小学数学六年级《比例的应用》教案(通用14篇)
作为一名老师,时常需要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么大家知道正规的教案是怎么写的吗?下面是小编为大家整理的小学数学六年级《比例的应用》教案,欢迎大家分享。
小学数学六年级《比例的应用》教案 1
设计说明
1、注重培养学生学习的自主性。
引导和培养学生的自主学习能力是切实可行的,对学生养成终身学习的习惯起着不可估量的重要作用。本设计通过让学生找玩具汽车数量与小人书数量之间存在的比例关系和列举比例等,调动学生的学习热情,使学生的学习兴趣和求知欲望得到激发,思维得到拓展。
2、培养学生的解题能力。
本设计以扶代讲,巧妙地引导学生主动探究,使学生在解决问题的过程中,不但能理解和掌握解比例的方法,而且能体会到数学与生活的密切联系,使学生的解题能力、合作能力及归纳能力得到提高。
课前准备
多媒体课件
教学过程
创设情境,提出问题
1、介绍“物物交换”的背景知识。
人类使用货币的历史产生于最早出现物质交换的.时代。在原始社会,人们使用“物物交换”的方式交换自己所需要的物资,如用一只羊换一把斧头。我们今天所学的数学知识就从“物物交换”开始。
2、呈现问题。
同学们算一算,14个玩具汽车可以换多少本小人书?
设计意图:通过“物物交换”,激发学生的兴趣,接着呈现“玩具汽车换小人书”这一情境并提出问题,激发学生学习的热情,为探究新知奠定基础。
尝试解决,体会联系
1、想一想。
师:同学们算一算,14个玩具汽车可以换多少本小人书?把你的想法记录在本上。
2、说一说。
教师引导学生交流各自的想法,体会在“物物交换”的过程中,玩具汽车的数量与小人书的数量之间存在的关系。
预设
方法一14÷4=3.5,3.5×10=35(本)。
方法二10÷2=5,14÷2=7,5×7=35(本)。
方法三4个玩具汽车=10本小人书,14÷4=3……2,2个玩具汽车=5本小人书,10×3+5=35(本)。
方法四4个玩具汽车=10本小人书,8个玩具汽车=20本小人书,12个玩具汽车=30本小人书,2个玩具汽车=5本小人书,12+2=14(个),30+5=35(本)。
自主学习,探究新知
1、提出新的要求。
师:假设14个玩具汽车可以换x本小人书,你能尝试用比例的知识解决问题吗?
2、学生尝试列式。
预设
方法一4∶10=14∶x。
方法二10∶4=x∶14。
方法三14∶4=x∶10。
方法四4∶14=10∶x。
3、交流汇报写出比例的主要依据。
4、学生独立解比例。
5、汇报结果。
预设
生1:根据在比例里,两个内项的积等于两个外项的积,可以把这个比例转化成4x=10×14。
生2:我是这样计算的:
4∶10=14∶x
解:4x=140
x=35
6、出示课堂活动卡,组织学生先和同伴交流,再独立解决。
(师巡视,适时指导)
7、验算:把求出的结果代入比例验算一下,看等式是否成立。
(学生自主验算)
8、教师小结。
解比例的关键是根据“内项的积等于外项的积”写成等式,再用等式的性质解方程。
设计意图:将解比例的学习融入到问题解决的过程中,引导学生自主独立解决,然后组织学生汇报自己的解法,这样学生对新知识就会更加理解。
小学数学六年级《比例的应用》教案 2
教学内容:
教材第37页例5、试一试和练一练,练习七第4~日题。
教学要求:
1.使学生进一步认识比例尺,学会根据比例尺求图上距离或实际距离。
2.使学生体会数学在实际生活里的应用,提高解决简单实际问题的能力。
教学重点:
进一步认识比例尺。
教学难点:
根据比例尺求图上距离或实际距离。
教学过程:
一、揭示课题
1.提问:什么是比例尺。
2.出示一些数据比例尺,让学生说一说比例尺前项、后项的倍数关系和比例尺的实际含义。
3.说明:利用比例尺,可以解决一些简单的实际问题,这节课就学习比例尺的应用。
二、教学新课
1.教学例5。
出示例5,读题。提问:题里已知什么,要求什么?按照比例尺的意义,你能解答吗?让学生自己讨论并进行解答,通过巡视看一看不同的解法。指名口答解题过程,老师板书。其间结合说明设未知数x的单位与图上距离的单位统一,用厘米,解题后再化成米数。提问:用不同方法解答这道题的过程是怎样的?指出;已知图上距离求实际距离,可以按照实际距离与图上距离的倍数关系来解答,也可以按图上距离:实际距离=比例尺列出比例,用解比例的'方法就可以求出结果。
2.做练一练第1题。
指名板演,其余学生做在练习本上。集体订正,指名学生说一说怎样想的,要注意什么问题?
3.教学试一试。
出示试一试,读题。提问;题里已知什么,要求什么?你能自己解答吗,让学生自己做在练习本上。指名学生口答解题过程,老师板书。用比例解的指名学生说一说根据什么列比例的,应该设谁为x。指出:已知实际距离求图上距离,可以把实际距离缩小相应的倍数,也可以按图上距离:实际距离=比例尺列出比例,再解比例求出结果.
4.做练一练第2题。
指名扳演,其余学生做在练习本上。集体订正,指名学生说说怎样想的,解答时还要注意什么。
5.做练习七第4题。
让学生做在练习本上,然后口答,老师板书。
6.做练习七第5题。
学生完成在练习本上。
三、课堂小结
这节课学习了什么内容?你学到了些什么?
