高一物理教案 通用15篇
在教学工作者开展教学活动前,常常要写一份优秀的教案,编写教案有利于我们科学、合理地支配课堂时间。优秀的教案都具备一些什么特点呢?下面是小编为大家收集的高一物理教案 ,仅供参考,大家一起来看看吧。
高一物理教案 1
一、教学目标
1。在机械能守恒定律的基础上,研究有重力、弹簧弹力以外其它力做功的情况,处理这类问题的。
2。对功和能及其关系的理解和认识是本章教学的重点内容,本节教学是本章教学内容的总结。通过本节教学使更加深入理解功和能的关系,明确物体机械能变化的规律,并能应用它处理有关问题。
3。通过本节教学,使学生能更加全面、深入认识功和能的关系,为学生今后能够运用功和能的观点分析热学、电学,为学生更好理解自然界中另一重要规律——能的转化和守恒定律打下基础。
二、重点、难点分析
1。重点是使学生认识和理解物体机械能变化的规律,掌握应用这一规律解决问题的方法。在此基础上,深入理解和认识功和能的关系。
2。本节教学实质是渗透功能原理的观点,在教学中不必出现功能原理的名称。功能原理内容与动能定理的区别和联系是本节教学的难点,要解决这一难点问题,必须使学生对“功是能量转化的量度”的认识,从笼统、肤浅地了解深入到十分明确认识“某种形式能的变化,用什么力做功去量度”。
3。对功、能概念及其关系的认识和理解,不仅是本节、本章教学的重点和难点,也是物理教学的重点和难点之一。通过本节教学应使学生认识到,在今后的学习中还将不断对上述问题作进一步的分析和认识。
三、教具
投影仪、投影片等。
四、主要教学过程
(一)引入新课
结合机械能守恒定律引入新课。
提出问题:
1。机械能守恒定律的内容及物体机械能守恒的条件各是什么?
评价学生回答后,进一步提问引导学生思考。
2。如果有重力、弹簧弹力以外其它力对物体做功,物体的机械能如何变化?物体机械能的变化和哪些力做功有关呢?物体机械能变化的规律是什么呢?
教师提出问题之后引起学生的注意,并不要求学生回答。在此基础上教师明确指出:
机械能守恒是有条件的。大量现象表明,许多物体的机械能是不守恒的。例如从车站开出的车辆、起飞或降落的飞机、打入木块的子弹等等。
分析上述物体机械能不守恒的原因:从车站开出的车辆机械能增加,是由于牵引力(重力、弹力以外的力)对车辆做正功;射入木块后子弹的机械能减少,是由于阻力对子弹做负功。
重力和弹力以外的其它力对物体做功和物体机械能变化有什么关系,是本节要研究的中心问题。
(二)教学过程设计
提出问题:下面我们根据已掌握的动能定理和有关机械能的知识,分析物体机械能变化的规律。
1。物体机械能的变化
问题:质量m的小滑块受平行斜面向上拉力F作用,沿斜面从高度h1上升到高度h2处,其速度由v1增大到v2,如图所示,分析此过程中滑块机械能的变化与各力做功的关系。
引导学生根据动能定理进一步分析、探讨小滑块机械能变化与做功的关系。归纳学生分析,明确:
选取斜面底端所在平面为参考平面。根据动能定理∑W=ΔEk,有
由几何关系,有sinθL=h2-h1
即FL-fL=E2-E1=ΔE
引导学生理解上式的物理意义。在学生回答的基础上教师明确指出:
(1)有重力、弹簧弹力以外的其它力对物体做功,是使物体机械能发生变化的原因;
(2)重力和弹簧弹力以外其它力对物体所做功的代数和,等于物体机械能的变化量。这是物体机械能变化所遵循的基本规律。
2。对物体机械能变化规律的进一步认识
(1)物体机械能变化规律可以用公式表示为W外=E2-E1或W外=ΔE
其中W外表示除重力、弹簧弹力以外其它力做功的代数和,E1、E2分别表示物体初、末状态的机械能,ΔE表示物体机械能变化量。
(2)对W外=E2-E1进一步分析可知:
(i)当W外>0时,E2>E1,物体机械能增加;当W外<0时,E2
(ii)若W外=0,则E2=E1,即物体机械能守恒。由此可以看出,W外=E2-E1是包含了机械能守恒定律在内的、更加普遍的功和能关系的表达式。
(3)重力、弹簧弹力以外其它力做功的过程,其实质是其它形式的能与机械能相互转化的过程。
例1。质量4。0×103kg的汽车开上一山坡。汽车沿山坡每前进100m,其高度升高2m。上坡时汽车速度为5m/s,沿山坡行驶500m后速度变为10m/s。已知车行驶中所受阻力大小是车重的0。01倍,试求:(1)此过程中汽车所受牵引力做功多少?(2)汽车所受平均牵引力多大?取g=10m/s2。本题要求用物体机械能变化规律求解。
引导学生思考与分析:
(1)如何依据W外=E2-E1求解本题?应用该规律求解问题时应注意哪些问题?
(2)用W外=E2-E1求解本题,与应用动能定理∑W=Ek2-Ek1有什么区别?
归纳学生分析的结果,教师明确给出例题求解的主要过程:
取汽车开始时所在位置为参考平面,应用物体机械能变化规律W外=E2-E1解题时,要着重分析清楚重力、弹力以外其它力对物体所做的功,以及此过程中物体机械能的变化。这既是应用此规律解题的基本要求,也是与应用动能定理解题的重要区别。
例2。将一个小物体以100J的初动能从地面竖直向上抛出。物体向上运动经过某一位置P时,它的动能减少了80J,此时其重力势能增加了60J。已知物体在运动中所受空气阻力大小不变,求小物体返回地面时动能多大?
引导学生分析思考:
(1)运动过程中(包括上升和下落),什么力对小物体做功?做正功还是做负功?能否知道这些力对物体所做功的比例关系?
(2)小物体动能、重力势能以及机械能变化的关系如何?每一种形式能量的变化,应该用什么力所做的功量度?
归纳学生分析的结果,教师明确指出:
(1)运动过程中重力和阻力对小物体做功。
(2)小物体动能变化用重力、阻力做功的代数和量度;重力势能的变化用重力做功量度;机械能的变化用阻力做功量度。
(3)由于重力和阻力大小不变,在某一过程中各力做功的比例关系可以通过相应能量的'变化求出。
(4)根据物体的机械能E=Ek+Ep,可以知道经过P点时,物体动能变化量大小ΔEk=80J,机械能变化量大小ΔE=20J。
例题求解主要过程:
上升到最高点时,物体机械能损失量为
由于物体所受阻力大小不变,下落过程中物体损失的机械能与上升过程相同,因此下落返回地面时,物体的动能大小为
E′k=Ek0-2ΔE′=50J
本例题小结:
通过本例题分析,应该对功和能量变化有更具体的认识,同时应注意学习综合运用动能定理和物体机械能变化规律解决问题的方法。
思考题(留给学生课后练习):
(1)运动中物体所受阻力是其重力的几分之几?
(2)物体经过P点后还能上升多高?是前一段高度的几分之几?
