒数小7; (4)乙数比甲数大16%?

  分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数?

  解:设甲数为x,则乙数的代数式为

  (1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x?

  (本题应由学生口答,教师板书完成)

  最后,教师需指出:第4小题的答案也可写成x+16%x?

  例2 用代数式表示:

  (1)甲乙两数和的2倍;

  (2)甲数的 与乙数的 的差;

  (3)甲乙两数的平方和;

  (4)甲乙两数的和与甲乙两数的差的积;

  (5)乙甲两数之和与乙甲两数的差的积?

  分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式?

  解:设甲数为a,乙数为b,则

  (1)2(a+b); (2) a- b; (3)a2+b2;

  (4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)?

  (本题应由学生口答,教师板书完成)

  此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律?但a与b的差指的是(a-b),而b与a的差指的是(b-a)?两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序?

  例3 用代数式表示:

  (1)被3整除得n的数;

  (2)被5除商m余2的数?

  分析本题时,可提出以下问题:

  (1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?

  (2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?

  解:(1)3n; (2)5m+2?

  (这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)?

  例4 设字母a表示一个数,用代数式表示:

  (1)这个数与5的和的3倍;(2)这个数与1的差的 ;

  (3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的 的和?

  分析:启发学生,做分析练习?如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”?

  解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4) a2+ a?

  (通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力?)

  例5 设教室里座位的行数是m,用代数式表示:

  (1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?

  (2)教室里座位的行数是每行座位数的 ,教室里总共有多少个座位?

  分析本题时,可提出如下问题:

  (1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

  (2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

  (3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)

  解:(1)m(m+6)个; (2)( m)m个?

  三、课堂练习

  1?设甲数为x,乙数为y,用代数式表示:(投影)

  (1)甲数的2倍,与乙数的 的和; (2)甲数的 与乙数的3倍的差;

  (3)甲乙两数之积与甲乙两数之和的'差;(4)甲乙的差除以甲乙两数的积的商?

  2?用代数式表示:

  (1)比a与b的和小3的数; (2)比a与b的差的一半大1的数;

  (3)比a除以b的商的3倍大8的数; (4)比a除b的商的3倍大8的数?

  3?用代数式表示:

  (1)与a-1的和是25的数; (2)与2b+1的积是9的数;

  (3)与2x2的差是x的数; (4)除以(y+3)的商是y的数?

  〔(1)25-(a-1); (2) ; (3)2x2+2; (4)y(y+3)?〕

  四、师生共同小结

  首先,请学生回答:

  1?怎样列代数式?2?列代数式的关键是什么?

  其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:

  (1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);

  (2)要善于把较复杂的数量关系,分解成几个基本的数量关系;

  (3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备?要求学生一定要牢固掌握?

  五、作业

  1?用代数式表示:

  (1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?

  (2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?

  2?已知一个长方形的周长是24厘米,一边是a厘米,

  求:(1)这个长方形另一边的长;(2)这个长方形的面积.

  学法探究

  已知圆环内直径为acm,外直径为bcm,将100个这样的圆环一个接着一个环套环地连成一条锁链,那么这条锁链拉直后的长度是多少厘米?

  分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看 有没有规律.

  当圆环为三个的时候,如图:

  此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:

  解:

  =99a+b(cm)

七年级数学教案9

  学生很容易解决,相互交流,自我评价,增强学生的主人翁意识。

  3、电脑演示:

  如下图,第一行的图形绕虚线旋转一周,便能形成第二行的某个几何体,用线连一连。

  由平面图形动成立体图形,由静态到动态,让学生感受到几何图形的奇妙无穷,更加激发他们的好奇心和探索欲望。

  四、做一做(实践)

  1、用牙签和橡皮泥制作球体和一些柱体和锥体,看哪些同学做得比较标准。

  2、使出事先准备好的等边三角形纸片,试将它折成一个正四面体。

  五、试一试(探索)

  课前,发给学生阅读材料《晶体--自然界的多面体》,让学生通过阅读了解什么是正多面体,正多面体是柏拉图约在公元400年独立发现的,在这之前,埃及人已经用于建筑(埃及金字塔),以此激励学生探索的欲望。

  教师出示实物模型:正四面体、正方体、正八面体、正十二面体、正二十面体

  1、以正四面体为例,说出它的顶点数、棱数和面数。

  2、再让学生观察、讨论其它正多面体的顶点数、棱数和面数。将结果记入书上的P128的`表格。引导学生发现结论。

  3、(延伸):若随意做一个多面体,看看是否还是那个结果。

  学生在探索过程中,可能会遇到困难,师生可以共同参与,适当点拨,归纳出欧拉公式,并介绍欧拉这个人,进行科学探索精神教育,充分挖掘学生的潜能,让学生积极参与集体探讨,建立良好的相互了解的师生关系。

  六、小结,布置课后作业:

  1、用六根火柴:①最多可以拼出几个边长相等的三角形?②最多可以拼出如图所示的三角形几个?