四、布置作业
课堂作业:练习七第6、8题。
家庭作业:练习七第7题。
小学数学六年级《比例的应用》教案 3
教学内容:
课本第63页例2;练一练;《作业本》第28页。
教学目标:
进一步理解按比例分配的意义,巩固解答按比例分配的基本方法,并能应用按比例分配解决简单的实际问题。
教学重点:
在连比中按比例分配应用题的特征与解答方法
教学难点:
理解连比(三部分比)的意义与分数应用题的关系
教学关键:
理解连比(三部分比)的.意义
教学过程:
一、基本练习:
1、你可以想到什么?
(1)某班男、女生人数比是5∶4;
(2)柳树、杨树棵数比是1∶6;
(3)科技书和故事书比是5∶4。
2、练习:
(1)学校有故事书80本,故事书和科技书的本数之比是2∶3,科技书有多少本?
(2)改编1题中的故事书80本为科技书有80本。
分析:每题有多种不同的解法,想想你能列出几种不同的解法?
二、新授
1、出示例2:一种混凝土,由水泥、沙子和石子按2∶3∶5拌制而成。要配制这种混凝土6000千克,需要水泥、沙子和石子各多少千克?
(1)想:2∶3∶5叫做水泥、沙子和石子这三种量的连比。意思是这种混凝土里水泥占2份,沙子占3份,石子占5份。
(2)学生尝试解答。
(3)反馈、讲评。
2、试一试:一种青铜,内含铜88份,锡10份,锌2份。要炼制这种青铜400吨,需要铜、锡、锌各多少吨?
3、补充:一个长方体的棱长总和是24厘米,长、宽、高的比是3∶2∶1,这个长方体的体积是多少?
三、练一练。P64。
四、课堂小结。
这堂课与上堂课有什么不同吗?你学会了什么?
五、《作业本》第28页。
小学数学六年级《比例的应用》教案 4
教学内容
苏教版九年义务教育六年制小学教材第十二册P35~38。
教学目标
(一)知识教学点
感受并理解比例尺的意义,会计算图上距离和实际距离,并能解决相关的实际问题。
(二)能力训练点
①培养学生发现问题、分析问题、解决问题能力;
②在实际应用中感受数学、亲近数学,培养学生学习数学的兴趣;
③辩证唯物主义的初步渗透
教学重点
比例尺的应用。
教学难点
比例尺的实际意义。
教学过程
一、设置教学情境,感受比例尺
(一)画画比比
1、估计黑板的长和宽:教室前的这块黑板同学们熟悉吗?
请你估计一下黑板的长和宽。
2、丈量黑板的长和宽:(板书:黑板实际长3.5米,宽1.5米)
3、画黑板:你能照样子把黑板画在本子上吗?(师巡视)
4、质疑:这么大的黑板,为什么能画在这么小的一张纸上呢?(长和宽按一定的比例缩小了。)
5、挑两个黑板图(一个画得不像一个画得较像)出示:
a)评价:①谁画得更像一点?
②分析图A画得不像原因可能是什么?(长和宽缩小的比例不一样。)
b)师生合作,算一下长和宽分别缩小了多少倍?得数保留整数。(屏幕显示)
图上长7厘米,长缩小:350÷7=50图上长5厘米,长缩小:350÷5=70
宽1.5厘米,宽缩小:150÷1.5=100宽2.5厘米,宽缩小:150÷2.5=60
c)点拨:从上面计算结果来看图A长和宽缩小的比例差距较大(即比例失调),所以看上去画得不像;而图B长和宽缩小的比例接近,所以看上去画得较像。
(二)再画再比
1、想一想怎样画得更像?(长和宽缩小的比例要保持相同。)
2、课件展示准确的平面图:
3、请你帮老师算算长和宽分别缩小多少倍?
图上长3.5厘米缩小:350÷3.5=100宽1.5厘米缩小:150÷1.5=100
4、小结:当长和宽缩小的倍数相同时,黑板的平面图就十分逼真!由此可见,为了能反映真实的情况,画图时必须要有个统一的标准,这个统一的'标准就是比例尺。(板书:比例尺)
二、结合实际,理解比例尺
(一)说一说
①讲授:课件中的长方形是按缩小100倍来画的,我们就说这幅图的比例尺是1:100。
②谁来说说比例尺1:100表示什么?(图上距离是实际距离的一百分之一;实际距离是图上距离的一百倍;图上距离1厘米表示实际距离100厘米等等)。
③图A、图B长和宽比例尺各是多少?分别表示什么?
小结:一幅图一般只有一个比例尺,当长和宽的比例尺不一样时,所画黑板就会失真。
④用自己话说说什么叫做比例尺?怎样计算比例尺?
小结:图上距离与实际距离的比叫做比例尺;比例尺通常写成前项是1的比。
(二)算一算
①下图是我校附近的图(屏幕同时显示),新华五村菜场距我校直线距离约300米,可在这幅图上只画了3厘米,这幅图的比例尺是多少?
评讲:你是如何算得?结果是多少?(1:10000)要注意些什么?
②从1:10000这一比例尺上,你能获取那些信息?
板书:图上距离是实际距离的一万分之一;实际距离是图上距离的一万倍;图上距离1厘米表示实际距离10000厘米等等。
三、联系实际,应用比例尺
(一)求图上距离
1、还是在这幅图上,现在要标上区委,估计一下我校离区委直线距离有多远?(400米)你看在这幅图上要画多长?