五、小结
本小结既是本节课的第3项内容,也是本章的小结。
3。功和能
(1)功和能是不同的物理量。能是表征物理运动状态的物理量,物体运动状态发生变化,物体运动形式发生变化,物体的能都相应随之变化;做功是使物体能量发生变化的一种方式,物体能量的变化可以用相应的力做功量度。
(2)力对物体做功使物体能量发生变化,不能理解为功变成能,而是通过力做功的过程,使物体之间发生能量的传递与转化。
(3)力做功可以使物体间发生能的传递与转化,但能的总量是保持不变的。自然界中,物体的能量在传递、转化过程中总是遵循能量守恒这一基本规律的。
六、说明
本节内容的处理应根据学生具体情况而定,学生基础较好,可介绍较多内容;学生基础较差,不一定要求应用物体机械能变化规律解题,只需对功和能关系有初步了解即可。
高一物理教案 2
一、目的要求
1、理解匀速直线运动,变速直线运动的概念
2、理解位移—时间图象的含义,知道匀速直线运动的位移图象及其意义。
3、理解用图象表示物理量之间的关系的数学方法。
二、重点难点
重点:匀速直线运动的位移—时间图象。
难点:理解图象的意义。
三、教学过程:
(一)多媒体显示,引出匀速直线运动
1、观测一辆汽车在一段平直公路上运动
时间t/s 0 4.9 10.0 15.1 19.9
位移s/m 0 100 200 300 400
观测结果如下
可以看出,在误差允许的范围内,在相等的时间里汽车的位移相等。
2、物体在一条直线上运动,如果在相等的时间里位移相等,这种运动就叫做匀速直线运动。
(1)在匀速直线运动中,位移s跟发生这段位移所用的时间t成正比。
(2)用图象表示位移和时间的关系
在平面直角坐标系中
纵轴表示位移s
横轴表示时间t
作出上述汽车运动的's—t图象如右图所示
可见匀速直线运动的位移和时间的关系图象是一条倾斜直线
这种图象叫做位移—时间图象(s—t图象)
图象的含义
①表明在匀速直线运动中,s∝t
②图象上任一点的横坐标表示运动的时间,对应的纵坐标表示位移
③图象的斜率k=Δs/Δt=v
(3)学生阅读课文第23页方框里面的文字
讨论:下面的s—t图象表示物体作怎样的运动?(投影显示)
(二)变速直线运动
举例:(1)飞机起飞
(2)火车进站
2、物体在一条直线上运动,如果在相等的时间里位移不相等,这种运动就叫做变速直线运动。
3、变速直线运动的位移图象不是直线而是曲线(投影显示)
四、课堂小结
匀速直线运动(s ∝ t)
变速直线运动(s与t不成正比)
高一物理教案 3
【学习目标】
1、知道速度的意义、公式、符号、单位、矢量性。
2、知道质点的平均速度和瞬时速度等概念。
3、知道速度和速率以及它们的区别。
4、会用公式计算物体运动的平均速度。
【学习重点】
速度、瞬时速度、平均速度三个概念,及三个概念之间的联系。
【学习难点】
平均速度计算
【方法指导】
自主探究、交流讨论、自主归纳
【知识链接】
【自主探究】
知识点一:坐标与坐标的变化量
【阅读】P15 “坐标与坐标的变化量”一部分,回答下列问题。
A级 1、物体沿着直线运动,并以这条直线为x坐标轴,这样物体的位置就可以用 来表示,物体的位移可以通过 表示,Δx的大小表示 ,Δx的正负表示
【思考与交流】1、汽车在沿x轴上运动,如图1—3—l表示汽车从坐标x1=10 m,在经过一段时间之后,到达坐标x2=30 m处,则Δx = ,Δx是正值还是负值?汽车沿哪个方向运动?如果汽车沿x轴负方向运动,Δx是正值还是负值?
2、如图1—3—l,用数轴表示坐标与坐标的变化量,能否用数轴表示时间的变化量?怎么表示?
3、绿妹在遥控一玩具小汽车,她让小汽车沿一条东西方向的笔直路线运动,开始时在某一标记点东2 m处,第1s末到达该标记点西3m处,第2s末又处在该标记点西1m处。分别求出第1s内和第2s内小车位移的大小和方向。
知识点二:速度
【阅读】P10第二部分:速度完成下列问题。
实例:北京时间8月28日凌晨2点40分,雅典奥林匹克体育场,这是一个值得所有中国人铭记的日子,21岁的上海小伙刘翔像闪电一样,挟着狂风与雷鸣般的怒吼冲过终点,以明显的不可撼动的优势获得奥运会男子110米栏冠军,12秒91的成绩平了由英国名将科林约翰逊1993年8月20日在德国斯图加特创造的世界纪录,改写了奥运会纪录。那么请问我们怎样比较哪位运动员跑得快呢?试举例说明。
【思考与交流】
1、以下有四个物体,如何比较A和B、B和D、B和C的运动快慢?
初始位置(m) 经过时间(s) 末了位置(m)
A。自行车沿平直道路行驶 0 20 100
B。公共汽车沿平直道路行驶 0 10 100
C火车沿平直轨道行驶 500 30 1 250
D。飞机在天空直线飞行 500 10 2 500
A级1、为了比较物体的运动快慢,可以用 跟发生这个位移所用 的比值,表示物体运动的快慢,这就是速度。
2、速度公式v=
3、单位:国际单位m/s或ms-1,常用单位km/h或kmh-1 , ㎝/s或㎝s-1
4、速度的大小在数值上等于 的大小;速度的方向就是物体 的方向 , 位移是矢量,那速度呢?
问题:我们初中时曾经学过“速度”这个物理量,今天我们再次学习到这个物理量,那大家仔细比较分析一下,我们今天学习的“速度”跟初中学习的“速度”一样吗?如果不一样,有什么不同?
知识点三:平均速度和瞬时速度
一般来说,物体在某一段时间内,运动的快慢不一定时时一样,所以由v=Δx/Δt求得速度,表示的只是物体在时间Δt内的. 快慢程度,称为: 速度。
平均速度的方向由_______________的方向决定,它的_____________表示这段时间内运动的快慢。所以平均速度是 量,
1、甲百米赛跑用时12。5秒,求整个过程中甲的速度是多少?那么我们来想一想,这个速度是不是代表在整个12。5秒内速度一直都是这么大呢?
2、前面的计算中我们只能知道百米赛跑中平均下来是每秒8米,只能粗略地知道物体运动的快慢,如果我想知道物体某个时刻的速度如10秒末这个时刻的速度,该如何计算呢?
【思考与交流】
教材第16页,问题与练习2,这五个平均速度中哪个接近汽车关闭油门时的速度?
总结:质点从t到t+△t时间内的平均速度△x/t△中,△t取值 时,这个值就可以认为是质点在时刻的瞬时速度。
问题:下列所说的速度中,哪些是平均速度,哪些是瞬时速度?
1。 百米赛跑的运动员以9。5m/s的速度冲过终点线。
2。 经过提速后,列车的速度达到150km/h。
3。 由于堵车,在隧道中的车速仅为1。2m/s。
4。 返回地面的太空舱以8m/s的速度落入太平洋中。
5。 子弹以800m/s的速度撞击在墙上。
知识点三:速度和速率
学生阅读教材第16页相应部分的内容并填空:
速度既有 ,又有 ,是 量,速度的 叫速率,速率是 量。
问题:在日常生活中我们也常常用到“速度”这个词,那我们平时所讲的“速度”在物理学中的哪个速度呢?平均速度还是瞬时速度?举例:
高一物理教案 4
1.3运动快慢的描述-速度
教学目标:
一、知识目标
1、理解速度的概念。知道速度是表示运动快慢的物理量,知道它的定义、公式、符号和单位,知道它是矢量。
2、理解平均速度,知道瞬时速度的概念。
3、知道速度和速率以及它们的区别。
二、能力目标
1、比值定义法是物理学中经常采用的方法,学生在学生过程中掌握用物理工具描述物理量之间的关系的方法。
2、培养学生的迁移类推能力,抽象思维能力。
三、德育目标
由简单的问题逐步把思维迁移到复杂方向,培养学生认识事物的规律,由简单到复杂。
教学重点
平均速度与瞬时速度的概念及其区别
教学难点
怎样由平均速度引出瞬时速度
教学方法
类比推理法
教学用具
有关物理知识的投影片
课时安排
1课时
教学步骤
一、导入新课
质点的各式各样的运动,快慢程度不一样,那如何比较运动的快慢呢?
二、新课教学
(一)用投影片出示本节课的学习目标:
1、知道速度是描述运动快慢和方向的物理量。
2、理解平均速度的概念,知道平均不是速度的平均值。
3、知道瞬时速度是描述运动物体在某一时刻(或经过某一位置时)的速度,知道瞬时速度的大小等于同一时刻的瞬时速率。
(二)学生目标完成过程
1、速度
提问:运动会上,比较哪位运动员跑的快,用什么方法?
学生:同样长短的位移,看谁用的时间少。
提问:如果运动的时间相等,又如何比较快慢呢?
学生:那比较谁通过的位移大。
老师:那运动物体所走的位移,所用的时间都不一样,又如何比较其快慢呢?
学生:单位时间内的位移来比较,就找到了比较的统一标准。
师:对,这就是用来表示快慢的物理量速度,在初中时同学就接触过这个概念,那同学回忆一下,比较一下有哪些地方有了侧重,有所加深。
板书:速度是表示运动的快慢的物理量,它等于位移s跟发生这段位移所用时间t的比值。用v=s/t表示。
由速度的定义式中可看出,v的单位由位移和时间共同决定,国际单位制中是米每秒,符号为m/s或ms1,常用单位还有km/h、cm/s等,而且速度是既具有大小,又有方向的物理量,即矢量。
板书:
速度的方向就是物体运动的方向。
2、平均速度
在匀速直线运动中,在任何相等的时间里位移都是相等的,那v=s/t是恒定的。那么如果是变速直线运动,在相等的时间里位移不相等,那又如何白色物体运动的快慢呢?那么就用在某段位移的平均快慢即平均速度来表示。
例:百米运动员,10s时间里跑完100m,那么他1s平均跑多少呢?