  2、针对我校电脑室对全体学生开放的优势,教师告诉学生网址,让学生从网上学习正多面体的制作。

  让学生去动手操作,根据自身的能力,充分发挥创造性思维,培养学生的创新精神,使每个学生都能得到充分发展。

七年级数学教案10

  一、教学目标:

  ⑴在具体情景中了解余角与补角,懂得余角和补角的性质,通过练习掌握余角和补角的概念及性质,并能运用它们解决一些简单的实际问题。

  ⑵经历观察、操作、推理、交流等活动,发展学生的几何概念,培养学生的推理能力和表达能力。

  ⑶体验数学知识的发生、发展过程,敢于面对数学活动中的.困难,建立学好数学的自信心。

  二、教学重点、难点:

  余角与补角的性质

  三、教学过程:

  复习、引入:

  ⑴复习角的定义。你知道有哪些特殊的角?

  ⑵用量角器量一量图中每组两个角的度数,并求出它们的和。

  你有什么发现?

  新课:

  由学生的发现,给出余角和补角的定义(文字叙述)。

  并且用数学符号语言进行理解。

  问题1:如何求一个角的余角和补角。

  ①∠1的余角:90°-∠1

  ②∠α的补角:180°-∠α

  练习:填表(求一个角的余角、补角)

  拓广:观察表格,你发现α的余角和α的补角有什么关系?

  如何进行理论推导?

  结论:α的补角比α的余角大90°

  α一定是锐角

  钝角没有余角,但一定有补角。

七年级数学教案11

  教学目标

  知识与能力

  从简单的转盘游戏开始,使学生在生活经验和试验的基础上,进一步体验不确定事件的特点及事件发生的可能性大小。

  教学思考

  能用实验对数学猜想做出检验,从而增加猜想的可信度。 解决问题

  在转盘游戏过程中,经历猜测结果,实验验证,分析试验结果等数学活动,增加数学活动经验。

  情感态度与价值观

  在合作与交流过程中,体验小组合作更有利于探究数学知识,敢于发表自己观点,提高个人认识。

  教学重点难点:

  在实验中,体会不确定事件的特点及事件发生可能性大小;使每个学生都能积极认真参与课堂设计中的实验,真正在实验中获得知识上的认识。

  教学过程

  创设情境,切入标题

  同学们,商场经常利用转盘游戏进行抽奖,你认为顾客们的中奖可能性有多大呢?这节课我们就来探究一下有关转盘游戏的问题。 新课探究

  请同学们猜测,当我自由转动转盘时,指针会落在什么颜域呢?

  请各小组分别派一名代表,看哪组能转出红色。

  结果,8小组有6组转出了红色。

  为什么会出现这样的'结果呢?

  因为,在这个转盘中,红域的面积大,白域的面积小,因此,当转盘停上转动时,指针落到红域的可能性大。

  大家同意这种看法吗?下面我们亲自动手感受一下。

  学生按照题目要求进行实验。

  请各组组长把你组的实验数据汇报一下(教师把数据填写在表格里) 实验结果:六个小组每组实验16次,全班共实验96次,指针落在红域的次数分别如下9,6,10,5,8,12。共计50次。

