现在位置:范文先生网>教案大全>数学教案>五年级数学教案>小学五年级数学教案

小学五年级数学教案

时间:2022-11-06 17:02:32 五年级数学教案 我要投稿

小学五年级数学教案通用15篇

  作为一名人民教师,通常需要用到教案来辅助教学,借助教案可以更好地组织教学活动。教案应该怎么写才好呢?下面是小编帮大家整理的小学五年级数学教案,仅供参考,大家一起来看看吧。

小学五年级数学教案通用15篇

小学五年级数学教案1

  探究目标:

  1、组织学生开展测量、计算、估测等数学实践活动,使学生进一步掌握圆柱体积计算公式,并能运用公式正确地计算圆柱的体积。

  2、在探索空间与图形的过程中,培养学生初步的空间观念及实践能力,同时结合具体的情境培养其估测意识。

  3、使学生学会与他人合作,并能比较清楚地表达和交流解决问题的过程和结果。

  4、让学生体验解决策略的多样性,不断激发其对数学的好奇心和求知欲,使其积极地参与数学学习活动。

  教学重难点:

  学生会应用圆柱体积公式解决实际问题。

  探究过程:

  一、迁移引入

  提问:一个圆柱的底面积是80平方厘米,高是20厘米,求它的体积。

  提问:如果已知的是底面半径和高,该怎么求呢?

  二、自主探究

  1、出示长方体鱼缸。

  要计算这个长方体鱼缸能装多少水,就是求什么?

  怎样求这个长方体的容积呢?

  2、出示圆柱形鱼缸。

  ⑴估测。这个圆柱形鱼缸的容积大约是多少?

  ⑵操作、汇报。如果忽略容器的壁厚,这个圆柱形鱼缸的容积到底是多少呢?学生分小组进行操作计算,各小组派代表演示操作过程,并展示计算过程。

  学生可能的回答有:

  生1:这个圆柱的底面周长是94.5厘米,它的高是12厘米,计算过程如下:①94.5÷3.14÷2≈15.0(厘米)②3.14×152×12=8478(立方厘米)

  生2:我们小组测量的是底面直径和高。底面直径长30厘米,高是12厘米,计算过程如下:3.14×(30÷2)2×12=8478(立方厘米)

  生3:我们测量的'是底面半径和高。3.14×152×12=8478(立方厘米)

  ⑷评价。

  组织学生间进行评价。你最喜欢哪个小组的操作方案?为什么?每一步列式的意义是什么?使学生进一步掌握圆柱体积的计算方法。

  ⑸反思。引导学生将实际计算结果与自己的估测结果进行对比。自己矫正偏差。

  ⑹延伸。如果每立方分米水重1千克,这个鱼缸大约能装水多少千克?

  3、自学例题。

  组织学生自学课本例5。同桌的两名同学结合例5的解答过程提出相关的数学问题,进行互问互答。

  三、巩固练习

  做教科书第80页“做一做”中的第2题、练习二十一的第5题。

  学生独立完成,指名板演,集体评讲。

  四、创意作业

  学生综合运用所学的知识,进行计算、绘图、裁剪、粘贴等多项操作活动。

  在一张长30厘米,宽20厘米的长方形纸上进行合理的裁剪,做一个无盖的圆柱形笔筒。比一比,谁做的笔筒容积最大?

小学五年级数学教案2

  教学目标:

  1、使学生能比较熟练的把低级单位的名数聚成高级单位的名数的练习。

  2、能比较熟练的比较分数的大小

  教学过程:

  一、复习

  1、把低级单位的名数聚成高级单位的名数的练习。

  2、长度单位,面积单位。重量单位,和时间单位。

  二、用分数表示各题的得数

  7分米=()米

  31厘米=()米

  309米=()千米

  119千克=()吨

  13分=()小时

  63克=()千克

  51平方厘米=()平方分米

  97平方分米=()米

  三、巩固练习

  2、比较分数的大小

  14/25和13/255

  12和5/167

  11和5/11

  7/30和7/249

  28和15/284

  27和4/31

  3、比较下面每组数的.大小,并用小于号连接

  5/14、3/14和9/1411/13、

  11/12和11/146/17、

  6/23和6/19

  12/35、16/35和9/353

  5.3/4和2/54/

  15.11/15和11/12

  第4、5题是求一个数是另一个数的几分之几的应用题

  四、总结归纳

  1、学生掌握比较分数大小的算理和方法,再进行比较。

  2、几个分数排列是,是要求从大到小,还是从小到大,根据意思进行解答。

小学五年级数学教案3

  一、教学内容

  《除法估算》选自苏教版九年制义务教育小学教科书数学第九册P51的内容。

  二、教学思路

  小学数学应该与现实生活相联系,使学生的学习更具有现实性、趣味性和挑战性。“估算”在实际生活中有着广泛的应用,与其他知识也密不可分。因而,在教学“除法估算”这一部分内容时,设计围绕从学生刚经历的秋游活动来展开,让学生独立思考以发现估算的题材、自主探索以感知估算的价值、小组合作来交流估算的策略、尝试解题来总结估算的方法、实践运用以提高估算的能力。

  三、设计理念

  1、数学教学活动要关注学生的个人知识和直接经验

  新的《国家数学课程标准》(实验稿)中明确指出,数学课程“不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发……数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上”。因此,教学活动要以学生的发展为本,把学生的个人经验(除法计算)、直接经验(秋游的感受)和现实世界(生活中的数学)作为数学教学的重要资源。

  2、注重学生自主性和个性化的学习

  引导学生通过独立思考、自主探索、合作交流获得知识,激励学生自得自悟。并且注意在教学过程中要充分利用学生的已有经验,尊重他们不同的思维方式,让数学学习活动成为一个生动活泼的、主动的和富有个性的过程。

  四、教学目标

  1、经历除法估算方法的探索过程,理解并掌握估算的方法。

  2、能灵活运用估算方法解决实际的问题。

  3、在探索学习活动中,培养学生的实践意识,培养探索意识、合作意识、创新意识,并获得积极的、成功的情感体验。

  五、教学过程

  (一)秋游场景引入,调动学生学习兴趣。

  上课后,出示秋游时拍的照片,询问学生当时的心情,一下就让学生回想起秋游那天的情景,因那天是远足秋游,学生对步行印象极深。在导入新课前,就提供路程和时间,让学生进行除数是一位数的除法估算的复习,求出同学们步行每小时大约行多少米。接着让学生把计时的单位改小,继续求每分钟的步行速度,便于我们判断走得比较快还是慢。此时顺利进入了除数是两位数的除法估算的教学中。

  (二)创设问题情景,激励学生自行探究。

  1、关于所需车辆的计算:

  师:同学们走的速度很快呢,是玩的心情很迫切吧!怪不得有同学问老师:“为什么不坐车呢?大家想知道原因吗?”

  (1)出示题目并讲述:老师联系车子的时候只有中型客车,每辆车子可以坐44人,而我们四年级参加秋游活动的学生一共有235人。现在只有5辆车子可以用,你们认为够吗?

  (2)学生自己思考解答后交流。

  师:请同学来说说你的结果。(交流情况)

  生1:我觉得不够。因为235÷44≈6(辆),要6辆车子才可以。现在只有5辆,所以不够。

  生2:我认为够了。235÷44,235的近似数取200,235÷44≈5(辆)。

  生3:我认为是不够的,老师还没有算在里面呢。

  生4:老师,我用小数做的行吗?

  师:当然可以了。你课外知识真丰富!请你说说看。

  生4:我用235÷44≈5.3,把结果求近似数就是约等于5,所以我觉得5辆车就够了。

  生5:可是在现实生活中有时不能把后面的直接去掉,应该要向前面进一。

  生6:我同意生5的观点,5辆是不够的。我是这样想的:一辆车可以坐44人,那么5辆车大约可以坐44×5≈200(人),而200人<235人,多出来的人就坐不下了,要用6辆车才够。

  师:是啊,多出来的人怎么办呢?不去了吗?