学生马上会回答:每秒平均跑10m。
师:对,这就是运动员完成这100m的平均快慢速度。
板书:
说明:对于百米运动员,谁也说不来他在哪1秒破了10米,有的1秒钟跑10米多,有的1秒钟跑不到10米,但它等效于运动员自始至终用10m/s的速度匀速跑完全程。所以就用这平均速度来粗略表示其快慢程度。但这个 =10m/s只代表这100米内(或10秒内)的平均速度,而不代表他前50米的平均速度,也不表示后50米或其他某段的'平均速度。
例:一辆自行车在第一个5秒内的位移为10米,第二个5秒内的位移为15米,第三个5秒内的位移为12米,请分别求出它在每个5秒内的平均速度以及这15秒内的平均速度。
学生计算得出:
由此更应该知道平均速度应指明是哪段时间内的平均速度。
3、瞬时速度
如果要精确地描述变速直线运动的快慢,应怎样描述呢?那就必须知道某一时刻(或经过某一位置)时运动的快慢程度,这就是瞬时速度。
板书:瞬时速度:运动的物体在(经过)某一时刻(或某一位置)的速度。
比如:骑摩托车时或驾驶汽车时的速度表显示,若认为以某一速度开始做匀速运动,也就是它前一段到达此时的瞬时速度。
在直线运动中,瞬时速度的方向即物体在这一位置的运动方向,所以瞬时速度是矢量。通常我们只强调其大小,把瞬时速度的大小叫瞬时速率,简称为速率,是标量。
4、巩固训练:(出示投影片)
一物体从甲地到乙地,总位移为2s,前一s内平均速度为v1,第二s内平均开速度为v2,求这个物体在从甲地到乙地的平均速度 。
师生共评:有的同学答案为 这是错误的。平均速度不是速度的平均值,要严格按照平均速度的定义来求,用这段总位移与这段位移所用的时间的比值,也就只表示这段位移内的平均速度。
三、小结
1、速度的概念及物理意义;
2、平均速度的概念及物理意义;
3、瞬时速度的概念及物理意义;
4、速度的大小称为速率。
拓展:
本节课后有阅读材料,怎样理解瞬时速度,同学们有兴趣的话,请看一下,这里运用了物理的极限思想,有助于你对瞬时速度的理解。
四、作业P26练习三3、4、5
五、板书设计
【总结】20xx年已经到来,高中的同学也即将进入一系列的寒假春节,小编在此特意收集了寒假有关的文章供读者阅读。
高一物理教案 5
教学目标
1. 知道声音是由物体振动发生的。
2. 知道声音传播需要介质,声音在不同介质中传播的速度不同,知道声音在空气中的传播速度。
3.知道回声现象和回声测距离。
重点 声音发生和传播
难点 回声测距离
教具演示
音叉,乒乓球
学生 橡皮筋
一引入新课我们有两只耳朵,能听到各种各样的声音,听老师讲课,可以获得各种知识,听电台广播可以知道天下大事,声音是我们了解周围事物的.重要渠道,那么,声音是怎样发生的?它是怎么传到我们耳朵?
教学过程设计
一.声音的发生
(1)演示课本图3-1,引导学生观察音叉发生时叉股在振动。
(2)随堂学生实验:做课本图3-1拨动张紧的橡皮筋。
(3)随堂学生实验:做课本图3-1用手指摸着颈前喉头部分,同时发声。 小结:归纳以上实验,引导学生自己总结出“声音的发生是由于物体的振动”。指出鸟、蟋蟀和其他一些昆虫发声也是由于振动。
二.声音的传播
(1)课本图3-2实验 问:右边音叉的振动通过什么传给了左边的音叉?-(空气)
(2)游泳时,潜入水中也能听到声音,说明液体也能传声。
(3)随堂实验:把耳朵贴近桌面,用手敲桌板,可听见清晰的敲击声,说明固体也能传声。小结:声音能靠任何气体、液体、固体物体作媒介传播出去,这些作为传播媒介的物质称为介质。而真空不能传声。牐
三.声音的传播速度学生对比表中的一些声速并找出空气中15摄氏度的声速。声音在固体、液体中比在空气中传播得快。观察音叉振动观察橡皮筋振动感觉喉头振动归纳观察左边乒乓球思考回想实验查表,并比较
四.回声
(1)回声:回声是声音在传播中遇到障碍物反射回来的现象。讲述为什么有时候能听到回声,有时又不能。原声与回声要隔0.1s以上我们才能听见回声。请同学们算一算我们要听见回声,离障碍物体至少要多远。(17米)
(2)利用回声测距离 例题:某同学站在山崖前向山崖喊了一声,经过1.5秒后听见回声,求此同学离山崖多远?已知:v=340m/s ; t=1.5s求:S解:s=vt1=340m/s×1/2×1.5s=255m答:略
五.小结 计算练习学生解题
六.思考与作业 P43-3
七. 板书
第四章声现象
第一节声音的发生和传播
一.发生
1. 一切发声的物体都在振动。
2. 振动停止,发声也停止。
二.声音传播
1. 声音靠介质(任何气体、液体和固体)传播。
2. 声速(15℃)340m/s
3. 声速由大到小排列:固体、液体、气体。
三.回声
1.回声是声音在传播中遇到障碍物反射回来的现象。(听到回声条件:0.1s以上,17米)
2.利用回声测距离:s=1/2s总=1/2vt。
高一物理教案 6
一、自由落体运动
1.定义:物体只在重力作用下从静止开始下落的运动.
思考:不同的物体,下落快慢是否相同?为什么物体在真空中下落的情况与在空气中下落的情况不同?
在空气中与在真空中的区别是,空气中存在着空气阻力.对于一些密度较小的物体,例如降落伞、羽毛、纸片等,在空气中下落时,受到的空气阻力影响较大;而一些密度较大的物体,如金属球等,下落时,空气阻力的影响就相对较小了.因此在空气中下落时,它们的快慢就不同了.
在真空中,所有的物体都只受到重力,同时由静止开始下落,都做自由落体运动,快慢相同.
2.不同物体的下落快慢与重力大小的关系
(1)有空气阻力时,由于空气阻力的影响,轻重不同的物体的下落快慢不同,往往是较重的物体下落得较快.
(2)若物体不受空气阻力作用,尽管不同的物体质量和形状不同,但它们下落的快慢相同.
3.自由落体运动的特点
(1)v0=0
(2)加速度恒定(a=g).
4.自由落体运动的性质:初速度为零的匀加速直线运动.
二、自由落体加速度
1.自由落体加速度又叫重力加速度,通常用g来表示.
2.自由落体加速度的方向总是竖直向下.
3.在同一地点,一切物体的自由落体加速度都相同.
4.在不同地理位置处的自由落体加速度一般不同.
规律:赤道上物体的重力加速度最小,南(北)极处重力加速度;物体所处地理位置的纬度越大,重力加速度越大.
三、自由落体运动的运动规律
因为自由落体运动是初速度为0的匀加速直线运动,所以匀变速直线运动的.基本公式及其推论都适用于自由落体运动.
1.速度公式:v=gt
2.位移公式:h=gt2
3.位移速度关系式:v2=2gh
4.平均速度公式:=
5.推论:h=gT2
问题与探究
问题1:物体在真空中下落的情况与在空气中下落的情况相同吗?你有什么假设与猜想?
探究思路:物体在真空中下落时,只受重力作用,不再受到空气阻力,此时物体的加速度较大,整个下落过程运动加快.在空气中,物体不但受重力还受空气阻力,二者方向相反,此时物体加速度较小,整个下落过程较慢些.
问题2:自由落体是一种理想化模型,请你结合实例谈谈什么情况下,可以将物体下落的运动看成是自由落体运动.
探究思路:回顾第一章质点的概念,谈谈我们在处理物理问题时,根据研究问题的性质和需要,如何抓住问题中的主要因素,忽略其次要因素,建立一种理想化的模型,使复杂的问题得到简化,进一步理解这种重要的科学研究方法.
问题3:地球上的不同地点,物体做自由落体运动的加速度相同吗?
探究思路:地球上不同的地点,同一物体所受的重力不同,产生的重力加速度也就不同.一般来讲,越靠近两极,物体做自由落体运动的加速度就越大;离赤道越近,加速度就越小.
高一物理教案 7
教学目标:
1、知道什么是曲线运动;
2、知道曲线运动中速度的方向是怎样确定的;
3、知道物体做曲线运动的条件。
教学重点:
1、什么是曲线运动
2、物体做曲线运动的方向的确定
3、物体做曲线运动的条件
教学难点:
物体做曲线运动的条件
教学时间:
1课时
教学步骤:
一、导入新课:
前边几章我们研究了直线运动,下边同学们思考两个问题:
1、什么是直线运动?
2、物体做直线运动的条件是什么?
在实际生活中,普遍发生的是曲线运动,那么什么是曲线运动?本节课我们就来学习这个问题。
二、新课教学
1、曲线运动
(1)几种物体所做的运动
a:导弹所做的运动;汽车转弯时所做的运动;人造卫星绕地球的运动;
b:归纳总结得到:物体的运动轨迹是曲线。
(2)提问:上述运动和曲线运动除了轨迹不同外,还有什么区别呢?