  请同学们对我们的实验结果进行分析交流,谈谈你在试验中有哪些心得。

  根据观察,转盘上红域的面积为总面积的一半,指针落在红域的可能性也应该是一半。通过对我们全班的实验结果分析,指针落在红域的比例是50∶96,结果接近百分之五十。

  在小组内实验结果不明显,实验次数越多越能说明问题。

  通过实验,我们确定感受到,转盘游戏中各区域的面积的可能性大小与指针落在什么区域的可能性大小有直接关系。以后在生活中再遇到转盘游戏问题可要想想今天的实验结论。

  游戏与交流

  下面我们利用转盘做一下数学游戏(出示幻灯片),学生按教学设计中要求进行游戏,教师巡回指导。

  每组每人游戏一次,全班共游戏48次。其游戏结果是,平均数增大1的,共35次,平均数减小1的,共13次。

  请同学们对下列问题进行交流(幻灯片出示教材206页4个问题)。 这个转盘转到“平均数增大1”区域的可能性大,从面积大小就可以看出。

  如果平均数增大1,我是在卡片上增加一个数,这个数等于卡片上数字的个数加1,如果是平均数减小1,我就在每个数上都减去1。

  同学们说出很多种方法,不一一列举。

  “平均数增大1”的次数占总次数的百分之七十三,“平均数减小1”占百分之二十七。

  如果将这个实验继续做下去,卡片上所有数的平均数会增大。

  同学们说的都很好,课后能不能自己也利用转盘设计一个新的游戏,感兴趣的同学可以在课下与我交流。

  以下过程同教学设计,略去。

  随堂练习

  指导学生完成教材第206页习题。

  课时小结

  学生可从各个方面加以小结。 布置作业

  仿照课堂游戏,自编一个新的游戏。 能否利用扑克牌设计本节转盘游戏。

七年级数学教案12

  一、教学目标

  1、知识目标:掌握数轴三要素,会画数轴。

  2、能力目标:能将已知数在数轴上表示,能说出数轴上的点表示的数,知道有理数都可以用数轴上的点表示;

  3、情感目标:向学生渗透数形结合的思想。

  二、教学重难点

  教学重点:数轴的三要素和用数轴上的点表示有理数。

  教学难点:有理数与数轴上点的对应关系。

  三、教法

  主要采用启发式教学,引导学生自主探索去观察、比较、交流。

  四、教学过程

  (一)创设情境激活思维

  1。学生观看钟祥二中相关背景视频

  意图:吸引学生注意力,激发学生自豪感。

  2。联系实际,提出问题。

  问题1:钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。

  师生活动:学生思考解决问题的方法,学生代表画图演示。

  学生画图后提问:

  1。马路用什么几何图形代表?(直线)

  2。文中相关地点用什么代表?(直线上的点)

  3。学校大门起什么作用?(基准点、参照物)

  4。你是如何确定问题中各地点的位置的?(方向和距离)

  设计意图:“三要素”为定向,用直线、点、方向、距离等几何符号表示实际问题,这是实际问题的第一次数学抽象。

  问题2:上面的问题中,“南”和“北”具有相反意义。我们知道,正数和负数可以表示两种具有相反意义的量,我们能不能直接用数来表示这些地理位置和学校大门的相对位置关系呢?

  师生活动:

  学生思考后回答解决方法,学生代表画图。

  学生画图后提问:

  1。0代表什么?

  2。数的符号的实际意义是什么?

  3。—75表示什么?100表示什么?

  设计意图:继续以三要素为定向,将点用数表示,实现第二次抽象,为定义数轴概念提供直观基础。

  问题3:生活中常见的温度计,你能描述一下它的结构吗?

  设计意图:借助生活中的常用工具,说明正数和负数的作用,引导学生用三要素表达,为定义数轴的概念提供直观基础。

  问题4:你能说说上述2个实例的共同点吗?

  设计意图:进一步明确“三要素”的意义,体会“用点表示数”和“用数表示点的思想方法,为定义数轴概念提供又一个直观基础。

  (二)自主学习探究新知

  学生活动:带着以下问题自学课本第8页:

  1。什么样的直线叫数轴?它具备什么条件。

  2。如何画数轴?

  3。根据上述实例的经验,“原点”起什么作用?

  4。你是怎么理解“选取适当的长度为单位长度”的?

  师生活动:

  学生自学完后,请代表上黑板画一条数轴,讲解画数轴的一般步骤。

  设计意图:明确画数轴的步骤,使数轴的三要素在同学们的头脑中留下更深刻的印象,同时得到数轴的定义。

  至此,学生已会画数轴,师生共同归纳总结(板书)

  ①数轴的定义。

  ②数轴三要素。

  练习:(媒体展示)

  1。判断下列图形是否是数轴。

  2。口答:数轴上各点表示的数。

  3。在数轴上描出下列各点:1。5,—2,—2。5,2,2。5,0,—1。5。

  (三)小组合作交流展示

  问题:观察数轴上的点,你有什么发现?