①独立思考,试试看,如感觉有困难小组内小声讨论。
②评讲:你是怎么想的?还可以怎么算?你觉得要注意些什么?
方法一:400米=40000厘米方法二:400米=40000厘米
40000÷10000=4(厘米)40000×1/10000=4(厘米)
方法三:10000厘米=100米方法四:用比例解(略)等等
400÷100=4(厘米)
小结:求图上距离可以用乘法计算,也可以用除法计算,关键是理解的角度不一样。
③如何画?自己画画看。(按上北下南左西右东常规去画,注意方向。)
2、练一练:
区委东北是我区闹市区——十村,已知区委和十村实际距离是2.5千米,在这图上应画多长?如何画?自己画画看。(课件演示)
3、画一画:
①请准确地画出教室前黑板的平面图。(怎样画才算准确?)
②评讲:你是如何画的?方法一:自己定一个比例尺算出图上长和宽然后画;方法二:在原有图上以长的比例尺为比例画出宽;方法三:在原有图上以宽的比例尺为比例画出长。
(二)求实际距离
1、西厂门在区委的东南面,(课件演示)量得图上距离是9厘米,如何算实际距离?有几种算法?
①独立思考;②合作交流;③讲评算理。(略)
2、练习:南钢宾馆在区委西南(课件演示)量得图上距离是18厘米,如何算实际距离?
(三)新课延伸
1、南京距大厂40千米,画在这幅图上要画多少厘米?
①独立列式计算(400厘米)。
②要画400厘米,你有何感觉?(太长画不下)
③画不下怎么办?(调整比例尺)
④说说你的调整方案?
2、请拿出标有南京上海的地图,找出比例尺并说说意义。
①同座位间合作算出实际距离。
②一辆汽车从南京早上9:00从南京出发赶往上海,要赶下午2:00的飞机,如果车速是每小时80千米,问能否赶及?为什么?
2、五一长假是旅游的黄金季节,请同学们采访一下听课的老师,最向往哪个大城市,然后根据地图帮老师算出实际距离,再告诉被采访的老师。
四、课堂总结,回顾比例尺
(略)
小学数学六年级《比例的应用》教案 5
教学目标:
1.使学生能正确判应用题中涉及的量成什么比例关系。进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,2.使学生能利用正反比例的意义正确解答应用题,巩固和加深对所学的简易方程的认识。
3.培养学生的判断分析推理能力。
教学重点:
使学生能正确判断应用题中的数量之间存在什么样的比例关系。并能利用正反比例的关系列出含有未知数的等式正确运用比例知识解答应用题
教学难点:
学生通过分析应用题的已知条件和所求问题,确定那些量成什么比例关系,并利用正反比例的意义列出等式。
教学过程:
一、旧知铺垫
1.下面各题两种量成什么比例?
(1)一辆汽车行驶速度一定,所行的路程和所用时间。
(2)从甲地到乙地,行驶的速度和时间。
(3)每块地砖的面积一定,所需地砖的块数和所铺面积。
(4)书的总本数一定,每包的本数和包装的包数。
过程要求
①说一说两种量的变化情况。
②判断成什么比例。
③写出关系式。
2.根据题意用等式表示。
(1)汽车2小时行驶140千米,照这样速度,3小时行驶210千米。
(2)汽车从甲地到乙地,每小时行70千米,4小时到达。如果每小时行56千米,要5小时到达。
二、创设情境引入内容
1.出示例5
画面上张大妈与李奶奶的对话让我们知道了哪些数据?你能提出什么问题?
学生回答后引出求水费的实际问题。
你们学过解答这样的问题吗?能不能解答?让学生自己解答,交流解答的方法。
引入:这样的问题可以用应用比例的知识来解答,我们今天就来学习用比例的知识进行解答。
出示以下问题让学生思考和讨论
①问题中有哪两种量?
②它们成什么比例关系?你是根据什么判断的?
③根据这样的.比例关系,你能列出等式吗?
明确
因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。
学生讨论交流
演示解题过程:设未知数,根据正比例的意义列出方程,接着解比例求出未知数。让学生检验所求的未知数x是否合乎题意。检验的方法是把求出的数代入原等式(即方程),看等式是否成立。把求出的16代入等式,左式=1.6,右式=1.6,左式=右式,也就是它们的比值相等,与题意相符,所以所求的解是正确的。
问题:王大爷家上个月的水费是19.2元,他们家上个月用多少吨水?
要求学生应用比例的知识解答,然后交流。通过订正、交流,使学生明确条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了。
2.出示例题6的场景。
同样先让学生用已学过的方法解答,然后学习用比例的知识解答。
师:想一想,如果改变题目的条件和问题该怎样解答?
出示以下问题让学生思考和讨论
①问题中有哪两种量?
②它们成什么比例关系?你是根据什么判断的?
③根据这样的比例关系,你能列出等式吗?