  师:我看,问题主要是在生1和生2的两种解法中235,也就是被除数的取近似数出现了分歧,那先来解决除数取近似数是怎样统一的?

  生7:只要省略最高位后面的尾数,保留整十数。

  师:其他同学有不同意见吗?(生都摇头表示没有)。问题是被除数到底该怎么考虑求近似数呢?在现实生活中来考虑这个问题,哪一种更符合实际呢?

  生齐:生1说的那种。

  生2:我现在想想应该是不够的,刚才没有仔细考虑。

  师:那就是说,被除数取近似数时,要考虑尽量和原来的数接近。

  生8:老师,那230也接近235的,为什么要取240呢?

  师:谁能回答这个问题?

  生9:因为240÷40是整数6,计算方便,算得快。

  师:为什么会这么快?

  生9:因为我想乘法口诀:四六二十四

  师:这个方法真妙啊!把除数的近似数求出来后,用乘法口诀来想,找个最接近被除数的,把它取作被除数的近似数。你真会动脑筋!

  师:(小结)我们用估计的方法求出了5辆车是不够的,所以决定远足秋游,还能观赏沿途风光呢,倒也是一举多得。

  2、关于缆车票价的估算(出示缆车图)

  (1)理解价格表

  师:到了坐缆车的地方,同学们可兴奋了。不知道有没有同学注意到了这张价格表呢?你能看懂它吗?(指名学生发言)

  生10:大人坐缆车上山要20元,上山、下山一起要30元。

  生11:大人光上山不下山是20元。儿童的票价是大人的一半。

  师:两人说得都很棒,生11补充得更好,那按价格表的.说明,同学们每人应该付多少钱呢?

  生12:(口答)30÷2=15(元)

  师:老师要负责付同学们的费用了。请大家帮忙算一下:一个人的票价是15元,我们班级有58名同学参加秋游,那么该付多少钱呢?

  生13:我们小组认为老师要付15×58≈1200(元)

  生14:我们小组认为老师只要付15×58≈900(元)

  师:怎么一下就相差了300元?该听谁的呢?

  生15:我们小组是列竖式计算的,其实只要15×58=870(元)

  师:同样是估算,相差300元,这里就要注意联系生活实际的情况,估算目的是计算快速,但也要注意准确。大家想知道事实上老师付了多少钱吗?

  (学生纷纷猜测)

  生16:老师,我想您付的钱应该比870元少。

  师:为什么这么说?

  生16:因为我想集体乘坐应该可以优惠的,很多地方集体购票都可以打折的。

  师:你的生活经验真丰富!的确如你所料,老师实际上付了775元。

  (生恍然,纷纷点头。)

  师:58个同学乘坐缆车,总共用了775元,你能算算自己用了约多少钱吗?

  列式:775÷58≈

  生解答后交流:除数58的近似数是60,被除数考虑能被60整除,而又接近775,所以求近似数是780。师板书:775÷58≈13(元)

  (三)提供数据信息,鼓励学生自选解题。

  在学生掌握了除法估算的方法以后,出示一组信息,让学生选择其中对于自己想了解的情况有用的数据,进行计算解答,并和小组里的同学交流。

  六、反思:

  这堂课上得生动活泼,同学们都投身于自己探究知识的活动之中。他们仔细观察,认真思考,合作交流,终于发现了知识、领悟了方法,品尝到了成功的喜悦。我在实践后的体会如下:

  1、生活即教育

  “生活即教育。”这句话是著名的教育家陶行知说的。也说明了学习应该是学生自己的实践活动。以往教科书上枯燥的例题让学生失去了学习数学的兴趣,而我们现在应该更加关注学生会关心什么、经历了什么、对什么感兴趣、在生活中想要发现些什么。因为生活本身就是一个巨大的数学课堂,将学习和学生们的生活充分融合起来,让他们在自己感兴趣的问题中去寻找、发现、探究、认识和掌握数学。只有这样,学生才会学得积极主动,才会学得兴趣盎然。

  2、估算与生活

  估算的内容在生活中随处可见,有着极其广泛的应用,在日常生活中,对量的描述,很多时候只要算出一个与精确数比较接近的近似数就可以了。这堂课的教学,让学生把自己的经历和数学知识在生活中的应用结合起来,因此培养了学生的素质和能力。

小学五年级数学教案4

  课型:

  新授

  教学内容:

  教材P7及练习二第3、5、6、7、10题。

  教学目标:

  知识与技能:

  使学生进一步掌握小数乘法的计算法则,并能正确地运用这一知识进行计算。

  过程与方法:

  理解倍数可以是整数,也可以是小数,学会解答有关倍数是小数的实际问题。

  情感、态度与价值观:

  养成认真计算与及时检验的学习习惯。

  教学重点:

  运用小数乘法的计算法则正确计算小数乘法。

  教学难点:

  正确点出积的小数点;初步理解和掌握:当乘数比1小时,积都比被乘数小;当乘数比1大时,积都比被乘数大。

  教学方法:

  观察、分析、比较。

  教学准备:

  多媒体。

  教学过程:

  一、复习准备

  1、口算。0.9×6 7×0.08 1.87×O

  0.24×2 1.4×0.3 0.12×6 1.6×5 4×0.25 60×0.5

  指名学生口算,然后集体订正。

  2、思考并回答。(1)做小数乘法时,怎样确定积的小数位数?

  (2)如果积的小数位数不够,你知道该怎么办吗?如:0.02×0.4。

  3、揭示课题:这节课我们继续学习小数乘法。(板书课题)

  二、情景引入

  1、教学例5。师:同学们,你们见过鸵鸟吗?知道鸵鸟是一种跑得比较快的动物吗?有一只鸵鸟正在帮助2个小朋友解难呢!我们一起去看看吧!鸵鸟正驮着小朋友向前奔跑,后面一只凶猛的非洲野狗紧紧追上来了!小朋友说:“哎呀,它追上来了!”鸵鸟说:“别担心,它追不上我!”

  学生观察情境图,提取信息:

  所求问题:(鸵鸟的最高速度是多少千米/小时)

  所需条件:(非洲野狗的最高速度是56千米/小时,鸵鸟的最高速度是非洲野狗的1.3倍)

  思路分析:

  (1)引导学生理解小数倍数的含义:谁来说一说“鸵鸟的最高速度是非洲野狗的1.3倍”是什么意思?(鸵鸟的最高速度是非洲野狗的1.3倍,表示鸵鸟的速度除了有一个非洲野狗那么快,还要快。)

  (2)追问提高学习新知的兴趣:

  ①非洲野狗能追上他们吗?(非洲野狗追不上鸵鸟。)

  ②“鸵鸟的最高速度是多少?”该怎样列式计算呢?(生回答:56×1.3)

  ③为什么这样列式?(求56的1.3倍是多少,所以用乘法。)

  (3)通过学生的回答引导学生小结:倍数关系也可以是比1大的小数。

  让学生独立计算出鸵鸟的最高速度,并集体订正。

  (4)指导学生用估算进行验算:请同学们看这个算式及结果,你认为对吗?你是怎么验证的?(板书验算,完善课题)

  学生可能会有以下几种验算的方法:

  ①用原式再计算一遍。

  ②把这个算式的因数交换一下位置,再算一遍。就可知道对与否。

  ③观察法:观察小数位数或第二个因数比1大还是比1小。

  ④用计算器进行验算。

  师小结:不管用哪一种方法来检验都可以,根据自己的情况,喜欢用那一种就用那一种来验算。

  (5)师:请同学们打开书,看一看书上的.小朋友算得对吗?为什么?