  数轴上表示3的点在原点的哪一侧?与原点的距离是多少个单位长度?表示—2的点在原点的哪一侧?与原点的距离是多少个单位长度?设a是一个正数,对表示a的点和—a的点进行同样的讨论。

  设计意图:通过从特殊到一般的方法归纳出数轴上不同位置点的特点,培养学生的抽象概括能力。

  (四)归纳总结反思提高

  师生共同回顾本节课所学主要内容,回答以下问题:

  1。什么是数轴?

  2。数轴的“三要素”各指什么?

  3。数轴的画法。

  设计意图:梳理本节课内容,掌握本节课的核心――数轴“三要素”。

  (五)目标检测设计

  1。下列命题正确的是()

  A。数轴上的点都表示整数。

  B。数轴上表示4与—4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。

  C。数轴包括原点与正方向两个要素。

  D。数轴上的点只能表示正数和零。

  2。画数轴,在数轴上标出—5和+5之间的所有整数,列举到原点的.距离小于3的所有整数。

  3。画数轴,表示下列有理数数的点中,观察数轴,在原点左边的点有_______个。4。在数轴上点A表示—4,如果把原点O向负方向移动1。5个单位,那么在新数轴上点A表示的数是________。

  五、板书

  1。数轴的定义。

  2。数轴的三要素(图)。

  3。数轴的画法。

  4。性质。

  六、课后反思

  附:活动单

  活动一:画一画

  钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。

  思考:如何简明地用数表示这些地理位置与学校大门的相对位置关系?

  活动二:读一读

  带着以下问题阅读教科书P8页:

  1。什么样的直线叫数轴?

  定义:规定了_________、________、_________的直线叫数轴。

  数轴的三要素:_________、_________、__________。

  2。画数轴的步骤是什么?

  3。“原点”起什么作用?__________

  4。你是怎么理解“选取适当的长度为单位长度”的?

  练习:

  1。画一条数轴

  2。在你画好的数轴上表示下列有理数:1。5,—2,—2。5,2,2。5,0,—1。5

  活动三:议一议

  小组讨论:观察你所画的数轴上的点,你有什么发现?

  归纳:一般地,设a是一个正数,则数轴上表示数a在原点的____边,与原点的距离是____个单位长度;表示数—a的点在原点的____边,与原点的距离是____个单位长度。

  练习:

  1。数轴上表示—3的点在原点的_______侧,距原点的距离是______;表示6的点在原点的______侧,距原点的距离是______;两点之间的距离为_______个单位长度。

  2。距离原点距离为5个单位的点表示的数是________。

  3。在数轴上,把表示3的点沿着数轴负方向移动5个单位长度,到达点B,则点B表示的数是________。

  附:目标检测

  1。下列命题正确的是()

  A。数轴上的点都表示整数。

  B。数轴上表示4与—4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。

  C。数轴包括原点与正方向两个要素。

  D。数轴上的点只能表示正数和零。

  2。画数轴,在数轴上标出—5和+5之间的所有整数。列举到原点的距离小于3的所有整数。

  3。画数轴,观察数轴,在原点左边的点有_______个。

  4。在数轴上点A表示—4,如果把原点O向负方向移动1。5个单位,那么在新数轴上点A表示的数是________。

七年级数学教案13

  教学目标:

  1.掌握数轴三要素,能正确画出数轴.

  2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.

  教学重点:

  数轴的概念.

  教学难点:

  从直观认识到理性认识,从而建立数轴概念.

  教与学互动设计:

  (一)创设情境,导入新课

  课件展示课本P7的“问题”(学生画图)

  (二)合作交流,解读探究

  师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来,也就是本节要学的内容——数轴.

  【点拨】(1)引导学生学会画数轴.

  第一步:画直线,定原点.

  第二步:规定从原点向右的方向为正(左边为负方向).

  第三步:选择适当的长度为单位长度(据情况而定).

  第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.

  对比思考原点相当于什么;正方向与什么一致;单位长度又是什么?

  (2)有了以上基础,我们可以来试着定义数轴:

  规定了原点、正方向和单位长度的直线叫数轴.

  做一做学生自己练习画出数轴.

  试一试你能利用你自己画的'数轴上的点来表示数4,1.5,-3,-2,0吗?