注意启发学生根据反比例的意义来列等式,使学生进一步掌握两种量成反比例的特点和解决含反比例关系的问题的方法。
让学生演示解题过程,集体修正。
3.完成做一做,直接让学生用比例的知识解答
问题:对照两题说一说两道题数量关系有什么不同,是怎样列式解答的。
总结应用比例知识解答问题的步骤
(1)分析题意,找到两种相关联的量,判断它们是否成比例,成什么比例。
(2)依据正比例或反比例意义列出方程。
(3)解方程(求解后检验),写答。
小学数学六年级《比例的应用》教案 6
教学目标:
1、结合生活实例,使学生进一步掌握按比例分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。
2、培养学生运用知识进行分析、推理等思维能力,以及探求解决问题途径的能力。
3、渗透数学的对应思想及函数思想,培养学生认真审题、独立思考、自觉检验的好习惯,增强学好数学的信心。
教学重点:
进一步掌握按比例分配应用题的结构特点和解题思路。
教学难点:
正确分析解答比例分配应用题。
教学过程:
一、复习。
1、我们在教学中学过平均分,平均分的结果有什么特点?(每份都相等)在日常生活中,为了分配的合理,往往需要把一个数量分成不等的几部分,即把一个数量按照一定的比来进行分配。这种方法通常叫按比例分配。
2、一瓶500ml的稀释液,其中浓缩液和水的体积分别是100ml和400ml,__________?(补充问题并解答)
二、新授。
1、教学例2。
(1)出示例2:
(2)引导学生弄清题意后,问:题目中要分配什么?是按什么进行分配的?(分配500ml的稀释液;浓缩液和水的体积按1:4进行分配。)
(3)问:“浓缩液和水的体积1:4”,是什么意思?(就是说在500ml的稀释液,浓缩液占1份,水的体积占1份,一共是5份,浓缩液占稀释液的5分之4,水的体积占稀释液的5分之1。)
(4)你能求出两种各多少ml吗?怎样求?(引导学生进行解题)
①稀释液平均分成的份数:1+4=5
浓缩液的体积:500×=100(ml)
水的体积:500×=400(ml)
答:稀释液100ml,水400ml。
(5)如何检验解答是否正确呢?(说明:检验的方法有两种:一是把求得的浓缩液和水的体积相加,看是不是等于稀释液的总体积;二是把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1:4
(6)学生试做:练习:做一做第1题。(订正时说说解题时先求什么?再求什么?)
2、补充练习
(1)出示:学校把栽280棵树的任务,按照六年级三个班的人数分配给各班。一班有47人,二班有45人,三班有48人。三个班各应栽树多少棵?
(2)引导学生弄清题意后,问:题中要把280棵树按照什么进行分配?(着重使学生明确要按照一班、二班、三班的人数的比来分配,即按47:45:48来分配。)
(3)根据一班、二班、三班的人数怎样算出各班栽的棵数占总棵数的`几分之几?(使学生明确:要先算三个班总共有多少人(即总份数),然后才能算出各班栽的棵数占总棵数的几分之几。)
(4)怎样分别算出各班应种的棵数?引导学生解答:
①三个班的总人数:
②一班应栽的棵数:
③二班应栽的棵数:
④三班应栽的棵数
答:
(5)学生进行检验。
(6)学生试做“做一做”中的第2题。
三、巩固练习。
练习十二的第1、3题。
四、布置作业。
练习十二第2、4、5、6、7题。
教学反思:
本节课的内容相对而言较容易掌握,因而学生在学习中并没有出现什么困难。教学中,我两种方法并重,并让学生理解两种方法的殊途同归之处。对于类型稍有不同的题目,如“做一做”第2题,以人数为比例进行分配的,我在教学时添加了一道例题,教学后再让学生独力完成第2题,这样的教学让学生学得较为轻松,也对这种类型题掌握得较扎实。
小学数学六年级《比例的应用》教案 7
教学目标:
1、能利用反比例函数的相关的知识分析和解决一些简单的实际问题
2、能根据实际问题中的条件确定反比例函数的解析式。
3、在解决实际问题的过程中,进一步体会和认识反比例函数是刻画现实世界中数量关系的一种数学模型。
教学重点、难点:
重点:能利用反比例函数的相关的知识分析和解决一些简单的实际问题
难点:根据实际问题中的条件确定反比例函数的解析式
教学过程:
一、情景创设:
为了预防“非典”,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量(g)与时间x(in)成正比例。药物燃烧后,与x成反比例,现测得药物8in燃毕,此时室内空气中每立方米的含药量为6g,请根据题中所提供的信息,解答下列问题:
(1)药物燃烧时,关于x的函数关系式为:________,自变量x的取值范围是:_______,药物燃烧后关于x的函数关系式为_______。
(2)研究表明,当空气中每立方米的含药量低于1.6g时学生方可进教室,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室;
(3)研究表明,当空气中每立方米的含药量不低于3g且持续时间不低于10in时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?
二、新授:
例1、小明将一篇24000字的社会调查报告录入电脑,打印成文。
(1)如果小明以每分种120字的速度录入,他需要多少时间才能完成录入任务?
(2)录入文字的速度v(字/in)与完成录入的时间t(in)有怎样的函数关系?
(3)小明希望能在3h内完成录入任务,那么他每分钟至少应录入多少个字?
例2某自来水公司计划新建一个容积为的长方形蓄水池。
(1)蓄水池的底部S与其深度有怎样的函数关系?
(2)如果蓄水池的深度设计为5,那么蓄水池的`底面积应为多少平方米?
(3)由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长与宽最多只能设计为100和60,那么蓄水池的深度至少达到多少才能满足要求?(保留两位小数)
三、课堂练习
1、一定质量的氧气,它的密度(g/3)是它的体积V(3)的反比例函数,当V=103时,=1.43g/3.(1)求与V的函数关系式;(2)求当V=23时求氧气的密度.