  生:因为两个因数中,56是整数,因数1.3中只有1个小数,所以积中小数点的位置点错了,应该点在2与8之间,即积应为72.8。

  师:很好!在计算小数乘法时,每个小朋友都要养成认真做题、仔细检查的好习惯。

  师:通过刚才同学们的计算、验算得出鸵鸟的最高速度是72.8千米/小时,比起非洲野狗的速度怎么样?非洲野狗能追上鸵鸟吗?说明刚才我们的想法怎样?(学生小组讨论交流,由代表发言,教师点评。)

  2、看乘数,比较积和被乘数的大小。刚才有同学提到56×1.3式子中第二个因数比l大,所以积就比被乘数大,现在我们来研究一下这个问题。

  三、巩固练习

  1、完成教材第7页“做一做”。先让学生观察两道算式中的因数和积,进行判断,说出理由;再让学生独立计算,并用自己喜欢的验算方法进行验算。最后集体订正。

  2、练习二第3题。先让学生独立判断。集体订正时,让学生说明道理,明白每一小题错在什么地方。

  四、课堂小结。当乘数比1小时,积比被乘数小;当乘数比1大时,积比被乘数大。我们可以根据它们的这种关系初步判断小数乘法的正误。

  作业:5、6、7

  课外作业:教材第9页练习二第10题。

  板书设计:

  求一个数的小数倍数是多少及验算

小学五年级数学教案5

  教学目标:

  1、通过学生观察、操作等活动认识长方体,知道长方体的面、棱、顶点以及长、宽、高的含义,掌握长方体的基本特征,理解它们之间的关系。

  2、学生在生活中进一步积累探索经验,增强空间观念,发展数学思维。

  3、学生体会立体图形学习与实际生活的联系,感受其价值,增强数学的兴趣和学好数学的自信心。

  教学重难点:

  重点:探索长方体的特征。

  难点:理解长方体面、棱、顶点之间的关系,建立空间想象。

  教学准备:

  每生准备一个长方体,长方体框架;师准备教学道具和课件。

  教学过程:

  一、导入

  同学们,我们已经学过很多图形了,大家回想一下我们都学过哪些?现在老师在黑板上画出两个最简单的图形,请你们快速说出它们的名字。

  (师在黑板上画出一个点,一条直线)

  生:点、线

  师:我的这个点和线都画在一个什么上?

  生:黑板、面

  师:对,都画在一个面上。现在请你们拿出身边的长方体,找一找长方体中的点、线、面。

  师生摸一摸,指一指,说一说。

  二、新授

  师:长方体中的线有一个固定的名字叫做“棱”,长方体中的点也有一个固定的名字叫做“顶点”。

  师:我们现在初步了解了长方体的面、棱、顶点。如果大家想更多的了解长方体,你能提出哪些问题呢?

  生:长方体有几个面,几条棱,几个顶点……

  师:大家提出的既有关于面、棱、顶点数量的问题,又有关于它们之间关系的问题。下面就请大家小组合作学习,解决课件中给出的这些问题。

  小组合作学习,完成以下问题:

  面1、长方体有几个面?

  2、每个面是什么形状?

  3、哪些面是完全相同的?

  棱1、长方体有几条棱?

  2、哪些棱长度相等?

  顶点1、长方体有几个顶点?

  你还有什么新的发现?棱是怎么形成的?顶点是怎么形成的?

  师:我们先来解决一个最简单的问题,长方体有几个顶点?

  生:8个

  师:怎样有序地数?

  生:可以先依次数上面的`四个,再依次数下面的四个。

  师:长方体有几个面呢?

  生:6个

  师:谁能有次序地数出这些面?

  师:谁能用具体的方位名词有次序地数出来?

  师:长方体有6个面,依次是前面、后面、左面、右面、上面、下面。

  师:还可以怎么数?

  师:我们在第一单元学习了观察物体,现在试着从一个角度观察我手中的长方体,你最多能看到几个面?

  生:3个

  师:这三个面的对面都看不到,所以用3乘2就是总数。用这样的方法也能数出长方体的面数。

  师:每个面是什么形状?

  生:长方形,有的长方体中也有正方形。

  师:长方体的每个面都是长方形,特殊情况下有两个相对的面是正方形。

  师:长方形哪些面是完全相同的?

  生:前面和后面,左面和右面,上面和下面

  师:你们说的前与后,左与右,上与下都是相对的关系,所以简单说就是相对的面完全相同。你们是怎么得出这个结论的?

  生:我们是看出来的。

  师:生活中我们经常有看错人的时候,所以用眼睛看出来的不一定正确,你们有什么方法能证明自己的结论是正确的吗?

  生:可以把长方体拆开,拿相对的面对比,如果完全重合,就说明相对的面完全相同。

  师:你的方法真棒,那我们就一起来操作和证明一下。

  师:相对的两个面放在一起完全重合了,说明大家的结论是正确的。

  师:我们来理解一下什么是完全相同?完全相同的两个面,它们的面积相等,周长相等,长相等,宽也相等。

  师:关于长方体的棱,你们知道有几条吗?

  生:12条

  师:谁能有次序地、不重不漏地数出来?

  请学生来数

  师:刚刚那位同学的数法我再来展示一下,同学们仔细观察,他是分成几组来数的?每组有几条?

  生:三组,每组有4条。

  师:为什么要这样数?

  生:因为每一组中的棱长度是相等的。

  师:哪些位置的棱长度相等呢?

  生:位置相对的棱

  师:我们用尺子量一量是否相等。

  师:确实,相对的四条棱长度相等。

  师展示长方体框架:假如这个框架中缺少了一条棱,你能想象出缺的这条棱的样子吗?为什么?

  生:因为相对的棱长度相等,可以通过相对的棱想象缺的那条棱的样子。

  师:如果在一组相对的棱中去掉三根,剩一根,你能想象出去完整的长方体的样子吗?为什么?

  生:能,可以通过剩下的那根,想象出跟它相对的其他三条棱的样子。

  师:按这样的道理,我们在每一组棱中都去掉三根,依然可以想象出完整的长方体的样子。我来试试去掉这些棱后,会是什么样子。

  生:只剩下三根棱。

  师:这三根棱有什么特殊?

  生:它们相交于一个顶点。

  师:对。这是三条非常特殊的棱,我们把它们分别称作长方体的“长”“宽”“高”。也就是说相交于一个顶点的三条棱分别叫做长方体的“长”“宽”“高”。在一个长方体中,我们通常把竖着的这条棱叫做“高”,正对着我们的棱叫做“长”,“长”旁边的那条是“宽”。大家来指一指我手中的这个长方体的长、宽、高。

  拿长方体模型横放、竖放、侧放,并让学生指出在不同摆放的情况下的长、宽、高,体会同一个长方体因摆放位置不同而引起的长宽高的变化。

  师:根据相对的棱相等,所以“长”对面的棱也是“长”,“宽”对面的棱也是“宽”,“高”对面的棱也是“高”,由此可知,长方体有4条长,4条宽,4条高。共计12条。

  师:如果让大家利用小木棒来制作一个长方体框架,思考一下需要几组木棒,共几根?在下面给出的木棒中你可以如何搭配来组建长方体,它们的长宽高分别是多少?

  出示例题:

  四根8厘米,八根3厘米,四根6厘米,两根5厘米。

  生1:长8,宽3,高6

  生2:长8,宽3,高3

  生3:长6,宽3,高3

  师:生2和生3搭建的长方体都是有两个相对的面是正方形的特殊长方体,想象一下,把长缩短到3厘米,这个长方体会变成什么样子?

  生:变成了正方体

  师:对,变成了长、宽、高都是3厘米的正方体,由此我们可以得出这样的结论:长、宽、高都相等的长方体是正方体,正方体是一种特殊的长方体

  师:关于面、棱、顶点,它们之间有什么关系呢?棱和面有什么关系?棱和顶点有什么关系?

  生:两个面相交的位置是棱,两条棱相交的位置是顶点。

  巩固练习

  书上例题1、2

  小结

  作业布置

  练习册《长方体的认识》

小学五年级数学教案6

  自学预设:

  自学内容自学P43内容

  指导方法自学P43

  思考:

  1、底面积是什么?

  2、长方体和正方体的底面积是怎么求的?

  1、长方体和正方体的体积的统一计算公式怎样?