  讨论若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度?表示-a的点在原点的什么位置上?与原点又相距多少个单位长度?

  小结整数在数轴上都能找到点表示吗?分数呢?

  可见,所有的都可以用数轴上的点表示;都在原点的左边,都在原点的右边.

  (三)应用迁移,巩固提高

  【例1】下列所画数轴对不对?如果不对,指出错在哪里?

  【例2】试一试:用你画的数轴上的点表示4,1.5,-3,-,0.

  【例3】下列语句:

  ①数轴上的点只能表示整数;②数轴是一条直线;③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有(  )

  A.1个B.2个C.3个D.4个

  【例4】在数轴上表示-2和1,并根据数轴指出所有大于-2而小于1的整数.

  【例5】数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长为20xxcm的线段AB,则线段AB盖住的整点有(  )

  A.1998个或1999个B.1999个或20xx个

  C.20xx个或20xx个D.20xx个或20xx个

  (四)总结反思,拓展升华

  数轴是非常重要的工具,它使数和直线上的点建立了一一对应的关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.

  (五)课堂跟踪反馈

  夯实基础

  1.规定了、     、的直线叫做数轴,所有的有理数都可从用上的点来表示.

  2.P从数轴上原点开始,向右移动2个单位长度,再向左移5个单位长度,此时P点所表示的数是.

  3.把数轴上表示2的点移动5个单位长度后,所得的对应点表示的数是(  )

  A.7 B.-3

  C.7或-3 D.不能确定

  4.在数轴上,原点及原点左边的点所表示的数是(  )

  A.正数B.负数

  C.不是负数D.不是正数

  5.数轴上表示5和-5的点离开原点的距离是,但它们分别表示.

  提升能力

  6.与原点距离为3.5个单位长度的点有2个,它们分别是和.

  7.画出一条数轴,并把下列数表示在数轴上:

  +2,-3,0.5,0,-4.5,4,3.

  开放探究

  8.在数轴上与-1相距3个单位长度的点有个,为;长为3个单位长度的木条放在数轴上,最多能覆盖个整数点.

  9.下列四个数中,在-2到0之间的数是(  )

  A.-1 B.1 C.-3 D.3

七年级数学教案14

  一、素质教育目标

  (一)知识教学点

  1.理解有理数乘方的意义.

  2.掌握有理数乘方的运算.

  (二)能力训练点

  1.培养学生观察、分析、比较、归纳、概括的能力.

  2.渗透转化思想.

  (三)德育渗透点:培养学生勤思、认真和勇于探索的精神.

  (四)美育渗透点

  把记成,显示了乘方符号的简洁美.

  二、学法引导

  1.教学方法:引导探索法,尝试指导,充分体现学生主体地位.

  2.学生学法:探索的性质→练习巩固

  三、重点、难点、疑点及解决办法

  1.重点:运算.

  2.难点:运算的符号法则.

  3.疑点:①乘方和幂的区别.

  ②与的区别.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪、自制胶片.

  六、师生互动活动设计

  教师引导类比,学生讨论归纳乘方的概念,教师出示探索性练习,学生讨论归纳乘方的性质,教师出示巩固性练习,学生多种形式完成.

  七、教学步骤

  (一)创设情境,导入 新课

  师:在小学我们已经学过:记作,读作的平方(或的二次方);记作,读作的立方(或的三次方);那么可以记作什么?读作什么?

  生:可以记作,读作的四次方.

  师:呢?

  生:可以记作,读作的五次方.

  师:(为正整数)呢?

  生:可以记作,读作的次方.

  师:很好!把个相乘,记作,既简单又明确.

  【教法说明】教师给学生创设问题情境,鼓励学生积极参与,大大调动了学生学习的积极性.同时,使学生认识到数学的发展是不断进行推广的,是由计算正方形的面积得到的,是由计算正方体和体积得到的,而,……是学生通过类推得到的.

  师:在小学对底数,我们只能取正数.进入中学以后我们学习了有理数,那么还可取哪些数呢?请举例说明.

  生:还可取负数和零.例如:0×0×0记,(-2)×(-2)×(-2)×(-2)记作.

  非常好!对于中的,不仅可以取正数,还可以取0和负数,也就是说可以取任意有理数,这就是我们今天研究的课题:(板书).