2、某地上年度电价为0.8元&nt;/&nt;度,年用电量为1亿度。本年度计划将电价调至0.55元至0.75元之间.经测算,若电价调至x元,则本年度新增用电量(亿度)与(x-0.4)(元)成反比例,当x=0.65时,=-0.8.
(1)求与x之间的函数关系式;
(2)若每度电的成本价为0.3元,则电价调至多少元时,本年度电力部门的收益将比上年度增加20%?[收益=(实际电价-成本价)×(用电量)]
3、矩形ABCD中,AB=6,AD=8,点P在BC边上移动(不与点B、C重合),设PA=x,点D到PA的距离DE=.求与x之间的函数关系式及自变量x的取值范围.
四、小结
五、作业
30.3——1、2、3
小学数学六年级《比例的应用》教案 8
教学目标
1、能根据地图推算实践以及根据实距绘制平面图,培养学生运用所学知识技能解决实际问题的能力。
2、培养学生自主探究自主探究、合和交流的能力。
3、感受数学与生活的联系,体验学习数学的价值,增强学习数学的情感。
教学重点:
理解比例尺的含义,能根据比例尺求图上距离或实际距离。
教学准备:
理解比例尺的含义,能根据比例尺求图上距离或实际距离。
课时分配:
共2课时。
教学过程
一、创设情境,引出问题
师:通过课前的交流,我知道有不少同学到外地旅游过。这是因为现在的生活水平高了,有这方面的条件。最近几年,我们家也会利用节假日出外游玩,不过,我个习惯,到哪个城市,就想找那个城市的地图看看。请同学们猜一猜:王老师主要是想从地图上了解哪些方面的信息?
估计学生可能猜出以下几种:看这个城市有哪几个景点,景点在这个城市的什么位置?看地图上的比例尺等,教师适时追问:
①地图上怎么确定方向?
②根据地图上的比例尺还能了解到什么?
二、结合实际,探究新知
1、看地图推算实距。
教师出示南京市地图放在展示台上。
(1)指名读出比例尺,并说说所表示的意思。
(2)找出“雨花台”和“中山陵”2个景点,让学生辨认中山陵在雨花台的哪个方向?
师:在地图上,这2个景点之间的实际距离还不到我一根手指那么长,而生活中它们之间的距离还很远的,那么怎样知道2点之间的实际距离呢?
(3)指名测量图上距离,其它学生记录并列式计算实际距离。
(4)集体交流计算方法。
对于用到方程的方法解答的步骤要板书并予以强调。要求学生说清各种算法的算理。估计会出现多种算法,课堂上给予充分的时间交流。
师:请同学们要注意,刚才计算出来的数是两个景点间的直线距离,二实际生活中,这两点间没有直来直去的`路,而要绕弯走,因此实际走的路程要比实际距离来得多,我们现在研究的是两点间的直线距离。师:请同学们来总结一下,在刚才的测量与计算中,应该注意一些什么?
2、练习:完成教材第49页例2
学生独立完成,板书交流。
10/x=1/500000
X=10×500000
X=5000000
5000000厘米=5千米
3、根据比例尺做平面图。
出示例3:学校要建一个长80米,宽60米的长方形操场,请画出操场的平面图。
(1)知道学生分组讨论。
(2)你觉得应该怎么办?
小组汇报:这道题没有比例尺,要画出平面图形,应该先确定比例尺。
(3)很好,这是解决这道题的关键。用什么样的比例出尺比较合适呢?
(4)根据比例尺确定图上的操场的长和宽。
下面大家以1:1000为比例尺,算一算操场在平面图上的长和宽。
80米=8000厘米60米=6000厘米
8:8000=1:10006:6000=1:1000
(5)让学生按正确的数据,做出图形。
(6)下面同学们再试一试,先确定线段比例尺,看能不能解决。
(7)引导学生总结根据比例尺做平面图形的一般方法。
4、小结并板书课题:
请同学们回顾一下刚才的学习过程,不管是看地图还是画地图都要用到什么知识?这说明比例尺在我们的生活、工作中是很有用的,因此,我们不仅要知道它的意义,还要会利用它解决一些实际问题。
三、拓展与练习
1、请同学们想一想:在我们的生活、工作中,你还知道哪些地方会用到比例尺?
2、我校明年要扩建一个大操场,计划长为120米,宽为80米,请你根据图纸的大小,从下面选出一个合适的比例尺,画出它的平面图。
①1:500
②1:600
③1:800
板书设计:比例尺的应用
80米=8000厘米60米=6000厘米
8:8000=1:10006:6000=1:1000
小学数学六年级《比例的应用》教案 9
教学目标:
1、能正确的判断应用题中涉及到的量成什么比例关系。
2、能正确的用比例的知识解答比较简单的应用题。
3、培养学生的分析、判断和推理能力。
教学重点:
正确的判断应用题中的数量关系之间存在着什么样的比例关系。
教训难点:
能根据正比例、反比例的意义列出含有未知数的等式。
教学过程:
一、实际操作,引入新知识。
(1)、让12个学生上讲台,站成相同的几组,可以怎样站?全班有48人,像他们这样站可以站成几组,或者每组可以站几人?
(2)、让学生说说“每组人数、组数和总人数”这三个量的关系,每组人数、组数成什么比例关系。
(3)、全班有48人,像他们这样站可以站成几组,或者每组可以站几人?
(4)、你是怎样算的,可以列出式子吗?
二、教学例1
一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶了5小时,甲、乙两地之间的公路长多少千米?
1、指导分析,理解题意。
2、学生自己想办法解答。
3、师生探究用比例的知识解答。
A、这道题中涉及到的量有哪些?