  尝试练习试着完成P43的做一做的第2题

  教学内容:长方体和正方体体积的计算公式的统一。(完成P43内容及P45第8题)

  教学目标:

  1.使学生掌握长方体和正方体体积的统一计算公式,并会灵活地应用公式进行体积计算。

  2.提高学生综合运用知识的能力,培养学生的抽象概括能力。

  教学重难点:运用公式进行计算。

  教学过程:

  一、创设情境

  1、出下图中长方体的长、宽、高和正方体的棱长。

  2、填空。

  (1)长、正方体的体积大小是由确定的。

  (2)长方体的体积=。

  (3)正方体的体积=。

  二、探索研究

  1.认识长方体和正方体的底面。

  通过预习你观察到到了什么?

  生:图中画阴影部分的那一面我们把它叫做长方体或正方体的底面。师强调:这个面是由摆放的方式决定的。

  2.长方体和正方体的'底面面积。

  (1)长方体和正方体的底面的面积叫做底面积

  (2)怎样求长方体的底面积?(长方体的底面积=长×宽,即S=ab)怎样求正方体的底面积?(正方体的底面积=棱长×棱长,即S=)

  (3)长方体和正方体体积计算公式的统一

  思考:我们能不能把长方体和正方体的体积公式统一成一个公式呢?

  长方体的体积=长×宽×高=底面积×高

  正方体的体积=棱长×棱长×棱长=底面积×棱长

  结论:长方体或正方体的体积=底面积×高

  用字母表示:V=sh

  3.练习:

  完成P43“做一做”第2题。讲解:“横截面”通过实物直观演示,让学生理解他的实际意义,懂得一个物体平放,立体图形的左面和右面就叫做横截面,如果竖起来,横截面就成了底面。所以

  三、巩固练习:完成P45题8。

  四、练习拓展:

  1.计算:

  2.一根长方体木料,它的横截面的面积是0.15,长2m。5根这样的木料体积一共是多少?新课标第一

  3.有100块底面积是42,高6cm的立方体石块。这些石块的体积一共是多少?

  4.一个正方体的棱长的和是48cm,这个正方体的体积是多少?

小学五年级数学教案7

  教学目标

  1.理解除数是小数的除法的算理,掌握除数是小数的计算法则

  2.培养学生的计算能力

  教学重点

  掌握除数是小数的除法的计算法则

  教学难点

  理解把除数是小数的除法转化为整数除法的道理

  教学过程

  一、铺垫孕伏

  (一)指名板演,集体订正:5628÷67

  (二)演示课件:商不变的性质

  (三)教师导入:除数是整数的除法,我们已经掌握了它的计算方法,那么除数是小数的

  除法该怎样计算呢?这节课我们就来解决这个问题.

  (板书课题:除数是小数的除法)

  二、探究新知

  (一)教学例4

  1.演示课件:一个数除以小数

  2.尝试不同思路(把题里的米数都改写成厘米数来计算)

  56.28米=5628厘米

  0.67米=67厘米

  5628÷67=84(条)

  教师说明:这种方法是正确的,但是有一定的局限性

  3.思考:为什么要把除数和被除数都扩大100倍呢?扩大1000倍可以吗?

  4.练习:继续演示课件:一个数除以小数

  5.计算除数是小数的`除法的关键是什么?转化时以谁为标准?

  6.小结计算方法

  计算除数是小数的除法,先移动除数的小数点,使它变成整数.看除数的小数

  点向右移动几位,被除数的小数点也向右移动几位,然后按除数是整数的除法法则进行计算.

  (二)教学例5

  例5

  10.5÷0.75

  1.学生试算

  2.集体订正

  教师强调:(1)位数不够用“0”补足.

  (2)商的小数点和被除数的小数点对齐.

  3.练习

  51.3÷0.27

  26÷0.13

  (三)总结除数是小数的小数除法的计算法则

  除数是小数的除法,先移动除数的小数点,使它变成整数;除数的小数点向右

  移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数的末尾用“0”补足);然后按照除数是整数的小数除法进行计算.

  三、课堂小结

  这节课我们学习了什么?除数是小数的除法和除数是整数的小数除法有什么联

  系?通过今天的学习,你有什么收获?

  四、课堂练习

  (一)填空

  除数是小数的除法,先移动_____小数点,使它变成整数;除数的小数点向右移动

  几位,_____也向右移动几位,位数不够的,在被除数的末尾_____补足;然后按照除数是_____的小数除法进行计算.

  (二)把下面的题变成除数是整数的除法

  4.68÷1.2=□÷12

  2.38÷0.34=□÷□

  5.2÷0.32=□÷32

  161÷0.46=□÷□

  (三)计算下面各题

  6.21÷0.03=

  210÷1.4

  1.104÷2.4

  五、布置作业

  (一)计算下面个题.

  19.76÷5.2

  109.2÷0.42

  8.4÷0.56

  10.8÷4.5

  6.825÷0.91

  25.84÷1.7

  (二)世界上最大的鸟是鸵鸟,体重达135千克,最小的鸟是蜂鸟,体重只有0.0016千克.鸵鸟的体重是蜂鸟的多少倍?

  六、板书设计

  一个数除以小数

  例4做一条短裤要用布0.67米,56.28米布

  例5计算

  10.5÷0.75

  可以做多少条短裤?

  答:56.28米布可以做84条短裤

  一个数除以小数(二)

小学五年级数学教案8

  教学内容:

  观察5个或6个相同正方体摆成的物体

  教学目标:

  1、通过从下面、上面以及不同侧面观察5个或6个相同正方体摆成的物体,积累辨认物体视图的经验,体会物体的`相对位置关系。

  2、使学生主动参与观察、操作、交流等活动,进一步学习利用实物或图形进行直观和有条理的思考,发展空间观察。

  3、体验数学与日常生活的关系。

  教学重点:

  积累辨认物体视图的经验

  教学难点:

  体会物体的相对位置关系

  教学准备:

  学具盒

  教学思路:

  一、导入新课:

  出示4个同样大小的正方体摆成的物体。

  让学生观察,说说从下面、侧面和上面看到的视图。

  接着追问:还可以怎样摆?

  二、探究新知:

  让学生试一试,再看一看。

  学生分组展示不同的摆法。

  集体交流:你能找到摆的方法吗?

  引导学生发现:在原来物体的前面或后面,与原来的某一个正方体对齐着放一个都是正确的。

小学五年级数学教案9

  教学内容:北师大版数学五年级上册第一单元第10~11页《找因数》 学情分析:

  在四年级的学习中,学生已经接触了解一些因数和积的概念。学习本单元的前三个课时后,学生已基本建立因数、倍数、奇数和偶数的概念。这些为学生能顺利学习和掌握本课时的学习内容作好前期准备。

  教材分析:

  “用小正方形拼长方形”对于学生来说,并不陌生。本课教材设计以“用小正方形拼长方形”做为学生学习活动的开始,让学生在理解“用12个小正方形拼成一个长方形,有哪几种拼法?”的前提下开始学习活动,是基于学生已有的知识经验展开的。在此基础上,引导并指导学生小组活动,让学生在小组中把自己的操作过程和思考的过程表达清楚。学生在思考“有几种拼法”时,一般会用乘法进行思考:几乘几等于12,然后再一对一对地找出1与12、2与6、3与4等12的因数。这一安排是借助“拼小正方形”的活动,让学生通过形象的排列特点,理解抽象地找因数的方法。在学生操作的基础上再组织学生交流,交流的重点是学生思考的过程,体会用“想乘法算式”找一个数的因数的方法。在学生交流的过程中,引导学生关注“有序思考”的方法,并逐步体会一个数的因数个数是有限的。最后,在设计找因数的练习题时,可以让学生独立尝试,反馈时注意学生能否有序思考。

  教学目标

  1、在用小正方形拼长方形的活动中,体会找一个数的`因数的方法,提高有序思考问题的能力。

  2、在1—100的自然数中,能运用多种方法,正确写出指定自然数的所有因数。

  3、经历探索找一个数的因数的活动过程,培养有条理思考的习惯和能力,发展初步的推理能力。

  教学重点:在用小正方形拼长方形的活动中体会找一个数的因数的方法。 教学难点:提高学生有序思考的能力。

  教具:投影、课件

  学具:12个1平方厘米的小正方形。

  教学过程:

  一、创设情境,激情导入

  师:同学们喜欢做拼图游戏吗?