(3)对比小车在平直的公路上行驶和弯道上行驶的情况。
学生总结得到:曲线运动中速度方向是时刻改变的。
过渡:怎样确定做曲线运动的物体在任意时刻的速度方向呢?
2:曲线运动的速度方向
(1)情景:
a:在砂轮上磨刀具时,刀具与砂轮接触处有火星沿砂轮的切线方向飞出;
b:撑开的带着水的伞绕伞柄旋转,伞面上的水滴沿伞边各点所划圆周的切线方向飞出。
(2)分析总结得到:质点在某一点(或某一时刻)的速度的方向是在曲线的这一点的切线方向。
(3)推理:
a:只要速度的大小、方向的一个或两个同时变化,就表示速度矢量发生了变化。
b:由于做曲线运动的物体,速度方向时刻改变,所以曲线运动是变速运动。
过渡:那么物体在什么条件下才做曲线运动呢?
3:物体做曲线运动的条件
(1)一个在水平面上做直线运动的钢珠,如果从旁给它施加一个侧向力,它的运动方向就会改变,不断给钢珠施加侧向力,或者在钢珠运动的路线旁放一块磁铁,钢珠就偏离原来的方向而做曲线运动。
(2)观察完模拟实验后,学生做实验。
(3)分析归纳得到:当物体所受的合力的方向跟它的'速度方向不在同一直线时,物体就做曲线运动。
(4)学生举例说明:物体为什么做曲线运动。
(5)用牛顿第二定律分析物体做曲线运动的条件:
当合力的方向与物体的速度方向在同一直线上时,产生的加速度也在这条直线上,物体就做直线运动。
如果合力的方向跟速度方向不在同一条直线上时,产生的加速度就和速度成一夹角,这时,合力就不但可以改变速度的大小,而且可以改变速度的方向,物体就做曲线运动。
三、巩固训练:
四、小结
1、运动轨迹是曲线的运动叫曲线运动。
2、曲线运动中速度的方向是时刻改变的,质点在某一点的瞬时速度的方向在曲线的这一点的切线上。
3、当合外力F的方向与它的速度方向有一夹角a时,物体做曲线运动。
五、作业:<创新设计>曲线运动课后练习
高一物理教案 8
【学习目标】
1。根据实例归纳圆周运动的运动学特点,知道它是一种特殊的曲线运动,知道它与一般曲线运动的关系。
2。理解表征圆周运动的物理量,利用各物理量的定义式,阐述各物理量的含义及相互关系。
3。知道圆周运动在实际应用中的普遍性。用半径、线速度、角速度的关系揭示生活、生产中的圆周运动实例。从而对圆周运动的规律有更深刻的领悟。
【阅读指导】
1。圆周运动是____________的一种,从地上物体的运动到各类天体的运动,处处体现着圆周运动或椭圆运动的和谐之美。物体的___________________的运动叫做圆周运动。
2。在课本图2-1-1中,从运动学的角度看有什么共同的特点:_____________________ ________________________________________________________________。
3。在圆周运动中,最简单的一种是______________________。
4。如果质点沿圆周运动,在_____________________________,这种运动就叫做匀速圆周运动。
5。若在时间t内,做匀速圆周运动的质点通过的弧长是s,则可以用比值________来描述匀速圆周运动的快慢,这个比值代表___________________________,称为匀速圆周运动的_____________。
6。匀速圆周运动是一种特殊的曲线运动,它的线速度就是________________。这是一个________量,不仅有大小,而且有方向。圆周运动中任一点的线速度方向就是_______________。因此,匀速圆周运动实际是一种__________运动。这里所说的匀速是指________________的意思。
7。对于做匀速圆周运动的质点,______________________________的比值,即单位时间内所转过的角度叫做匀速圆周运动的_________________,表达式是____________,单位是_____________,符号是________;匀速圆周运动是_______________不变的运动。
8。做匀速圆周运动的物体__________________________叫做周期,用符号____表示。周期是描述________________的一个物理量。做匀速圆周运动的物体,经过一个周期后会_____________________。
9。在匀速圆周运动中,线速度与角速度的关系是_______________________。
10。任何一条光滑的曲线,都可以看做是由___________________组成的,__________叫做曲率半径,记作_____,因此我们就可以把物体沿任意曲线的运动,看成是__________
______________的运动。
【课堂练习】
★夯实基础
1。对于做匀速圆周运动的物体,下列说法中正确的是( )
A。相等的时间内通过的路程相等
B。相等的时间内通过的弧长相等
C。相等的时间内通过的位移相等
D。相等的'时间内通过的角度相等
2。做匀速圆周运动的物体,下列哪些物理量是不变的( )
A。速率 B。速度 C。角速度 D。周期
3。某质点绕圆周运动一周,下述说法正确的是( )
A。质点相对于圆心是静止的 B。速度的方向始终不变
C。位移为零,但路程不为零 D。路程与位移的大小相等
4。做匀速圆周运动的物体,其线速度大小为3m/s,角速度为6 rad/s,则在0。1s内物体通过的弧长为________m,半径转过的角度为_______rad,半径是_______m。
5。A、B两质点分别做匀速圆周运动,在相同的时间内,它们通过的弧长之比sA:sB=2:3,而转过的角度之比 =3:2,则它们的周期之比TA:TB=________,角速度之比 =________,线速度之比vA:vB=________,半径之比RA:RB=________。
6。如图所示的传动装置中,已知大轮A的半径是小轮B半径的3倍,A、B分别在边缘接触,形成摩擦转动,接触点无打滑现象,B为主动轮,B转动时边缘的线速度为v,角速度为,试求:
(1)两轮转动周期之比;
(2)A轮边缘的线速度;
(3)A轮的角速度。
★能力提升
7。如图所示,直径为d的圆筒,正以角速度绕轴O匀速转动,现使枪口对准圆筒,使子弹沿直径穿过,若子弹在圆筒旋转不到半圈时,筒上先后留下a、b两弹孔,已知aO与bO夹角60,则子弹的速度为多大?
8。一个大钟的秒针长20cm,针尖的线速度是________m/s,分针与秒针从重合至第二次重合,中间经历的时间为________s。
第1节 描述圆周运动
【阅读指导】
1。 曲线运动,运动轨迹是圆的。
2。 做圆周运动的物体通常不能看作质点;物体各部分的轨迹都不尽相同,但它们是若干做圆周运动的质点的组合;做圆周运动的各部分的轨迹可能不同,但轨迹的圆心相同。
3。快慢不变的匀速(率)圆周运动。
4。相等的时间里通过的圆弧长度相等。
5。S/t,单位时间所通过的弧长,线速度。
6。质点在圆周运动中的瞬时速度,矢,圆周上该点切线的方向,变速,速率不变的。
7。连接质点和圆心的半径所转过的角度,角速度,=/t,弧度每秒,rad/s,角速度。
8。运动一周所用的时间,T,匀速圆周运动快慢,重复回到原来的位置及运动方向。
9。 V=R。
10。一系列不同半径的圆弧,这些圆弧的半径;物体沿一系列不同半径的小段圆弧。
【课堂练习】
1。 A 2。 A、C、D 3。 C 4。 0。3,0。6,0。5。5。 1:2,2:1,1:4。
6。小。7。 V=3d/2
高一物理教案 9
一、应用解法分析动态问题
所谓解法就是通过平行四边形的邻边和对角线长短的关系或变化情况,作一些较为复杂的定性分析,从形上就可以看出结果,得出结论.
例1 用细绳AO、BO悬挂一重物,BO水平,O为半圆形支架的圆心,悬点A和B在支架上.悬点A固定不动,将悬点B从1所示位置逐渐移到C点的过程中,试分析OA绳和OB绳中的拉力变化情况.
[方法归纳]
解决动态问题的一般步骤:
(1)进行受力分析
对物体进行受力分析,一般情况下物体只受三个力:一个是恒力,大小方向均不变;另外两个是变力,一个是方向不变的力,另一个是方向改变的力.在这一步骤中要明确这些力.
(2)画三力平衡
由三力平衡知识可知,其中两个变力的合力必与恒力等大反向,因此先画出与恒力等大反向的力,再以此力为对角线,以两变力为邻边作出平行四边形.若采用力的分解法,则是将恒力按其作用效果分解,作出平行四边形.
(3)分析变化情况
分析方向变化的力在哪个空间内变化,借助平行四边形定则,判断各力变化情况.
变式训练1 如2所示,一定质量的物块用两根轻绳悬在空中,其中绳OA固定不动,绳OB在竖直平面内由水平方向向上转动,则在绳OB由水平转至竖直的过程中,绳OB的张力的大小将( )
A.一直变大
B.一直变小
C.先变大后变小
D.先变小后变大
二、力的正交分解法
1.概念:将物体受到的所有力沿已选定的两个相互垂直的方向分解的方法,是处理相对复杂的多力的合成与分解的常用方法.