B、哪种量一定(不变)?从哪里知道的?
C、路程和时间成什么比例关系?判断的依据是什么?
D、如果我们把甲乙两地之间的公路长看着X千米,那么我们根据正比例的意义可以列出一个怎样的方程?
2小时和140千米相对应,5小时和X千米相对应,即可以列出比例:
140:2=X:5
E、学生列式并解答。
F、说说怎样检验我们的计算结果呢?
4、如果把例1中的第三个条件和问题交换,又该怎样来解答呢?
一辆汽车2小时行驶140千米,照这样的`速度,甲、乙两地之间的公路长350千米,从甲地到乙地需要几小时?
学生自己解答,老师及时收集和处理反馈信息。
三、教学例2
一辆汽车从甲地开往乙地,每小时行驶70千米,5小时到达,如果需要4小时到达,平均每小时需行驶多少千米?
1、引导分析,理解题意,找到相关的量。
2、准确判断它们成什么比例关系。
3、学生解答,及时收集和处理反馈信息。
比较例1、例2的异同。
四、小结
用比例解答应用题的关键是要正确找出两种相关联的量,准确的判断它们成什么比例关系,然后根据正反比例的意义列出方程解答。
小学数学六年级《比例的应用》教案 10
教学内容:
教科书第49页的例7,完成随后的练一练和练习十一的第3、5题。
教学目标:
1、使学生在理解线段比例尺含义的基础上,能按给定的比例尺求相应的实际距离或图上距离。
2、在解决问题的过程中,进一步体会比例以及比例尺的应用价值,感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略。
教学重点、难点:
能按给定的比例尺求相应的实际距离或图上距离;感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力。
教学准备:
教学光盘、了解家到学校的大概距离
教学过程
导入。
1、什么叫比例尺?求比例尺时要注意哪些问题?
2、在一幅地图上南京到上海相距5厘米,实际相距300千米,求这幅地图的比例尺?你能画出这幅地图的线段比例尺吗?
1、教学例7。
(1)出示例7,明确题意,找出明华小学到少年宫距离的线段,说出题目告诉了什么,要求什么。(告诉了比例尺,又告诉了图上距离,求实际距离。)
(2)说一说比例尺1:8000所表示的意义。
(3)根据对1:8000的理解让学生尝试练习。
(4)交流算法,说说为什么这样算?帮助学生掌握不同算法以及之间的联系。
重点引导学生理解和掌握用列比例式求实际距离的方法。引导学生思考:根据比例尺的含义,明华小学到少年宫的图上距离与实际距离的比一定与哪个比相等?你能根据这样的相等关系列出比例式?
注意:最后的单位要换算成米作单位的数。
2、做试一试。
(1)独立算出学校到医院的图上距离。
(2)讨论怎样把医院的位置在图上表示出来。
(3)在图中表示医院的位置。
1、做练一练先独立解题,在组织交流
2、做练习十一第4题
重点知道学生在地图上测两地之间的距离和在地图上如何找比例尺。
3、做练习十一第5题。重点帮助学生确定合适的比例尺。在解决问题的过程中,进一步体会比例以及比例尺的应用价值。
4、将下列各题做在课堂作业本上。
(1)北京到天津的距离是140千米,在一幅比例尺是1:2000000的地图上,两地间的距离是多少厘米?
(2)在一幅比例尺是1:500000的.地图上,量得甲、乙两城的距离是12.5厘米。甲、乙两城实际相距多少千米?04080120千米
(3)在一幅比例尺为的地图上,小丽量得某省会城市与北京的距离是32.5厘米。这个城市与北京相距多远?
(4)做练习十一第3题。
(5)学生阅读你知道吗,选择两个比例尺说说它们的实际意义。
通过本课的学习,你又掌握了什么新的本领?
完成补充习题的相关练习
板书设计:
比例尺的应用
58000=40000(厘米)解:设明华小学到少年宫的实际距离是x厘米。
40000厘米=400米5:x=1:8000
x=40000
40000厘米=400米
答:明华小学到少年宫的实际距离是400米。
小学数学六年级《比例的应用》教案 11
教学目标:
1.在自主探索学习中理解按比例分配的意义,掌握按比例分配应用题的结构特点以及解题方法,能正确解答按比例分配应用题。
2.培养发现问题、提出问题、分析问题、解决问题的能力,合作学习的能力和总纳概括的能力。
3.创设民主和谐的学习氛围,在关注培养学生主动的探索意识、灵活的思维品质过程中形成积极的学习情感。
重点与难点:
沟通比与分数之间的联系,理解按比例分配应用题的结构特征和解题方法。
教学过程:
课前让每一个学生到生活中调查某些事物各组成部分的比,并且说一说是怎么获得这些信息的。
1、情境诱发
陈叔叔和王叔叔,他们俩合资开了一家文具厂,经过一年的辛勤经营,除去交税、发工资和扩张等费用,还净多10万元。他们坐在一起商量分钱的事。(课件)(陈叔叔和王叔叔,合资开了一家文具厂,一年的净利润是10万元。他们两人各应分得多少钱?)
猜猜看,他们是怎么分这10万元钱的?如果我再给你这条信息---(陈叔叔和王叔叔两人投资额的比是2:3,构成例1)你还是坚持原来的观点吗?