  【教法说明】对于的范围,是在教师的引导下,学生积极动脑参与,并且根据初一学生的认知水平,分层逐步说明可以取正数,可以取零,可以取负数,最后总结出可以取任意有理数.

  (二)探索新知,讲授新课

  1.求个相同因数的积的运算,叫做乘方.

  乘方的结果叫做幂,相同的因数叫做底数,相同的因数的个数叫做指数.一般地,在中,取任意有理数,取正整数.

  注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.

  巩固练习(出示投影1)

  (1)在中,底数是__________,指数是___________,读作__________或读作___________;

  (2)在中,-2是__________,4是__________,读作__________或读作__________;

  (3)在中,底数是_________,指数是__________,读作__________;

  (4)5,底数是___________,指数是_____________.

  【教法说明】此组练习是巩固乘方的有关概念,及时反馈学生掌握情况.(2)、(3)小题的区别表示底数是-2,指数是4的幂;而表示底数是2,指数是4的幂的相反数.为后面的计算做铺垫.通过第(4)小题指出一个数可以看作这个数本身的一次方,如5就是,指数1通常省略不写.

  师:到目前为止,对有理数业说,我们已经学过几种运算?分别是什么?其运算结果叫什么?

  学生活动:同学们思考,前后桌同学互相讨论交流,然后举手回答.

  生:到目前为止,已经学习过五种运算,它们是:

  运算:加、减、乘、除、乘方;

  运算结果:和、差、积、商、幂;

  教师对学生的回答给予评价并鼓励.

  【教法说明】注重学生在认知过程中的思维.主动参与,通过学生讨论、归纳得出的知识,比教师的单独讲解要记得牢,同时也培养学生归纳、总结的.能力.

  师:我们知道,乘方和加、减、乘、除一样,也是一种运算,如何进行乘方运算?请举例说明.

  学生活动:学生积极思考,同桌相互讨论,并在练习本上举例.

  【教法说明】通过学生积极动脑,主动参与,得出可以利用有理数的乘法运算来进行有理数乘方的运算.向学生渗透转化的思想.

  2.练习:(出示投影2)

  计算:1.(1)2, (2), (3), (4).

  2.(1),,,.

  (2)-2,,.

  3.(1)0, (2), (3), (4).

  学生活动:学生独立完成解题过程,请三个学生板演,教师巡回指导,待学生完成后,师生共同评价对错,并予以鼓励.

  师:请同学们观察、分析、比较这三组题中,每组题中底数、指数和幂之间有什么联系?

  先让学生独立思考,教师边巡视边做适当提示.然后让学生讨论,老师加入某一小组.

  生:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数,零的任何次幂都是零.

  师:请同学们继续观察与,与中,底数、指数和幂之间有何联系?你能得出什么结论呢?

  学生活动:学生积极思考,同桌之间、前后桌之间互相讨论.

  生:互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.

  师:请同学思考一个问题,任何一个数的偶次幂是什么数?

  生:任何一个数的偶次幂是非负数.

  师:你能把上述结论用数学符号表示吗?

  生:(1)当时,(为正整数);

  (2)当

  (3)当时,(为正整数);

  (4)(为正整数);

  (为正整数);

  (为正整数,为有理数).

  【教法说明】教师把重点放在教学情境的设计上,通过学生自己探索,获取知识.教师要始终给学生创造发挥的机会,注重学生参与.学生通过特殊问题归纳出一般性的结论,既训练学生归纳总结的能力和口头表达的能力,又能使学生对法则记得牢,领会的深刻.

七年级数学教案15

  教学目标

  1.知识与技能

  ①理解有理数的意义.②能把给出的有理数按要求分类.③了解0在有理数分类的作用.

  2.过程与方法

  经历本节的学习,培养学生树立分类讨论的观点和能正确地进行分类的能力.

  3.情感、态度与价值观

  通过联系与发展、对立与统一的.思考方法对学生进行辩证唯物主义教育.

  教学重点难点

  重点:会把所给的各数填入它所在的数集的图里.难点:掌握有理数的两种分类.

  教与学互动设计

  (一)创设情境,导入新课

  讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.

  (二)合作交流,解读探究

  学生列举:3,5.7,-7,-9,-10,0,-3,-7.4,5.2…

  议一议你能说说这些数的特点吗?

  学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数.

  说明:我们把所有的这些数统称为有理数.