  用你们课前准备好的的12个小正方形拼成一个长方形,比一比,谁的拼法多?边摆边做好记录。

  二、合作交流,探索新知

  1、学生:用12个小正方形自由拼(画)长方形

  (教师巡视,指导个别有问题的学生,搜集学生中出现的问题.)

  师:刚才老师在观察同学们操作时,都有自己的拼法,下面把我们的学习成果交流一下,看看其他同学的成果,总结一下能拼出几种长方形?

  2、引导学生合作交流中总结出找一个数的因数的基本方法。

  指名学生汇报拼法,学生一边汇报,一边将所拼的图在黑板上进行演示。) 师:你能把这些摆法用算式写出来吗?

  (学生独立写出算式并汇报)

  依学生汇报板书:1×12=12 2×6=12 12×1=12 6×2=12 3×4=12 4×3=12

  学生观察算式,找出因数一样的算式。引导学生说出能用3种方法表示,这三种方法是:1×12=12 2×6=12 3×4=12,并指明算式一样时选择其中一种说出来。

  板书:12=1×12=2×6= 3×4

  师:同学们观察一下,12的因数有哪几个?

  (学生说出12的因数有:1、12 、2、6、3、4。)

  师:拼长方形与找因数有什么关系呢?

  (指名学生说一说)

  师:根据刚才的操作交流,请同学们说一说怎样找一个数的因数呢? (学生思考片刻后汇报,可以组内交流。)

  引导学生说出:用乘法思路想,看哪两个数相乘得12,然后一对一对找出来。

  3、引导得出“有序思考”的方法。

  师:通过拼长方形的方法,我们知道了寻找因数的方法。那么找一个数的因数怎样做到既不重复也不遗漏呢?

  (学生独立思考后小组讨论,得出结论,再自由发言。)

  根据学生发言小结:

  找一个数的因数,要用“有序思考”的方法,即用乘法依次一对一对地找,这样有顺序的给一个数找因数,好处就是不重复也不遗漏。

  师:请同学们按顺序说出12的因数。(学生汇报)

  板书:12的所有因数有:1、2、3、4、、6、12。

  三、应用实践

  基础练习

  1、课本第9页试一试:分别找出9和15的全部因数。

  学生独立思考分别找出9和15的因数;教师巡视指导,关注学生是否注意“有序思考”。

  组织学生交流汇报,指明按从小到大,一个一个有序地说,以免遗漏。

  2、 学生独立在书中完成第9页的练一练的第1、2、3题。

  (投影展示1、2、3题,让学生说一说,集体评价。)

  变式练习

  1、16的因数有:( )

  36的因数有:( )

  一个数的最最小的因数是( ),最大的因数是( ),一个数的因数的个数是( )。

  2、一个数的最大因数是17,这个数是( ),它的最小的因数是( ),17的因数是( ),一共有( )个。

  一个数的最小倍数是17,这个数是( ),它( )最大的倍数,17的倍数的个数是( )。

  拓展提高练习

  把48个球装在盒子里,每个盒子装得同样多,有几种装法?每种装法各需要几个盒子?如果有37个球呢?

  师:同学们能不能利用找因数的方法来解决装球问题呢?请同学们先独立思考,然后小组内交流一下。

  汇报:一共有几种装法呢?

  思考:这种装球法与找因数有什么关系呢?

  四、总结与评价

  这节课你学会了什么呢?

  学生汇报后师总结:同学们说得很好,这节课我们学会了找因数的方法,并能利用找因数的方法解决很多实际问题:在我们的生活中存在着很多数学奥秘,就看我们能不能发现,并应用所学知识去解决。

小学五年级数学教案10

  教学内容:

  人教版小学数学第九册《相遇问题》第58准备题、例5及做一做,并完成练习十三1-3题。

  教学目的:

  1、使学生理解相遇问题的意义及特点。

  2、学会分析相遇问题的数量关系,掌握相遇求路程的应用题的解答方法。

  3、明白具体情况具体分析的道理,培养学生初步的辨证唯物主义观点。

  教学重点:

  理解相遇问题的数量关系,建立解题思路,掌握解题方法。

  教学难点:

  理解相遇问题中速度和、相遇时间和总路程之间的关系。

  教学准备:

  计算机辅助教学软件一套。

  教学过程:

  一、动画引入,揭示课题

  1、通过电脑演示了解相遇问题中两个物体的运动情况。

  电脑演示一声枪响后,两人相向而行,相遇前停下来。

  提问:一声枪响后,你看到了什么?注意他们的出发时间和运动方向是怎样的?

  (板书:同时出发、相向而行)

  如果他们继续走下去,结果可能会怎样?

  (相遇、不相遇就停下来、相遇以后相交而过)

  结果究竟怎么样呢?请同学们继续观察。

  电脑演示两人相遇。

  (板书:结果相遇)

  谁能完整的说说他们是怎样运动的?

  [评析:运用多媒体所具有的声、光、色、形的特点,创设动态情境,抓住"相遇问题"的关键,让学生形象地理解"同时出发"、"相向而行" 、"结果相遇"这几个相遇问题的几个基本要素,为例题教学扫除了文字障碍。并且通过生动形象卡通画导入新课,大大激发了学生学习的兴趣。]

  2、揭示课题:

  像这样,两人或两个物体同时从两地出发,相向而行,最后相遇,我们称这样的问题为相遇问题。

  (板书课题:相遇问题)

  过去我们学过一个物体运动的行程问题。你们还记得一个物体运动时,速度、时 间、路程三者之间有什么样的关系?

  (板书:速度×时间=路程)

  今天研究的相遇问题中,运动物体变成了两个,他们的速度、时间和路程三者之间又有什么样的关系呢?今天咱们就一块儿来研究这个问题。

  二、引导探究,教学新知

  (一)教学准备题。

  1、电脑配音显示准备题。

  我是张华,我的速度是每分60米。我是李诚,我的速度是每分70米。张华家距李诚家390米,他俩同时从家里出发,向对方走去。下面是他们两人走的时间和路程的变化情况表。请同学们先看动画,再完成下表,然后讨论以下两个问题。

  走的时间 张华走 的路程 李诚走 的路程 两人所走 的路程和 现在两人 的距离 1分 60米 79米 2分 3分

  讨论:①出发3分后,两人之间的距离变成了多少?说明了什么?

  ②相遇时,两人所走路程的和与两家的距离有什么关系?

  2、观察填表,讨论分析。

  (1)学生填写表格,并讨论屏幕上的两个问题。

  (2)全班校对答案。提问:2分时两人所走路程的和260米你是怎样计算的?(①120+140=260米②30×2=260米)

  (3)学生回答讨论的两个问题。

  小结:刚才我们通过自己观察、填写、讨论,发现了两个物体同时出发、相向而行,相遇时,两人所走路程的和恰好就是两家的距离。下面我们就利用这个规律自己来解决一些实际问题。

  [评析:在准备题教学中,教师放手让学生自己观察、填写、讨论,不但使学生深刻理解了两人所走的路程与两家距离的关系,为研究解题方法作了充分的准备,而且充分体现了学生的自主学习精神。]

  (二)教学例5。

  1、电脑出示例5及线段图:小强和小丽同时从自己家里走向学校。小强每分走65米,小丽每分走70米,经过4分。两人在校门口相遇。他们两家相距多少米?

  2、学生尝试解答,两生上台板书。 65×4 + 70×4(65 + 70)×4=260 + 280 =135×4 =540(米)=540(米)

  3、学生自己分析解题思路:

  ①请用第一种方法的同学说说你是怎样想的?

  提问:题中只有一个4,为什么算式中出现了两个4?