陈叔叔和王叔叔各分得多少万元?你会算吗
2、自主探索
先自己独立尝试着解答,然后把你的想法告诉你们小组内的同学,说说你是怎么想的,比比谁的方法更好。
3、集体交流。
哪个小组先上台发言?其他同学可要听仔细了哦!如果有不同的解法可以补充交流,听清楚他们的方法了吗?谁再来说一遍?
其他同学有意见或不明白的地方吗?可以向发言人提问。
答案是否正确呢?你们有什么办法验证?
你们觉得哪种方法比较简便,和前面的知识联系最密切,而且有一定的规律性?
4、分析归纳
这种应用题有什么特点?(告诉我们总数,按照比例分成几部分)
你们在刚才的解答过程中,已经探索出了一种解决实际问题的方法,那就是按比例分配。
一个数量按照一定的比例来进行分配,这种分配方法叫做。
5、你见到过、听说过现实生活中的按比例分配的情况吗?
我省中考热点学校招生计划按比例分配
证券市场中股票发行是按比例分配的。
美国总统大选各州选票是按比例分配的。
在建筑业中也有很多地方用到按比例分配。
只要你做个有心人,你一定会有很多收获。其实在你身上也藏着按比例分配的学问呢!
出示:身体中的按比例分配12周岁的儿童头部与头以下的高度的比一般是2:13。
看到这条信息,你想到了什么?说说你的身高,算一算自己的头部的.高度,看看你估计得准不准?(我的身高是150厘米,我的头部高度约是多少)
再看例1
文具厂在张叔叔和王叔叔的经营下,越来越红火。第二年,李叔叔也投资加入。他加入一年后,纯利润可能会达到多少万元?这时,他们三人各得多少万元?出示(这一年,张、王、李三人的投资分别是4万元,5万元,3万元)
尝试解答,同桌互相讨论。
展示交流各种方法,你打算如何检验?
这题与刚才做的题有什么相同点和不同点?
相同点:都告诉我们总数,都是按照比例分成几部分(都可以看成占总数的几分之几)
不同点:刚才是两种量的比,现在是三种量的比。
有些同学不但数学学得好,还十分爱看书。学校校长非常支持,决定投入6000元,添置一些科技书、故事书和优秀作文选。假如你是校长,会把这6000元按照怎样的比来分配?
1:2:3代表什么?你为什么要这样设定?
1:1:1表示什么意思?(平均分)
请你选择其中的一个比,算一算各花多少钱?
6、反馈交流。
有用1:1:1来解的吗?哪种解法最简单?
按1:1:1分配就是平均分,平均分是特殊的按比例分配。
甲乙两数的平均数是25,两数之比为2:3。求甲数与乙数。
六年级有92名学生参加三个课外兴趣小组。第一组与第二组人数的比是2:3,第一组与第三组人数的比是3:4。三个小组各有多少人?
在这节课中,你最喜欢哪一部分知识的学习?为什么?还有什么疑惑吗?
在这节课中,你的同桌哪些地方最值得你学习?
小学数学六年级《比例的应用》教案 12
【教学内容】
《义务教育课程标准实验教科书数学》(人教版)六年级下册第47、48页,练习八第1-3题。
【设计理念】
数学程标准指出,“数学课程不仅要考虑数学自身的特点,更就遵循学生学习数学的心理规律”。学生数学概念的获得要在观察、比较、概括、归纳等数学活动中才能形成。对于“比例尺”这样的数学概念,抓住其外延和内涵设计有效的数学活动是促进学生发展的主要途径。
【学情与教材分析】
“比例的应用”是在学生已经学习了比和比例的意义、比例的基本性质之后的一个教学内容。“比例尺”是运用数学解决生活问题的一个典型范例之一。本节课,要通过在生活中的应用,把握比例尺的内涵——图上距离与实际距离的比,认识两种不同的比例尺——数值比例尺和线段比例尺。比例尺的内涵是教学的一个重点,学生在学习时,对于比例尺的本质——比例尺是一个比,往往容易因为名称的误导产生歧义,对于由比例尺的规定形式——前项或后项为1,而产生的计算上的`易错点,都是教学中需要特别关注的。
【教学目标】
1.在实践活动中体验生活中需要的比例尺,能读懂两种形式的比例尺。
2.在操作、观察、思考、归纳等学习活动中理解比例尺的意义,正确计算比例尺,了解比例尺在实际生活中的各种用途。
3、感受数学在解决问题中的作用,培养亲近数学的良好情感。
【教学准备】
多媒体课件
【教学重点】
理解比例尺的意义
【教学难点】
把线段比例转换成数值比例尺
【教学过程】
一、激发兴趣,引入比例尺
(脑筋急转弯)
师:同学们,你们一定去过漳州,那你们坐车从华安到漳州大约需要多长时间?(1个多小时),可是有只蚂蚁却只用了4秒钟。你知道是怎么回事吗?
生猜:蚂蚁可能在从华安到漳州的地图上爬。
师:对了。蚂蚁爬的是地图上的图上距离,(板书:图上距离)而我们坐车所行的是从华安到漳州的实际距离。(板书:实际距离)
师:看,在这幅地图上(出示第一幅地图)从华安到漳州蚂蚁只用了4秒钟,(出示第二幅地图)在这幅地图上蚂蚁用4秒钟还能到达吗?(出示第三幅地图)在这幅地图上呢?
