现在位置:范文先生网>教案大全>数学教案>四年级数学教案>四年级数学教案:三角形的内角和

四年级数学教案:三角形的内角和

时间:2022-05-14 18:13:57 四年级数学教案 我要投稿

四年级数学教案:三角形的内角和

  作为一名默默奉献的教育工作者,时常要开展教案准备工作,教案有助于学生理解并掌握系统的知识。写教案需要注意哪些格式呢?以下是小编收集整理的四年级数学教案:三角形的内角和,仅供参考,大家一起来看看吧。

四年级数学教案:三角形的内角和

四年级数学教案:三角形的内角和1

  【设计理念】

  新课标重视让学生经历数学知识的形成过程,要求教师创设有效的问题情境激发学生的参与欲望,提供足够的时间和空间让学生经历观察、猜测、验证、交流反思等过程,使学生在动手操作、合作交流等活动中亲身经历知识的形成过程。这样,学生不仅可以掌握知识,而且可以积累探究数学问题的活动经验,发展空间观念和推理能力。

  【教材内容】

  新人教版义务教育课程标准实验教科书四年级下册数学第67页例6、“做一做”及练习十六的第1、2、3题。

  【教材分析】

  三角形的内角和是三角形的一个重要特征。本课是安排在三角形的概念及分类之后教学的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材很重视知识的探索与发现,安排两次实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间和时间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、拼等活动,让学生探索、实验、交流、推理归纳出三角形的内角和是180°。

  【学情分析】

  1、在学习本课时,学生已经有了探索三角形内角和的知识基础:知道直角和平角的度数,会用量角器度量角的度数;认识长方形、正方形,知道他们的四个角都是直角;认识了三角形,知道了三角形按角分有锐角三角形、直角三角形和钝角三角形;已经知道了等腰三角形和正三角形。

  2、已经有一部分学生知道了三角形内角和是180°,只是知其然而不知所以然。

  【教学目标】

  1通过“量、剪、拼”等活动发现、验证三角形的内角和是180°,并能运用这个知识解决一些简单的'问题。

  2.在观察、猜想、操作、合作、分析交流等具体活动中,提高动手操作能力,积累基本的数学活动经验,发展空间观念和推理能力。

  3.在参与数学学习活动的过程中,获得成功的体验,感受数学探究的严谨与乐趣。

  【教学重点】

  探索发现、验证“三角形内角和是180°”,并运用这个知识解决实际问题。

  【教学难点】

  验证“三角形的内角和是180°”。

  【教(学)具准备】

  多媒体课件; 锐角三角形、直角三角形、钝角三角形纸片若干个各类三角形(也包括等边、等腰)、长方形、正方形若干个;每人一个量角器;一把剪刀;每人一副三角尺。

  【教学步骤】

  一、复习旧知 引出课题

  1、你已经知道有关三角形的哪些知识?

  2、出示课题:三角形的内角和

  【设计意图:也自然导入新课。】

  二、提出问题 引发猜想

  1、提出问题:看到这个课题,你有什么问题想问的?

  预设:(1)三角形的内角指的是哪些角? (2)三角形的内角和是什么意思?

  (3)三角形的内角一共是多少度?

  2、引发猜想

  猜一猜:三角形的内角和是多少度?你是怎么猜的?

  【设计意图:提出一个问题比解决一个问题更重要。课始在复习三角形已学知识后,引导学生提出有关三角形的新问题,让学生学习自己想研究的内容,无疑激发了学生的学习兴趣,培养了学生的问题意识。由于学生在平时使用三角板时已经若隐若现地有了特殊的直角三角形的内角和是180度这一感觉,因此本环节,要求学生猜一猜三角形的内角和是多少,并说说是怎么猜的,以激发学生已有知识经验,并体会到猜想要合理且有根据,同时也为推理验证的引出作必要的铺垫。】

  三、操作验证 形成结论

  1、交流验证方法:

  (1)用什么方法证明三角形的内角和是180度呢?

  预设: ①量算法 ②剪拼法 ③折拼法等

  (2)三角形的个数有无数个,验证哪些三角形可以代表所有的三角形?我们的操作过程怎么分工才会做到省时又高效?

  2、动手验证

  3、全班汇报交流

  4、小结:刚才通过大家的动手操作验证了三角形的内角和是180 °度。但动手操作会存在一定的误差,我们的结论也可能存在偏差。

  5、方法拓展

  推理验证:用直角三角形的内角和来证明其他三角形内角和是180 °的方法。

  6、形成结论:任意三角形的内角和是180 °。

  【设计意图:

  《标准》指出:“教师应激发学生的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”猜测后先独立思考验证的方法,再进行全班交流,给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列操作活动中发现了三角形内角和是180°这个结论。在探索活动前,交流如何使研究样本具有代表性和全面性与如何分工做到操作省时高效这两个问题,培养学生严谨、科学正确的研究态度,让学生在活动中积累基本的数学活动经验,为后续的学习提供了经验支撑。】

  四、应用结论 解决问题

  1、巩固新知:想一想,算一算。

  2、解决问题:等腰三角形风筝的顶角是多少度?