  师:经过4分两人相遇,说明相遇时两人都行了4分,因此我们也可以把这个时间称为相遇时间。相遇时间在这种解法中要用到两次。

  ②请用第二种方法的同学说说你的解题思路又是什么?

  [评析:在学生已掌握路程、速度、时间三者间关系的基础上,联系学生已有的生活实际,通过自己探索,寻求出解答求相遇路程的思路,从而提高了学生分析问题和决问题的能力。]

  4、通过电脑演示强化两种解法的解题思路。

  通过刚才的分析我们知道,相遇问题中求路程有几种解法?请看屏幕。

  电脑演示:一种是先求出小强走的.路程和小丽走的路程,再加起来就得到两人所走路程的和,也就是两家的距离;另一种解法是先把小强每分所走的路程和小丽每分所走的路程加起来,得到每分两人所走路程的和,因为经过4分相遇,再乘以相遇时间4,就得到了4分所走路程的和,也就是两家的距离。

  [评析:通过大屏幕色彩鲜艳的线段闪铄演示,加深了学生对第一种方法的理解;"速度和"的概念是第二种解法的难点,通过将两人每分各行的路程"移动、合并",形象地揭示了"速度和"的内涵。教者灵活地利用多媒体图象的移动、合并、返回的运动特点,揭示"速度和、相遇时间、距离"之间的关系,加深了学生对第二种方法的理解。]

  5、总结数量关系式:请同学们观察这两种解法,你更喜欢哪一种?根据这种解法你发现在相遇问题中,速度、时间、路程三者之间有什么关系?

  (板书:和、相遇)有了这个数量关系式,你知道相遇问题中路程需要知道哪些条件?

  6、学生看书质疑。

  三、巩固练习,深化提高

  1、根据题意连线。

  两列火车从两地同时相向开出。甲车每小时行44千米,乙车每小时行52千米,经过2.5小时两车相遇。

  44×2.5 两人的速度和 52×2.5 两地的距离 44 + 52 相遇时甲车所行的路程 (44 + 52)×2.5

  相遇时乙车所行的路程 44×2.5 +52×2.5 2、用两种方法解答。

  (59页做一做第1题)

  2、只列式不计算。(练习十三1、2题)

  学生独立完成,集体订正。反馈中引导学生把第2题与前面的习题比较,明确虽然两车运动方向、出发地点等情况与前面习题不同,但它们都是求两个物体所行路程的和,都可以用速度和×时间=路程得到。

  [评析:练习的设计由浅入深,有坡度有层次,目的性强。先通过连线题强化相遇问题中的各个概念;然后解决与相遇问题类似的应用题,实现知识、技能和方法的迁移;最后解决有变化的相遇问题,突破固定的思维框架。重点突出,一题一得,既减轻了学生的过重负担,又提高了教学效益。]

  四、闯关游戏,拓思创新:

  电脑演示闯关画面,配音出示游戏规则。

  1、第一关:猫和老鼠从两地相向而行,猫每分跑50米,老鼠每分跑6米。跑了2分,还相距120米,求两地相距多少米?

  提问:用速度和乘以时间得到了路程,为什么还要加120?

  2、第二关:甲、乙两辆汽车从两地相对行驶。甲车每小时行75千米,乙车每小时行69千米。甲车开出后1小时,乙车才开出,再过2小时两车相遇。两地相距多少千米?

  3、第三关:甲乙两人从两地相向而行,甲每分行40米,乙每分行45米。相遇以后相交而过,走了4分,两人相距90米,求两地相距多少米?

  提问:为什么每一种算法都要减90?

  4、小结:今后同学们在解答两个物体运动的行程问题时,首先要弄清他们运动的时间、方向和结果,再灵活运用相遇问题的思路进行解答。

  [评析:首先,通过游戏,激发了学生的学习兴趣,使学生在乐中学习;其次,通过变式练习,让学生灵活应用所学知识解答问题,让学生明白具体情况具体分析的道理,培养学生初步的辨证唯物主义观点。]

小学五年级数学教案11

  设计意图:在设计的时候我想要引导学生学会看书,学会咬文嚼字,比如书上是这样写的:求两个数的最大公约数,一般先用这两个数公有的质因数连续去除,一直除到所得的商互质为止,然后把所有的除数连乘起来。在品味这段话时,有些学生会注意到“一般”这两个字,从而提出“为什么一般用这两个数公有的质因数连续去除,不用质因数去除行不行?”,教师可以引导他们通过向别人求教、上网查资料等方式,自己得出答案,即不用公有的质因数去除也行,也可用公有的合数去除,不过习惯上用两个数公有的质因数去除。解决这个问题之后,学生就会觉得数学语言是非常严谨的,一字一句均需斟酌。

  教学要求

  ①使学生理解公约数、最大公约数、互质数的概念。

  ②使学生初步掌握求两个数最大公约数的一般方法。

  ③培养学生抽象、概括的能力和动手实际操作的能力。

  教学重点 理解公约数、最大公约数、互质数的概念。

  教学难点 理解并掌握求两个数的最大公约数的一般方法。

  教学用具 投影仪等。

  教学过程

  一、创设情境

  填空:①12÷3=4,所以12能被4( )。4能( )12,12是3的( ),3是12的( )。②把18和30分解质因数是 ,它们公有的质因数是( )。③10的约数有( )。

  二、揭示课题

  我们已经学会求一个数的约数,现在来看两个数的约数。

  三、探索研究

  1.小组合作学习

  (1)找出8、12的约数来。

  (2)观察并回答。

  ①有无相同的约数?各是几?

  ②1、2、4是8和12的什么?

  ③其中最大的一个是几?知道叫什么吗?

  (3)归纳并板书

  ①8和12公有的约数是:1、2、4,其中最大的一个是4。

  ②还可以用下图来表示。

  8 1 3

  2 4 6 12

  8 和12 的公约数

  (4)抽象、概括。

  ①你能说说什么是公约数、最大公约数吗?

  ②指导学生看教材第66页里有关公约数、最大公约数的概念。

  (5)尝试练习。

  做教材第67页上面的“做一做”的第1题。

  2.学习互质数的概念

  (1)找出下列各组数的公约数来:5和7 8和9 12和25 1和9

  (2)这几组数的公约数有什么特点?

  (3)这几组数中的两个数叫做什么?(看书67页)

  (4)质数和互质数有什么不同?(使学生明确:质数是一个数,而互质数是两个数的关系)

  3.学习例2

  (1)出示例2并说明:我们通常用分解质因数的方法来求两个数的最大公约数。

  (2)复习的第2题,我们已将18和30分解质因数(如后) 18=2×3×3 30=2×3×5

  (3)观察、分析。

  ①从18和30分解质因数的式子中,你能看出18和30各有哪些约数吗?

  ②18和30的公约数就必须包含18和30公有的什么?

  ③18和30公有的质因数有哪些?

  ④18和30的公约数和最大公约数是哪些?(1、2、3、6(2×3))

  ⑤最大公约数6是怎样得出来的?

  (4)归纳板书。

  18和30的最大公约数6是这两个数全部公有质因数的乘积。

  (5)求最大公约数的一般书写格式。

  为了简便,我们把两个短除式合并成一个如: 18 30

  让学生分组讨论合并后该怎样做?

  ①每次用什么作除数去除?

  ②一直除到什么时候为止?

  ③再怎样做就可以求出最大公约数?

  ④为什么不把商也连乘进去?