2.目的:将力的合成化简为同向、反向或垂直方向的分力,便于运用普通代数运算公式解决矢量的运算,“分解”的目的是为了更好地“合成”.
3.适用情况:适用于计算三个或三个以上力的合成.
4.步骤
(1)建立坐标系:以共点力的作用点为坐标原点,直角坐标系x轴和y轴的选择应使尽量多的力在坐标轴上.
(2)正交分解各力:将每一个不在坐标轴上的力分解到x轴和y轴上,并求出各分力的大小,如3所示.
(3)分别求出x轴、y轴上各分力的矢量和,即:
Fx=F1x+F2x+…
Fy=F1y+F2y+…
(4)求共点力的.合力:合力大小F=F2x+F2y,合力的方向与x轴的夹角为α,则tan α=FyFx,即α=arctan FyFx.
4
例2 如4所示,在同一平面内有三个共点力,它们之间的夹角都是120°,大小分别为F1=20 N,F2=30 N,F3=40 N,求这三个力的合力F.
5
变式训练2 如5所示,质量为m的木块在推力F的作用下,在水平地面上做匀速运动.已知木块与地面间的动摩擦因数为μ,那么木块受到的滑动摩擦力为( )
A.μmg
B.μ(mg+Fsin θ)
C.μ(mg-Fsin θ)
D.Fcos θ
三、力的分解的实际应用
例3 压榨机结构如6所示,B为固定铰链,A为活动铰链,若在A处施另一水平力F,轻质活塞C就以比F大得多的力压D,若BC间距为2L,AC水平距离为h,C与左壁接触处光滑,则D所受的压力为多大?
例4 如7所示,是木工用凿子工作时的截面示意,三角形ABC为直角三角形,∠C=30°.用大小为F=100 N的力垂直作用于MN,MN与AB平行.忽略凿子的重力,求这时凿子推开木料AC面和BC面的力分别为多大?
变式训练3 光滑小球放在两板间,如8所示,当OA板绕O点转动使 θ角变小时,两板对球的压力FA和FB的变化为( )
A.FA变大,FB不变
B.FA和FB都变大
C.FA变大,FB变小
D.FA变小,FB变大
例5 如9所示,在C点系住一重物P,细绳两端A、B分别固定在墙上,使AC保持水平,BC与水平方向成30°角.已知细绳最大只能承受200 N的拉力,那么C点悬挂物体的重量最
多为多少,这时细绳的哪一段即将被拉断?
参考答案
解题方法探究
例1 见解析
解析 在支架上选取三个点B1、B2、B3,当悬点B分别移动到B1、B2、B3各点时,AO、BO中的拉力分别为FTA1、FTA2、FTA3、和FTB1、FTB2、FTB3,从中可以直观地看出,FTA逐渐变小,且方向不变;而FTB先变小,后变大,且方向不断改变;当FTB与FTA垂直时,FTB最小.
变式训练1 D
例2 F=103 N,方向与x轴负向的夹角为30°
解析 以O点为坐标原点,建立直角坐标系xOy,使Ox方向沿力F1的方向,则F2与y轴正向间夹角α=30°,F3与y轴负向夹角β=30°,如甲所示.
先把这三个力分解到x轴和y轴上,再求它们在x轴、y轴上的分力之和.
Fx=F1x+F2x+F3x
=F1-F2sin α-F3sin β
=20 N-30sin 30° N-40sin 30° N=-15 N
Fy=F1y+F2y+F3y
=0+F2cos α-F3cos β
=30cos 30° N-40cos 30° N=-53 N
这样,原来的三个力就变成互相垂直的两个力,如乙所示,最终的合力为:
F=F2x+F2y=-152+-532 N=103 N
设合力F与x轴负向的夹角为θ,则tan θ=FyFx=-53 N-15 N=33,所以θ=30°.
变式训练2 BD
例3 L2hF
解析 水平力F有沿AB和AC两个效果,作出力F的分解如甲所示,F′=h2+L22hF,由于夹角θ很大,力F产生的沿AB、AC方向的效果力比力F大;而F′又产生两个作用效果,沿水平方向和竖直方向,如乙所示.
甲 乙
Fy=Lh2+L2F′=L2hF.
例4 1003 N 200 N
解析 弹力垂直于接触面,将力F按作用效果进行分解如所示,由几何关系易得,推开AC面的力为F1=F/tan 30°=1003 N.
推开BC面的力为F2=F/sin 30°=200 N.
变式训练3 B [利用三力平衡判断如下所示.
当θ角变小时,FA、FB分别变为FA′、FB′,都变大.]
例5 100 N BC段先断
解析 方法一 力的合成法
根据一个物体受三个力作用处于平衡状态,则三个力的任意两个力的合力大小等于第三个力大小,方向与第三个力方向相反,在甲中可得出F1和F2的合力F合竖直向上,大小等于F,由三角函数关系可得出F合=F1sin 30°,F2=F1cos 30°,且F合=F=G.
甲
设F1达到最大值200 N,可得G=100 N,F2=173 N.
由此可看出BC绳的张力达到最大时,AC绳的张力还没有达到最大值,在该条件下,BC段绳子即将断裂.
设F2达到最大值200 N,可得G=115.5 N,F1=231 N>200 N.
由此可看出AC绳的张力达到最大时,BC绳的张力已经超过其最大能承受的力.在该条件下,BC段绳子早已断裂.
从以上分析可知,C点悬挂物体的重量最多为100 N,这时细绳的BC段即将被拉断.
乙
方法二 正交分解法
如乙所示,将拉力F1按水平方向(x轴)和竖直方向(y轴)两个方向进行正交分解.由力的平衡条件可得F1sin 30°=F=G,F1cos 30°=F2.
F1>F2;绳BC先断, F1=200 N.
可得:F2=173 N,G=100 N.
高一物理教案 10
教学目标
知识与技能
1.了解人造卫星的有关知识,正确理解人造卫星做圆周运动时,各物理量之间的关系.
2.知道三个宇宙速度的含义,会推导第一宇宙速度.
过程与方法
通过用万有引力定律来推导第一宇宙速度,培养学生运用知识解决问题的能力.
情感、态度与价值观
1.通过介绍我国在卫星发射方面的情况,激发学生的爱国热情.
2.感知人类探索宇宙的梦想,促使学生树立献身科学的人生价值观.
教学重难点
教学重点
1.第一宇宙速度的意义和求法.
2.人造卫星的线速度、角速度、周期与轨道半径的关系.
教学难点
1.近地卫星、同步卫星的区别.
2.卫星的变轨问题.
教学工具
多媒体、板书
教学过程
一、宇宙航行
1.基本知识
(1)牛顿的“卫星设想”
如图所示,当物体的初速度足够大时,它将会围绕地球旋转而不再落回地面,成为一颗绕地球转动的人造卫星.
(2)原理
一般情况下可认为人造地球卫星绕地球做匀速圆周运动,向心力由地球对它的万有引力提供,
(3)宇宙速度
(4)梦想成真
1957年10月,苏联成功发射了第一颗人造卫星;
1969年7月,美国“阿波罗11号”登上月球;
20xx年10月15日,我国航天员杨利伟踏入太空.
2.思考判断
(1)绕地球做圆周运动的人造卫星的速度可以是10km/s.(×)
(2)在地面上发射人造卫星的最小速度是7.9km/s.(√)
(3)要发射一颗月球人造卫星,在地面的发射速度应大于16.7km/s.(×)
探究交流
我国于20xx年10月发射的火星探测器“萤火一号”.试问这个探测器应大约以多大的速度从地球上发射
【提示】火星探测器绕火星运动,脱离了地球的束缚,但没有挣脱太阳的束缚,因此它的发射速度应在第二宇宙速度与第三宇宙速度之间,即11.2km/s
二、第一宇宙速度的理解与计算
【问题导思】
1.第一宇宙速度有哪些意义?
2.如何计算第一宇宙速度?
3.第一宇宙速度与环绕速度、发射速度有什么联系?
1.第一宇宙速度的定义
又叫环绕速度,是人造卫星在地面附近绕地球做匀速圆周运动所具有的速度,是人造地球卫星的.最小发射速度,v=7.9km/s.
2.第一宇宙速度的计算
设地球的质量为M,卫星的质量为m,卫星到地心的距离为r,卫星做匀速圆周运动的线速度为v:
3.第一宇宙速度的推广
由第一宇宙速度的两种表达式可以看出,第一宇宙速度之值由中心星体决定,可以说任何一颗行星都有自己的第一宇宙速度,都应以
式中G为万有引力常量,M为中心星球的质量,g为中心星球表面的重力加速度,r为中心星球的半径.
误区警示
第一宇宙速度是最小的发射速度.卫星离地面越高,卫星的发射速度越大,贴近地球表面的卫星(近地卫星)的发射速度最小,其运行速度即第一宇宙速度.