  3、辨析训练,完善结论。

  五、课堂总结,归纳研究方法

  今天这节课你学到了哪些知识?你是怎样得到这些知识的?

  六、课后延伸:用今天所学的方法继续研究四边形的内角和。

  七、板书设计:

  三角形的内角和

  猜测: 三角形的内角和是180°?

  验证: 量 拼

  结论: 任意三角形的内角和是180°

四年级数学教案:三角形的内角和2

  教学目标

  ⑴探索并发现三角形的内角和是180°,能利用这个知识解决实际问题。

  ⑵学生在经历观察、猜测、验证的过程中,提升自身动手动脑及推理、归纳总结的能力。

  ⑶在参与学习的过程中,感受数学独特的魅力,获得成功体验,并产生学习数学的积极情感。

  教学重点:检验三角形的内角和是180°。

  教学难点:引导学生通过实验探究得出三角形的内角和是180度。

  教学环节:问题情境与

  教师活动:学生活动媒体应用设计意图

  目标达成

  导入新课

  一、复习旧知,导入新课。

  1、复习三角形分类的知识。

  师出示三角形,生快速说出它的名称。

  2、什么是三角形的内角?

  我们通常所说的角就是三角形的内角。为了便于称呼,我们习惯用∠A、∠B、∠c来表示。

  什么是三角形的内角和?

  三角形“三个内角的度数之和”就是三角形的内角和。用一个含有∠A、∠B、∠c的式子来表示应该如何写?∠A+∠B+∠c。

  3、今天这节课啊我们就一起来研究三角形的内角和。(揭题:三角形的内角和)

  由三角形的内角引出三角形的内角和,“∠A+∠B+∠c”的表示形式形象的体现出三内角求和的关系

  二、动手操作,探究新知

  1、出示三角板,猜一猜。

  师:这个三角形的内角和是多少度?熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的`度数

  把三角形三个内角的度数合起来就叫三角形的内角和。是不是所有的三角形的内角和都是180°呢?你能肯定吗?

  我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?

  3.学生测量

  4.汇报的测量结果

  除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°

  5、巩固知识。

  一个三角形中能不能有两个直角?能不能有2个钝角?

  环节

  三、应用所学,解决问题。

  1、基础练习(课本第68页做一做)

  在一个三角形中,∠1=140度,∠3=25度,求∠2的度数。

  2、判断题

  (1)大三角形的内角和大于180度。()

  (2)三角形的内角和可能是180度。()

  (3)一个三角形中最多只能有一个直角。()

  (4)三角形的三个内角分别可能是30度,60度,70度。()

  3、求出下面三角形各角的度数。

  (1)我三边相等。

  (2)我是等腰三角形,我的顶角是96°。(3)我有一个锐角是40°。

  四、总结:这节课你有什么收获?

四年级数学教案:三角形的内角和3

  【教学目标】

  1、知识与技能:

  (1)理解和掌握三角形的内角和是180°。

  (2)运用三角形的内角和知识解决实际问题和拓展性问题。

  2、过程与方法:

  (1)通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。

  (2)知道三角形两个角的度数,能求出第三个角的度数。

  (3)发展学生动手操作、观察比较和抽象概括的能力。

  3、情感态度与价值观:

  让学生体验数学活动的探索乐趣,通过教学中的活动体会数学的转化思想。

  【教学重、难点】

  教学重点:理解掌握三角形的内角和是180°。

  教学难点:运用三角形的内角和知识解决实际问题。

  【教具准备】

  教学课件、各种三角形

  【教学过程】

  一、创设情景,引出问题

  1、猜谜语:

  形状似座山,稳定性能坚。三竿首尾连,学问不简单。

  (打一图形名称)

  2、猜三角形

  师:老师这有1个三角形,它的一部分被智慧星给遮住了,猜猜这是什么三角形?它里面会出现两个直角吗?为什么?

  3、引出课题。

  师:为什么不会出现两个直角?今天我们就再次走进数学王国,探讨三角形的内角和的奥秘。(板书课题)

  二、探究新知

  1、三角形的内角和

  师:三角形内角和指的是什么?

  2、猜一猜。

  师:这个三角形的内角和是多少度?

  3、验证。

  让学生用自己喜欢的'方式验证三角形的内角和是不是180°。

  4、学生汇报。

  (1)测量

  师:汇报的测量结果,有的是180°,有的不是180°,为什么会出现这种情况?有没有别的方法验证?

  (2)剪拼

  A、学生上台演示。

  B、请大家三人小组合作,用剪拼的方法验证其它三角形。

  C、师演示。

  (3)折拼

  师:有没有别的验证方法?我在电脑里收索到折的方法,请同学们看一看他是怎么折的(课件演示)。

  (4)结论:三角形的内角和是180。

  (5)数学小知识。

  5、巩固知识。

  (1)解决课前问题,为什么一个三角形不可能有两个直角?一个三角形中可以有2个钝角吗?