  (6)尝试练习。

  做教材第68页的“做一做”,学生独立解答后点几名学生讲每步是怎样做的,最后集体订正。

  (7)抽象概括求最大公约数的`方法。

  ①谁能说说求最大公约数的方法。

  ②引导学生看教材第68页求两个数的最大公约数的方法。

  四、课堂实践

  做练习十四的1、2、3题。

  五、课堂小结

  学生总结今天学习的内容。

  六、课堂作业

  1.做练习十四的第4题。

  2.做练习十四的12*题。

  课后反思:教学"求最大公约数",课本共安排了三个例题及一个"做一做",教学时,当教师向学生介绍完用短除法求两个数的最大公约数之后,让学生讨论质疑其它二例时,学生A就提出:"两个数的最大公约数也就是这两个数的差。"教师问:"有什么根据?"学生回答说:"按照课本的三个例题:12和18的最大公约数是6;90和72的最大公约数是18;24、36和48的最大公约数是12;做一做40,60和80的最大公约数是20。"还真是呀!学生们很惊讶,教师了解到学生错误结论的由来,但不急于指出学生的错误,首先肯定了学生善于观察和思考的精神,接着又向学生指出:"是巧合呢,还是真有这样的规律存在呢?"学生为了验证,纷纷举例演算,就连平时较少开动脑筋的学生,也算得很起劲。过了一会,小B第一个发现象36和28,90和68的最大公约数就不是它们的差。教师又及时把这一信息交给学生,学生的研究热情被激发起来,课堂气氛异常活跃。下课了,大家的讨论还在继续着,并且乐此不疲。他们为了探求"规律",愉快地做了几十道求最大公约数的练习,牢固地掌握了知识。在教师创设的途径中,学生品尝到成功的喜悦,更激发了他们探求知识,孜孜以求,为学业成功更努力学习。

小学五年级数学教案12

  教学目标:

  使学生了解"分数"产生的原因,理解分数的意义,弄清分子,分母,分数单位的含义.

  教学重点:

  使学生理解"分数"的意义,弄清分母,分子及分数单位的含义.

  教学难点:

  使学生理解"分数"的意义,弄清分数单位的含义.

  教学课型:

  新授课

  教具准备:

  课件

  教学过程:

  创设情景,温故引新

  1,提问:

  A,大家知道分数吗 谁能说一个分数

  B,你能举个实例说说这个分数的意义吗

  2,述:说得好,对不能用整数准确表示结果的问题,我们可用分数来解决.即:把一个物体或一个计量单位(或者单位"1")平均分成若干份,用它的一份或几份来表示.

  3,揭示课题:分数的意义

  二,联系实际,探究新知

  自主学习,整体感知分数的知识.

  (1)相互交流:① 关于分数我已经知道了什么 请把已知道的讲给同学们听.

  (2)自学理解:① 关于分数,自学后我又知道了些什么

  ② 我还有什么不明白的地方呢

  ③ 关于分数我还想知道什么

  2,探究深化,进一步理解分数的意义.

  (1)用分数表示下面各图中的阴影部分.[课件1]

  (2)填空.[课件2]

  ① 把一条线段平均分成5份,1份是它的( )/( );4份是它的( )/( ).

  ② 把一块饼平均分成2份,每份是它的( )/( ).

  ③ 把一个正方形平均分成4份.1份是它的( )/( );3份是它的( )/( )

  (3)用一张长方形的`纸,折出它的1/4,并涂上阴影.

  用一张正方形的纸,折出它的3/8,并涂上阴影.

  (4)抢答. [课件3]

  ① 把8枝铅笔平均分给2位同学,每位同学得到的铅笔数是( )

  ② 把10枝铅笔平均分给2位同学,每位同学得到的铅笔数是( )

  ③ 把这个文具盒你所有的铅笔平均分给2位同学,每位同学得到的铅笔数是( ).为什么是1/2 若平均分给5位;10位;50位同学呢

  ④ 如果这个文具盒里只有6枝铅笔.现在把它平均分给2位同学,每位同学得到的铅笔数还能用1/2表示吗谁来说说这里的1/2所表示的意义

  ⑤ 如果把8枝笔平均分给2位同学,每位同学得到的铅笔数还能用1/2表示吗 谁来说说这里的1/2所表示的意义如果是100;1000枝呢

  (5)说说下列分数所表示的意义.[课件4]

  5/7 3/8 3/( ) ( )/9 ( )/( )

  3,小结.

  我们可以把许多物体看作一个整体,比如:一堆苹果,一批玩具,一班学生,一个计量单位或是许多物体组成的一个整体,都可以用自然数1来表示,通常我把它叫做单位 "1".

  板书: 一个物体

  单位"1" 一个计量单位

  许多物体组成的一个整体

  把单位"1"平均分成若干份,表示这样的一份或者几份的数,叫做分数.

  三,加强练习,深化概念

  比赛:请两位同学站起来.

  提问:A,这两位同学是这组人数的几分之几

  B,这两位同学是两组人数的------- 这两位同学是全班人数的-------

  四,家作

  1,P88 .1,2

  2,P89 .3

  板书设计:

  分数的意义

  一个物体

  单位"1" 一个计量单位

  许多物体组成的一个整体

  把单位"1"平均分成若干份,表示这样的一份或者几份的数,叫做分数

小学五年级数学教案13

  教学内容:

  书第54——55页,有趣的测量及试一试第1、2题。

  教学目标:

  1.知识与技能:结合具体活动情境,经历测量石头的试验过程,探索不规则物体体积的测量方法。

  2.过程与方法:在实践与探究过程中,尝试用多种方法解决实际问题。

  3.情感、态度与价值观:在观察、操作中,发展学生空间观念。

  教学重点:

  用多种方法解决实际问题。

  教学难点:

  探索不规则物体体积的测量方法。

  教学准备:

  不规则石头、长方体或正方体透明容器、水。

  教学过程:

  一、导入新课

  师:同学们,我们已经学会了如何计算长、正方体的体积。现在老师这里也有一个东西,你能帮我测量出它的体积吗?

  老师出示准备好的不规则石快。

  师:这个石块是什么形状的?(不规则)

  什么是石块的体积?

  你有什么困难?

  二、教学新知

  1.测量石块的体积

  (1)小组讨论方案

  师:我们不能直接用公式计算出石块的体积,可以怎么办呢?你有什么好的.方法吗?

  (2)小组制定方案

  (3)实际测量

  方案一:找一个长方体形状的容器,里面放一定的水,量出水面的高度后把石头沉入水中再一次量出水面的高度。这时计算一下水面升高了几厘米,用“底面积×高”计算出升高的体积。也可以分别计算放入石头前的体积与放入石头之后的总体积之差。

  师:为什么升高的那部分水的体积就是石块的体积?

  方案二:将石头放入盛满水的容器中,并将溢出的水倒入有刻度的量杯中,然后直接读出的水的体积,就是石头的体积。

  师:为什么会有水溢出来?

  这两种方案实际上都是把不规则的石头的体积转化成了可测量计算的水的体积。让学生说出“石块所占空间的大小就是石块的体积”。

  1.实际应用

  一个长方体容器,底面长2分米,宽1.5分米,放入一个土豆后水面上升了0.2分米,这个土豆的体积是多少?

  (1)读题,理解题意。

  (2)分析:你是怎么想的?

  (3)学生尝试独立解答。

  (4)集体反馈,订正。

  让学生运用在探索活动中得到测量的方法,即“升高的水的体积等于土豆的体积”,然后用“底面积×高”的方法计算。2×1.5×0.2=0.6(立方分米)

  三、课堂小结

  学习了这节课,同学们有什么感受和体会?有什么提高?

  作业设计:

  1.书第55页第2题。

  本题引导学生开展测量不规则物体体积的活动。一粒黄豆比较,先测量100粒黄豆的体积,再计算出一粒黄豆的体积。

  2.学生再找一些实物,测量出体积。

  板书设计:

  有趣的测量

  方案一:

  方案二:

  “底面积×高”的方法计算。

  2×1.5×0.2=0.6(立方分米)

小学五年级数学教案14

  教学目标

  1.通过教学使学生在旧知识的基础上,进一步认识用字母表示运算定律和计算公式.

  2.理解用字母表示数的意义.

  3.知道一个数的平方的含义及读写法,学会在含有字母的式子里简写和略写乘号.

  4.使学生学会应用字母公式求值.

  教学重点

  用字母表示运算定律和公式;根据字母公式求值.

  教学难点

  理解一个数的平方的含义,乘号的简写和略写.