例:某人在一星球上以速率v竖直上抛一物体,经时间t物体以速率v落回手中,已知该星球的半径为R,求这个星球上的第一宇宙速度.
方法总结:天体环绕速度的计算方法
对于任何天体,计算其环绕速度时,都是根据万有引力提供向心力的思路,卫星的轨道半径等于天体的半径,由牛顿第二定律列式计算.
1.如果知道天体的质量和半径,可直接列式计算.
2.如果不知道天体的质量和半径的具体大小,但知道该天体与地球的质量、半径关系,可分别列出天体与地球环绕速度的表达式,用比例法进行计算.
三、卫星的线速度、角速度、周期与轨道半径的关系
【问题导思】
1.卫星绕地球的运动通常认为是什么运动?
2.如何求v、ω、T、a与r的关系?
3.卫星的线速度与卫星的发射速度相同吗?
为了研究问题的方便,通常认为卫星绕地球做匀速圆周运动,向心力由万有引力提供.
卫星的线速度v、角速度ω、周期T与轨道半径r的关系与推导如下:
由上表可以看出:卫星离地面高度越高,其线速度越小,角速度越小,周期越大,向心加速度越小.
误区警示
1.在处理卫星的v、ω、T与半径r的关系问题时,常用公式“gR2=GM”来替换出地球的质量M会使问题解决起来更方便.
2.人造地球卫星发射得越高,需要的发射速度越大,但卫星最后稳定在绕地球运动的圆形轨道上时的速度越小.
高一物理教案 11
高一物理教案 功和能教案
功和能
一、教学目标
1.在学习机械能守恒定律的基础上,研究有重力、弹簧弹力以外其它力做功的情况,学习处理这类问题的方法。
2.对功和能及其关系的理解和认识是本章教学的重点内容,本节教学是本章教学内容的总结。通过本节教学使学生更加深入理解功和能的关系,明确物体机械能变化的规律,并能应用它处理有关问题。
3.通过本节教学,使学生能更加全面、深入认识功和能的关系,为学生今后能够运用功和能的观点分析热学、电学知识,为学生更好理解自然界中另一重要规律能的转化和守恒定律打下基础。
二、重点、难点分析
1.重点是使学生认识和理解物体机械能变化的规律,掌握应用这一规律解决问题的方法。在此基础上,深入理解和认识功和能的关系。
2.本节教学实质是渗透功能原理的观点,在教学中不必出现功能原理的名称。功能原理内容与动能定理的区别和联系是本节教学的难点,要解决这一难点问题,必须使学生对功是能量转化的量度的认识,从笼统、肤浅地了解深入到十分明确认识某种形式能的变化,用什么力做功去量度。
3.对功、能概念及其关系的认识和理解,不仅是本节、本章教学的重点和难点,也是中学物理教学的重点和难点之一。通过本节教学应使学生认识到,在今后的学习中还将不断对上述问题作进一步的分析和认识。
三、教具
投影仪、投影片等。
四、主要教学过程
(一)引入新课
结合复习机械能守恒定律引入新课。
提出问题:
1.机械能守恒定律的内容及物体机械能守恒的条件各是什么?
评价学生回答后,教师进一步提问引导学生思考。
2.如果有重力、弹簧弹力以外其它力对物体做功,物体的机械能如何变化?物体机械能的变化和哪些力做功有关呢?物体机械能变化的规律是什么呢?
教师提出问题之后引起学生的注意,并不要求学生回答。在此基础上教师明确指出:
机械能守恒是有条件的。大量现象表明,许多物体的机械能是不守恒的。例如从车站开出的车辆、起飞或降落的飞机、打入木块的子弹等等。
分析上述物体机械能不守恒的原因:从车站开出的车辆机械能增加,是由于牵引力(重力、弹力以外的力)对车辆做正功;射入木块后子弹的机械能减少,是由于阻力对子弹做负功。
重力和弹力以外的其它力对物体做功和物体机械能变化有什么关系,是本节要研究的中心问题。
(二)教学过程设计
提出问题:下面我们根据已掌握的动能定理和有关机械能的知识,分析物体机械能变化的规律。
1.物体机械能的变化
问题:质量m的小滑块受平行斜面向上拉力F作用,沿斜面从高度h1上升到高度h2处,其速度由v1增大到v2,如图所示,分析此过程中滑块机械能的变化与各力做功的关系。
引导学生根据动能定理进一步分析、探讨小滑块机械能变化与做功的关系。归纳学生分析,明确:
选取斜面底端所在平面为参考平面。根据动能定理W=Ek,有由几何关系,有sinL=h2-h1即FL-fL=E2-E1=E
引导学生理解上式的物理意义。在学生回答的基础上教师明确指出:
(1)有重力、弹簧弹力以外的其它力对物体做功,是使物体机械能发生变化的原因;
(2)重力和弹簧弹力以外其它力对物体所做功的代数和,等于物体机械能的变化量。这是物体机械能变化所遵循的基本规律。
2.对物体机械能变化规律的进一步认识
(1)物体机械能变化规律可以用公式表示为W外=E2-E1或W外=E
其中W外表示除重力、弹簧弹力以外其它力做功的代数和,E1、E2分别表示物体初、末状态的机械能,E表示物体机械能变化量。
(2)对W外=E2-E1进一步分析可知:
(i)当W外0时,E2E1,物体机械能增加;当W外0时,E2
(ii)若W外=0,则E2=E1,即物体机械能守恒。由此可以看出,W外=E2-E1是包含了机械能守恒定律在内的、更加普遍的功和能关系的表达式。
(3)重力、弹簧弹力以外其它力做功的过程,其实质是其它形式的能与机械能相互转化的过程。
例1.质量4.0103kg的汽车开上一山坡。汽车沿山坡每前进100m,其高度升高2m。上坡时汽车速度为5m/s,沿山坡行驶500m后速度变为10m/s。已知车行驶中所受阻力大小是车重的0.01倍,试求:(1)此过程中汽车所受牵引力做功多少?(2)汽车所受平均牵引力多大?取g=10m/s2。本题要求用物体机械能变化规律求解。
引导学生思考与分析:
(1)如何依据W外=E2-E1求解本题?应用该规律求解问题时应注意哪些问题?
(2)用W外=E2-E1求解本题,与应用动能定理W=Ek2-Ek1有什么区别?
归纳学生分析的结果,教师明确给出例题求解的主要过程:
取汽车开始时所在位置为参考平面,应用物体机械能变化规律W外=E2-E1解题时,要着重分析清楚重力、弹力以外其它力对物体所做的功,以及此过程中物体机械能的变化。这既是应用此规律解题的基本要求,也是与应用动能定理解题的重要区别。
例2.将一个小物体以100J的初动能从地面竖直向上抛出。物体向上运动经过某一位置P时,它的.动能减少了80J,此时其重力势能增加了60J。已知物体在运动中所受空气阻力大小不变,求小物体返回地面时动能多大?
引导学生分析思考:
(1)运动过程中(包括上升和下落),什么力对小物体做功?做正功还是做负功?能否知道这些力对物体所做功的比例关系?
(2)小物体动能、重力势能以及机械能变化的关系如何?每一种形式能量的变化,应该用什么力所做的功量度?
归纳学生分析的结果,教师明确指出:
(1)运动过程中重力和阻力对小物体做功。
(2)小物体动能变化用重力、阻力做功的代数和量度;重力势能的变化用重力做功量度;机械能的变化用阻力做功量度。
(3)由于重力和阻力大小不变,在某一过程中各力做功的比例关系可以通过相应能量的变化求出。
(4)根据物体的机械能E=Ek+Ep,可以知道经过P点时,物体动能变化量大小Ek=80J,机械能变化量大小E=20J。
例题求解主要过程:
上升到最高点时,物体机械能损失量为
由于物体所受阻力大小不变,下落过程中物体损失的机械能与上升过程相同,因此下落返回地面时,物体的动能大小为
Ek=Ek0-2E=50J
本例题小结:
通过本例题分析,应该对功和能量变化有更具体的认识,同时应注意学习综合运用动能定理和物体机械能变化规律解决问题的方法。
思考题(留给学生课后练习):
(1)运动中物体所受阻力是其重力的几分之几?
(2)物体经过P点后还能上升多高?是前一段高度的几分之几?