  (2)把两个小三角形拼在一起,问:大三角形的内角和是多少度。

  教师:为什么不是360°?

  三、解决相关问题

  师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!

  1、看图,求未知角的度数。

  2、判断。

  3、如果一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?

  求出下面三角形各角的度数。

  (1)我三边相等。

  (2)我是等腰三角形,我的顶角是96°。

  (3)我有一个锐角是40°。

  4、求四边形、五边形内角和。

  四、总结。

  师:这节课你有什么收获?

  五、板书设计:(略)

四年级数学教案:三角形的内角和4

  教学目标:

  1、让学生亲自动手,通过量、剪、拼等活动,发现并证实三角形的内角和是180°,应用三角形内角和的知识解决实际问题。

  2、让学生在动手获取知识的过程中,培养学生的创新意识,探索精神和实践能力。

  重点、难点:

  经历“三角形内角和是180°”这一知识的形成,发展和应用的全过程。

  三角形内角和是180°的探索和验证。

  教学过程:

  一、揭示课题

  1、今天我们一起来学习三角形的内角和,那什么是三角形的内角和?(三角形里面的角),它有几个内角?(三个)出示纸片,那什么又是三角形的内角和呢?(把三角形的三个角的度数加起来就是三角形的内角和)

  出示课件

  2、提出问题,为后面做铺垫。

  现在有3个三角形(出示课件),直角三角形说:“我是直角三角形,我的内角和最大”钝角三角形说:“我有一个钝角,比你们三个角都大,所以我的内角和才是最大的。锐角三角形说:“我虽然是锐角三角形,但我的个头最大,所以我的内角和才是最大的。

  孩子们,它们这样吵起来可不是办法呀!你们可知道它们谁的内角和最大呢?那我们就一起来证明给他们看。

  二、新授

  1、任意画不同的类型的三角形,算一算三个内角和是多少度。我们就画三个不同类型的三角形,算一算三个内角和是多少度,我们有三大组,为了节约时间,每一大组画一种又分几小组,三人一小组,一人画,一人量,一人记录。(小组合作,画图,量角,记录,计算)

  指名汇报结果并板书(至少一种一个板书),有不同意见的举手,相差1、2度很正常,量角会有误差(你们完成的又快又好,因此可见小组合作很到位)

  师出示一个大直角三角板,请大家算一算这个三角板的内角和是多少?

  (三角形的内角和都是一样大的.,都是180°,仅仅一个实验还不能让它们心服口服,下面我们再来做两个实验,让它们心服口服)

  1、拼一拼,折一折

  孩子们,我们又活动起来吧,拼一拼折一折,让它们看一看,拿出你们准备好的三角形。我们一起来:拿出一个三角形(不管形状),撕下三个角,然后拼在一起(注意三个角的顶点要在同一个点上)你们发现了什么?(拼成了一个平角,这一点就是平角的顶点)

  我们再拿出一个三角形,折一折(注意科学的严谨性,折的时候不留很宽的缝隙)你又发现了什么?(这个三角形还是组成了一个平角)

  通过这三次实验,我们可以得出结论:三角形的内角和等于180°,不分形状,不分大小,任何一个三角形的内角和都是180°

  此时,这三个三角形还争吵吗?它们都心服口服了。

  孩子们,你们真了不起,轻而易举就平息了一场争吵。现在你能不能利用所学知识解决一些问题呢?

  三、练习

  1、抢答游戏(答对的给你的那一小组加一分)

  ①

  这个三角形的内角和是多少度。

  ②

  把这个三角形平均分成两个小三角形,每个小三角形是多少度。

  ③

  这个小三角形再分成一大一小两个三角形,这个三角形的内角和分别是多少度?

  ④

  三个小三角形拼成一个更大的三角形,它的内角和是多少度?

  2、智慧角

  3、判断(用手语表示)(哪个小组同学全部举手,就由哪个小组回答,口说手划答对加一分)

  4、知识扩展

  其实三角形的内角和是一个小朋友发现并提出来的,当时他只有12岁,比你们大一点点,真了不起,你们想知道他是谁吗?(帕斯卡)

  出示课件

  孩子们,其实你们跟他们同样聪明,以后,我们就利用所学知识去发现探索新的知识和规律,只要努力,就一定会成功的,孩子们加油吧!

  四、总结

  任何一个三角形不分大小,不分形状,它们的内角和都是180°

【四年级数学教案:三角形的内角和】相关文章:

《三角形内角和》数学教案07-05

《三角形内角和》数学教案02-15

《三角形内角和》数学教案12篇03-26

四年级数学教案《三角形的内角和》01-17

四年级数学教案:三角形内角和09-17

三角形的内角和说课稿05-30

三角形的内角数学教案02-08

《三角形的内角和》教学反思03-22

四年级数学教案《三角形的内角和》10篇01-18