  教学过程

  一、铺垫孕伏

  (一)在下面的□里填上适当的数,并说明根据什么.

  18+34=34+□

  (35+55)+45=357+(□+□)

  35×□=59×□

  (1.2×2.5)×4=1.2×(□×□)

  (4+8)×□=□×3.5+□×□

  二、探究新知

  (一)教学用字母表示运算定律.

  1.学生叙述各运算定律的内容,并用字母公式表示出来.

  教师板书

  (1)加法交换律:

  (2)加法结合律:

  (3)乘法交换律:

  (4)乘法结合律:

  (5)乘法分配律:

  2.观察比较:用字母表示运算定律比用文字叙述有哪些优点?

  优点:用字母表示运算定律比用文字叙述运算定律更简明易记,也便于应用.

  (二)教学用字母表示计算公式.

  1.教学用字母表示图形面积公式(出示图片:图形面积公式)

  (1)表示正方形的面积,表示正方形的边长.

  (2)表示平行四边的面积,、分别表示平行四边形的底和高.

  (3)表示三角形的面积,、分别表示三角形的底和高.

  (4)表示梯形的面积、、分别表示梯形的下底和高.

  2.教学一个数的`平方的含义及正方形周长的书写格式.

  (1)读出下面各式,并说明表示的意义.

  (2)把下面各式写成一个数的平方的形式.

  5×5

  (3)省略乘号,写出下面各式.

  (4)根据运算定律在□填上适当的字母或数.

  (□+□)+□

  □·(□·□)

  (5)如果用表示长方形的长,表示宽,那么

  这个长方形的面积_____________________,

  这个长方形的周长_____________________.

  教师小节:在含有字母的式子里,乘号可以省略,但加号、减号、除号都不能省略,如:

  不能写成;在两个数相乘的时候,乘号不能省略不写,可以改为“·”,但容易与小数点混淆,所以一般仍记作“×”.

  3.教学例1.

  例1.已知梯形的上底是3.5厘米,下底是5.5厘米,高是4厘米.求梯形的面积.

  教师说明:在我们计算一个图形的面积或周长时,实际上是把数值代入有关的公式,算

  出的结果就是它的面积或周长.

  (1)说出梯形的面积公式.

  (2)说出梯形面积公式中每一字母表示的意义.

  (3)说出字母所代表的数值.

  (4)学生尝试解答.

  教师强调:在利用公式进行计算时,计算的结果不必写出单位名称,只在答题时注明就行了.

  (5)练习:一个长方形的长是8.4厘米,宽是4.6厘米,它的周长是多少厘米?

  三、课堂小结

  今天这节课学习了什么知识?

  四、课后作业

  (一)已知一个三角形的底是3.8分米,高是1.5分米.求这个三角形的面积.

  (二)先写出下面图形的周长和面积的计算公式,再把数值代入公式计算.

  1.一个长方形,长7.2厘米,宽1.8厘米.

  2.一个正方形,边长24毫米.

  五、板书设计

  用字母表示运算定律和计算公式

  运算定律

  计算公式

  可以写成

  读作:的平方

  表示:两个相乘

  例1.已知梯形的上底是3.5厘米,下底是5.5厘米,高是4厘米.求梯形的面积.

  =(3.5+5.5)×4÷2

  =9×4÷2

  =18

  答:梯形的面积是18平方厘米.

  探究活动

  找规律

  活动目的

  1.能正确用含有字母的式子表示数量.

  2.培养学生的抽象思维能力和概括能力.

  活动题目

  仔细观察,发现规律,得出结论,然后填空.

  35=3×10+5702=7×100+0×10+2

  72=7×10+2123=1×100+2×10+3

  16=1×10+6564=5×100+6×10+4

  …………

  1.一个两位数,十位上的数是a,个位上的数是b,这个两位数是().

  2.一个三位数,百位上的数是a,十位上的数是b,个位上的数是c,这个三位数是().

  数学教案-用字母表示运算定律和公式

  活动过程

  1.学生分小组讨论.

  2.汇报思考过程和答案.

  3.仿照题目类型,每个小组自编一组练习,相互交换解答.

  参考答案

  1.一个两位数,十位上的数是a,个位上的数是b,这个两位数是(10a+b).

  2.一个三位数,百位上的数是a,十位上的数是b,个位上的数是c,这个三位数是(100a+10b+c).

小学五年级数学教案15

  教学目标

  1、使学生理解小数乘以整数的计算方法及算理。

  2、培养学生的迁移类推能力。

  3、引导学生探索知识间的练习,渗透转化思想。

  教学重点

  小数乘以整数的算理及计算方法。

  教学难点

  确定小数乘以整数的积的小数点位置的方法。

  教具准备

  放大的复习题表格一张(投影)。

  教学过程

  一、引入尝试:

  孩子们喜欢放风筝吗?今天我就带领大家一块去买风筝。

  1、小数乘以整数的意义及算理。出示例1的图片,引导学生理解题意,得出:

  ⑴例1:风筝每个元,买3个风筝多少元?(让学生独立试着算一算)

  (2)汇报结果:谁来汇报你的结果?你是怎样想的?(板书学生的.汇报。)

  用加法计算:++=元元=3元5角

  3元×3=9元5角×3=15角9元+15角=元

  用乘法计算:×3=元理解3种方法,重点研究第三种算法及算理。

  ⑶理解意义。为什么用×3计算?×3表示什么?

  (3个或的3倍.)

  (4)初步理解算理。怎样算的?把元看作35角

  元扩大10倍35角

  ×3×3

  10.5元105角

  缩小到它的1/10

  105角就等于元

  (5)买5个要多少元呢?会用这种方法算吗?

  2、小数乘以整数的计算方法。

  象这样的元的几倍同学们会算了,那不代表钱数的×5你们会算吗?(生试算,指名板演。)

  ⑴生算完后,小组讨论计算过程。

  板书:2

  ×5

  3.60

  (2)强调依照整数乘法用竖式计算。

  (3)示范:0.72扩大100倍72

  ×5×5

  3.60360

  缩小到它的1/100

  (4)回顾对于×5,刚才是怎样进行计算的?

  使学生得出:先把被乘数扩大100倍变成72,被乘数扩大了100倍,积也随着扩大了100倍,要求原来的积,就把乘出来的积360再缩小100倍。(提示:小数末尾的0可以去掉)

  (5)专项练习

  ①下面各数去掉小数点有什么变化?

  ②把353缩小10倍是多少?缩小100倍呢?1000倍呢?

  ③判断

  1

  ×2

  0

  (6)小结小数乘整数计算方法

  计算7×4×425×7×7

  观察这2组题,想想与整数乘整数有什么不同?怎样计算小数乘以整数?

  ①先把小数扩大成整数;②按整数乘法的法则算出积;

  ③再看被乘数有几位小数,就从积的右边起数出几位,点上小数点。

  l专项练习练习一4

  二、运用

  1、填空。

  ()0.74()

  ×3×3×2×2

  ()135()148

  2、做一做书p2

  三、体验:

  (1)今天我们学习了什么?(板书课题)

  (2)小数乘以整数的计算方法是什么?

  四、作业:练习一1、2、3个人修改

  口算:

  70×30

  45×100

  ×10

  ×1000

  5×10

  ×100

  注意:如果积的末尾有0,要先点上积的小数点,再把小数末尾的“0”去掉。

  板书小数乘整数1

  元35角

  ×3×3

  10.5元105角

  例2

  0.72扩大到它的100倍72

  ×5×5

  3.60360

  缩小到它的1/100

  教后反思:

  学生基本能理解小数乘法的算理,但是在计算完后小数点经常点错。下节课要进行专项练习。

【小学五年级数学教案】相关文章:

小学数学教案五年级12-14

小学五年级数学教案11-05

五年级上册小学数学教案12-29

小学五年级下册数学教案03-02

小学五年级上册数学教案01-14

人教版小学五年级数学教案02-03

小学的数学教案03-24

小学数学教案08-29

小学数学教案11-04

小学五年级数学教案(精选20篇)07-24