五、课堂小结
本小结既是本节课的第3项内容,也是本章的小结。
3.功和能
(1)功和能是不同的物理量。能是表征物理运动状态的物理量,物体运动状态发生变化,物体运动形式发生变化,物体的能都相应随之变化;做功是使物体能量发生变化的一种方式,物体能量的变化可以用相应的力做功量度。
(2)力对物体做功使物体能量发生变化,不能理解为功变成能,而是通过力做功的过程,使物体之间发生能量的传递与转化。
(3)力做功可以使物体间发生能的传递与转化,但能的总量是保持不变的。自然界中,物体的能量在传递、转化过程中总是遵循能量守恒这一基本规律的。
六、说明
本节内容的处理应根据学生具体情况而定,学生基础较好,可介绍较多内容;学生基础较差,不一定要求应用物体机械能变化规律解题,只需对功和能关系有初步了解即可。
高一物理教案 12
【学习目标】
1.理解动能的概念,会用功能关系导出动能的定义式,并会用动能的定义式进行计算。
2.理解重力势能的概念,会用功能关系导出势能的定义式,会用重力势能的定义式进行计算。
3.理解重力势能的变化与重力做功的关系。知道重力做功与路径无关及重力势能的相对性。
4.了解弹性势能的概念。
【阅读指导】
1.一个物体的质量为m,它在某时刻的速度为v1,那么它在该时刻的动能Ek1=__________,某时刻这个物体的速度变为v2,那么它在该时刻的动能Ek2=________,对于同一物体,速度的大小变化动能就会变化,速度是描述物体____________的物理量,动能也是描述物体_________的物理量,动能是_______量(填“矢”或“标”)。
2.被举高的物体具有做功的本领,所以被举高的物体具有能量,物体的重力势能等于________________________。由于物体受到的重力方向是竖直向下的,当一个物体所处的高度变化时,重力一定对物体做功。
3.如图所示,质量为m的物体从高H处沿不同路径a、b、c、d落下,试计算从a、b、c路径落下的过程中,
(1)重力所做的功;
(2)物体重力势能如何变化;变化量是多少;
(3)你从中发现了什么结论;
(4)如果物体是从d路径落下的还能得出以上结论吗?你怎么得出的?
4.物体所处的高度是相对的,因此,物体的重力势能也总是相对于某一个水平面说的。如果我们设海拔零高度为重力势能为零的点,那么高于海平面以上物体的重力势能为_____,处于海平面相同高度处物体的重力势能为______,海平面以下物体的重力势能为______。
【课堂练习】夯实基础
1.质量为0.2kg的小球,以5m/s的速度碰墙后以3m/s的速度被弹回,若选定小球初速度方向为正方向,则小球碰墙前的动能为_________,小球碰墙后的动能为_________。
2.两物体质量之比为1:2,速度之比为2:1,则两个物体的动能之比为___________。
3.关于速度与动能,下列说法中正确的.是( )
A.一个物体速度越大时,动能越大
B.速度相等的物体,如果质量相等,那么它们的动能也相等
C.动能相等的物体,如果质量相等,那么它们的速度也相同
D.动能越大的物体,速度也越大
4.从离地h高的同一点将一小球分别竖直上抛、平抛、竖直下抛、自由下落,都落到地面,下列说法中正确的是( )
A.竖直上抛重力做的功最多
B.竖直上抛、平抛、竖直下抛、自由下落重力做的功一样多
C.只有平抛、竖直下抛、自由下落三种情况重力做的功一样多
D.重力做功与路径无关,只与重力大小和始末位置的高度差有关
5.质量为m=1kg的物体克服重力做功50J,g取10m/s2,则:
A.物体一定升高了5m
B.物体的动能一定减少50J
C.物体的重力势能一定增加50J
D.物体一定是竖直向上运动
能力提升
6.两物体质量之比为1:3,它们距离地面高度之比也为1:3,让它们自由下落,它们落地时的动能之比为( )
A.1:3 B.3:1 C.1:9 D.9:1
7.一质量分布均匀的不可伸长的绳索重为G,A、B两端固定在水平天花板上,如图所示,今在绳的最低点C施加一竖直向下的力将绳绷直,在此过程中,绳索AB的重心位置( )
A.逐渐升高 B.逐渐降低
C.先降低后升高 D.始终不变
8.5kg的钢球,从离地面高15m处自由落下,如果规定地面的高度为零,则物体下落前的重力势能为__________J,物体下落1s,它的重力势能变为_______J,该过程中重力做了_______J的功,重力势能变化了__________J。(g取10m/s2)
第3节 动能与势能
【阅读指导】
1、 运动状态 状态 标2、物体的重量和它的高度的乘积 3、(1)重力所做的功均为WG=mgH (2) 物体重力势能减少了。减少量均为mgH (3)重力做功重力势能减少 重力做了多少功,重力势能就减少多少。*(4)能 可以将d曲面分成很多小的斜面,在每个小斜面上,物体运动过程中重力做的功都为mg△h,重力做的总功就为mgH; 4. 正值 零 负值
【课堂练习】
1、2.5J 0.9J 2、2:1 3、1:3 1、BD 2、AC 3、ABD 4、750 500 250 250
高一物理教案 13
教学目标
知识目标
1、初步理解速度—时间图像。
2、理解什么是匀变速直线运动。
能力目标
进一步训练用图像法表示物理规律的能力。
情感目标
渗透从简单问题入手及理想化的思维方法。
教材分析
本节内容是本单元的基础,是进一步学习加速度概念及匀变速运动规律的重要前提.教材主要有两个知识点:速度—时间图像和匀变速直线运动的定义.教材的编排自然顺畅,便于学生接受,先给出匀速直线运动的速度—时间图像,再根据具体的实例(汽车做匀加速运动),进一步突出了“图像通常是根据实验测定的数据作出的”这一重要观点,并很自然地给出匀变速直线运动的定义,最后,阐述了从简单情况入手,及理想化的处理方法,即有些变速运动通常可近似看作匀变速运动来处理.
教法建议
对速度——时间图像的学习,要给出物体实际运动的情况,让学生自己建立图像,体会建立图像的一般步骤,并与位移图像进行对比.对匀变速直线运动的概念的学习,也要通过分析具体的实例,认真体会“在相等的时间内速度变化相等”的特点,教师也可以给出速度变化相同,但是所用时间不等的例子,或时间相同,速度变化不等的例子,让学生判断是否是匀变速直线运动。
教学设计示例
教学重点:速度——时间图像,匀变速直线运动的定义.
教学难点:对图像的处理.
主要设计:
1、展示课件:教材图2—15的动态效果(配合两个做匀速运动的物体)体会速度——时间图像的建立过程.
2、提问:如何从速度——时间图像中求出物体在一段时间内的位移?
3、上述两个运动的位移——时间图像是怎样的`?
(让同学自己画出,并和速度——时间图像进行对比)
4、展示课件图2—17的动态效果〔配合做匀加速运动的汽车运行情况(显示速度计)
引导同学:采集实验数据,建立坐标系,描点做图.
5、展示课件图2—18的动态效果(配合做匀减速运动的汽车)
引导同学:画出它的速度——时间图像.
6、提问:上述两个汽车运动过程有什么特点?
引导同学发现“在相等的时间内速度的改变相等”的特点.
7、举例:
①速度改变相等,所用时间不等的情况.
②经过相同时间,速度改变不相等的情况.
8、小结:什么是匀变速直线运动?什么是匀加速直线运动?什么是匀减速直线运动?
探究活动
请你坐上某路公共汽车(假设汽车在一条直线上行驶)观察汽车的速度表和自己的手表,采集数据,即记录汽车在不同时刻的速度,之后把你采集的数据用速度——时间图像表示出来,并将你的结果讲给周围人听。
高一物理教案 14
教学目标 基本知识目标
1、知道力是物体间的相互作用,在具体问题中能够区分施力物体和受力物体;
2、知道力既有大小,又有方向,是一矢量,在解决具体问题时能够画出力的图示和力的示意图;
3、知道力的两种不同的分类;能力目标
通过本节课的学习,了解对某个力进行分析的线索和方法.情感目标
在讲解这部分内容时,要逐步深入,帮助学生在初中知识学习的基础上,适应高中物理的学习.
教学建议一、基本知识技能 1、理解力的概念:
力是物体对物体的作用,物体间力的作用是相互的.力不仅有大小还有方向,大 小、方向、作用点是力的三要素.
2、力的图示与力的示意图:
3、要会从性质和效果两个方面区分力.二、教学重点难点分析(一)、对于力是一个物体对另一个物体的作用,要准确把握这一概念,需要注意三点:
1、力的物质性(力不能脱离物体而存在);
2、力的相互性;
3、力的矢量性;
(二)、力的图示是本节的难点.
(三)、力的分类需要注意的是:
1、两种分类;
2、性质不同的力效果可以相同,效果相同的力性质可以不同.
教法建议:一、关于讲解“什么是力”的教法建议 力是普遍存在的,但力又是抽象的,力无法直接“看到”,只能通过力的效果间接地“看到”力的存在.有些情况下,力的效果也很难用眼直接观察到,只能凭我们去观察、分析力的效果才能认识力的存在.在讲解时,可以让学生注意身边的事情,想一下力的作用效果。对一些不易观察的力的作用效果,能否找到办法观察到.
二、关于讲解力的图示的教法建议 力的图示是物理学中的一种语言,是矢量的表示方法,能科学形象的对矢量进行表述,所以教学中要让学生很快的熟悉用图示的方法来表示物理的含义,并且能够熟练的应用.由于初始学习,对质点的概念并不是很清楚,在课堂上讲解有关概念时,除了要求将作用点画在力的实际作用点处,对于不确知力的作用点,可以用一个点代表物体,但不对学生说明“质点” 概念. 教学过程设计方案
一、提问:什么是力?
教师通过对初中内容复习、讨论的基础上,总结出力的概念:力是物体对物体的作用.
教师通过实验演示:如用弹簧拉动钩码,或者拍打桌子等实验现象展示力的效果以引导学生总结力的概念,并在此基础上指出力不能离开物体而独立存在.指出了力的物质性.
提问:下列实例,哪个物体对哪个物体施加了力?
(1)、马拉车,马对车的`拉力.
(2)、桌子对课本的支持力.
总结出力的作用是相互的,有施力物体就有受力物体,有力作用,同时出现两个物体.
强调:在研究物体受力时,有时不一定指明施力物体,但施力物体一定存在.
二、提问、力是有大小的,力的大小用什么来测量?在国际单位制中,力的单位是什么?
教师总结:力的测量:力的测量用测力计.实验室里常用弹簧秤来测量力的大小.
力的单位:在国际单位制中,力的单位是牛顿,符号:n.
三、提问:仅仅用力的大小,能否确定一个力:
演示压缩、拉伸弹簧,演示推门的动作.主要引导学生说出力是有方向的,并在此基础上,让学生体会并得出力的三要素来。
高一物理教案 15
学习目标:
1。 知道位移的概 念。知道它是表示质点位置变动的物理量,知道它是矢量,可以用 有向线段来表示。
2。 知道路程和位移的区别。
学习重点: 质点的概念
位移的矢量性、概念。
学习难点:
1。对质点的理解。
2。位移和路程的区别。
主要内容:
一、质点:
定义:用来代替物体的具有质量的点,叫做质点。
质点是一种科学的抽象,是在研究物体运动时,抓住主要因素,忽略次要因素,是对实际物体的近似,是一个理想化模型。一个物体是否可以视为质点,要具体的研究情况具体分析 。
二、路程和位移
2。路程:质点实际运动轨迹的长度,它只有大小没
有方向,是标量。
3。位移:是表示质点位置变动的物理量,有大小和方向,是矢量。它是用一条自初始位置指向末位置的有向线段表示,位移的大小等于质点始末位置间的距离,位移的方向由初位置指 向末位置,位移只取决于初末位置,与运动路径无关。
4。 位移和路程的区别:
5。一般来说,位移的大小不等于路程。只有质点做方向不变的直线运动时大小才等于路程。
【例一】下列几种运动中的物体,可以看作质点的是( )
A。研究从广州飞往北京时间时的飞机
B。绕地轴做自转的地球
C。绕太阳公转的地球
D。研究在平直公路上行驶速度时的汽车
【例二】中学的垒球场的内场是一个边长为16。77m的正方形,在它的四个角分别设本垒和一、二、三垒。一位球员击球后,由本垒经一垒、一垒二垒跑到三垒。他运动的路程是多大?位移是多大?位移的方向如何?
课堂训练:
1。以下说法中正确的是( )
A。两个物体通过的路程相同,则它们的位移的大小也一 定相同。
B。两个物体通过的路程不相同,但位移的大小和方向可能相同。
C。一个物体在某一运动中,位移大小可能大于所通过的路程。
D。若物体做单一 方向的直线运动,位移的大小就等于路程。
2。如图甲,一根细长的弹簧系着一个小球,放在光滑的桌面 上。手握小球把弹簧拉长,放手后小球便左右来回运动,B为小球向右到达的最远位置。小球向右经过中间位置O时开始计时,其经过各点的时刻如图乙所示。若测得OA=OC=7cm,AB=3cm,则自0时刻开始:
a。0。2s内小球发生的位移大 小是____,方向向____,经过的路程是_____。
b。0。6s内小球发生的.位移大小是_____,方向向____,经过的路程是____。
c。0。8s 内小球发生的位移是____,经过的路程是____。
d。1。0s内小球发生的位移大小是____,方向向______,经过的路程是____。
3。关于质点运动的位移和路程,下列说法正确的是( )
A。质点的位移是从初位置指向末位置的有向线段,是矢量。
B。路程就是质点运动时实际轨迹的长度,是标量。
C。任何质点只要做直线运动,其位移的大小就和路程相等。
D。位移是矢量,而路程是标量,因而位移不可能和路程相等。
4。下列关于路程和位移的说法,正确的是( )
A。位移就是路程。 B。位移的大小永远不等于路程。
C。若物体作单一方向的直线运动,位移的大小就等于路程。
D。位移是矢量,有大小而无方向,路程是标量,既有大小,也有方向。
5。关于质点的位移和路程,下列说法正确的是( )
A。位移是矢量,位移的方向就是质点运动的方向。
B。路程是标量,也是位移的大小。
C。质点做直线运动时,路程等于其位移的大小。
D。位移的数值一定不会比路程大。
6。下列关于位移和路程的说法,正确的是( )
A。位移和路程的大小总相等,但位移是矢量,路程是标量。
B。位移描述的是直线运动,路程描述的是曲线运动。
C。位移取决于始、末位置,路程取决于实际运动路径。
D。运动物体的路程总大于位移。
7。以下运动物体可以看成质点的是:( )
A。研究地球公转时的地球 B。研究自行车在公路上行驶速度时的自行车
C。研究地 球自转时的地球 D。研究列车通过某座大桥所用时间时的列车
三、矢量和标量
四、直线运动的位置和位移
课堂训练
课后作业:
阅读材料: 我国古代关于运动的知识
我国在先秦的时候,对于运动就有 热烈的争论,是战国时期百家争鸣的一个题目。《庄子》书上记载着,公孙龙曾提出一个奇怪的说法,叫做飞 鸟之影未尝动也。按常识说,鸟在空中飞,投到地上的影当然跟着鸟的移动而移动。但公孙龙却说鸟影并没有动。无独有偶,当时还有人提出镞矢之疾;有不行不止之时,一支飞速而过的箭,哪能不行不止呢?既说不行,又怎能不止呢?乍看起来,这些说法实在是无稽之谈,也可以给它们戴一顶诡辩的帽子。
但是事情并不这么简单。这个说法不但不是诡辩,而且还包含着辩证法的正确思想。恩格斯曾经指出,运动本身就是矛盾,甚至简单的机械的位移之所以能够实现,也只是因为物体在同一 瞬间既在一个地方又在另一个地方,既在同一个地方又不在同一个地方。这种矛盾的连续产生和同时解决正好就是运动。因为运动体的位置随时间而变化,某一时刻在A点,在随之而来的另一时刻,就在相邻的B点,因此,也就有一个时刻,它既在A点又不在A点,既在B点又不在B点。在这时刻,物体岂不是不行不止吗?再者,在一定的时间t内,物体前进一段距离s,当这时间变小,s随之变小;当t趋近于零时,s也趋近于零。也就是说,在某一瞬间,即某一时刻,运动体可以看作是静止的,所以飞鸟之影确实有未 尝动的时候,对于运动的这种观察和分析实在是十分深刻的。这同他们能够区分时间与时刻的观念很有关系。《墨经》对于鸟影问题又有他们自己的理解,说那原因在于改为。认为鸟在A点时,影在A点,当鸟到了相邻的B点,影也到了相邻的B点。此时A上的影已经消失,而在B处另成了一个影,并非A上的影移 动到B上来,这也是言之有理的。
机械运动只能在空间和时间中进行,运动体在单位时间内所经历的空间长度,就是速率。《墨经下》第65条之所述就包含着这方面的思想。《经说》云:行,行者必先近而后远。远近,修也;先后,久也。民行修必以久也。这里的文字是明明白白的,修指空间距离的长短。那意思是,物体运动在空间里必由近及远。其所经过的空间长度一定随时间而定。这里已有了路程随时间正变的朴素思想,也隐隐地包含着速率的观念了。
东汉时期的著作《尚书纬考灵曜》中记载地球运动时说:地恒动不止而人不知,譬如人在大舟中,闭牖(即窗户)而坐,舟行不觉也。
这是对机械运动相对性的十分生动和浅显的比喻。哥白尼①在叙述地球运动时 也不谋而合地运用了十分类似的比喻*。
【高一物理教案 】相关文章:
高一物理教案11-02
高一物理教案《功》08-26
高一物理教案【荐】12-19
高一物理教案【热】02-09
高一物理教案(精选15篇)11-04
高一物理教案15篇11-03
高一物理教案 (15篇)11-05
高一物理教案 15篇11-05
高一物理教案(15篇)11-03
高一物理教案:力的合成11-10