师:为什么同样是从华安到漳州,有的只需4秒钟就能到达,而有的却到达不了呢?(地图有大有小)
请同学们观察这几幅地图,它们虽然大小不同,但形状却一样,这是什么原因呢?(让学生思考片刻后才说,可先让学生说)是因为人们在制作这三幅地图时所用的比例尺不同,这就是我们今天要学习的内容:比例尺(板书课题)
【设计意图:脑筋急转弯意在激趣引出地图,对学生都比较熟悉的地图,通过“这几幅地图,它们虽然大小不同,但形状却一样,这是什么原因呢?”这个问题来引导学生思考,通过三张地图大小不一样,而表示的实际距离却相同,引起学生认知冲突,聚焦依据比例不同,表示的大小也不相同,从而引出比例尺,引导学生从生活中学习有关比例尺的内容。】
二、自主学习,认识比例尺
1、什么叫比例尺?它是尺吗?是比例吗?请同学们打开课本48页,自学48页的内容。
2、揭示比例尺的意义。
你们从书上了解到什么叫比例尺?(嗯,是个比板书于课题后)
前项是什么?后项呢?(在板书的图上距离与实际距离中加入“:”)
那就是说只要用图上距离比实际距离就能求出比例尺,还能写成什么形式?
你能说说这些比例尺的意义吗?
请同学们仔细观察这几个比例尺上的数字的变化以及这几幅地图的大小变化,你又有什么发现,同桌交流一下
比例尺前项都是1,后项数字越大,图上1厘米所表示的实际距离越长,所画出的图形就越小,后项数字越小,图上1厘米所表示的实际距离越短,所画出的图形就越大
【设计意图:学生自学可能因为自身学习能力的差异而产生不同的效果,如何让不同学力的学生在自学中都能真正学有所获?问题引领是一个比较有效的方法。因此,我设计了以上三个问题,聚焦比例尺的内涵,帮助学生清晰把握。】
3、练习:
知道了什么是比例尺,如果我想求一幅图的比例尺,那要怎么办呢?老师给你们数据你们会求出一幅图的比例尺吗?
①、一张桌子画在图纸上的高度是8厘米,实际高度是80厘米,求这幅图纸的比例尺是多少?
②、一栋楼房东西方向长40m,在图纸上的长度是50cm.这幅图纸的比例尺是多少?
③、在一幅地图上,量得甲地到乙地的距离是4厘米,而甲地到乙地的实际距离是160千米,这幅地图的比例尺是多少?
注意:单位统一
要化简结果不带单位(因为它表示的是两个量之间的关系)
【设计意图:在学生理解比例尺的意义之后马上呈现三道不同梯度的习题,一是让学生进一步理解掌握比例尺的实际意义,二是让学生正确计算比例尺,了解比例尺在实际生活中的各种用途。并能用自己的语言正确说明比例尺所表示的具体意义。】
4、认识放大比例尺
观察这三个比例尺,你有什么发现?(前项为1)也就是说图上距离比实际距离小,其实现实中还能见到这样的比例尺(课件出示一些精密零件的图纸)
看,把比例尺读出来,你有什么发现?(选一个说意义)
小结:比例尺根据它的作用可分为缩小比例尺和放大比例尺。(板书)通常情况下,为了计算的方便,把比例尺写成前项或后项是1的比。
5、认识线段比例尺
刚才我们认识的比例尺都是用数字来表示的,它们都叫做数值比例尺。请同学们再来看这幅比例尺(出示线段比例尺)它与数值比例尺有什么不同?
学会看线段比例尺。图上每一段都是长1厘米,每一厘米都相当于实际多少千米?
用线段来表示图上距离与实际距离的关系,这叫做线段比例尺
区别:形式不同,但都表示图上距离与实际距离的倍数关系
小结:比例尺根据表现形式的不同分为数值比例尺和线段比例尺。(板书)
6、把上面的线段比例尺改写成数值比例尺
(1)这个线段比例尺它表示图上1厘米相当于实际50千米,那你们会将它改写成数值比例尺吗?
(2)1厘米:50千米=1厘米:5000000厘米=1:5000000
(3)根据数值比例尺标出线段比例尺
小结:线段比例尺和数值比例尺是比例尺的两种基本形式.它们之间可以进行转换.把线段比例尺转换成数值比例尺只要把写出图上距离与实际距离的比再化简就可以了.
【设计意图:在具体情景中,通过操作、观察、思考、归纳等学习活动中理解放大比例尺、线段比例尺的意义以及线段比例尺和数值比例尺两种比例尺基本形式之间的转换,并准确理解比例尺的书写特征。】
三、课后延伸
选择合适的比例尺画图
红光小学有一块长方形草坪,长85米,宽30米,把这块草坪按一定的比缩小,你能在纸上画出这个长方形草坪的平面图形吗?(1:1000、1:5001:10000)
结论:一幅图的比例尺由纸张的大小来决定。
【设计意图:让学生选用比例尺解答,以此培养学生思维的灵活性.这样让孩子在获得知识的同时,培养了能力,让学生真真切切的感受到生活中有数学,生活中处处有数学,提高了学生学数学用数学的意识。】
四、谈学后体会。这节课你学到了什么?
【设计意图:让学生回顾学习过程,反思评价,再一次体验学习经历,促进学生对知识的掌握。】
小学数学六年级《比例的应用》教案 13
教学内容:
教科书第6~8页的例4~例6,练习二的第1题。
教学目的:
使学生理解比例尺的含义,会应用比例的知识求平面图的比例尺,以及根据比例尺求图上距离或实际距离。
教学重点:
理解比例尺的意义;能根据比例尺正确求图上距离和实际距离。
教学难点:
设未知数时长度单位的使用。
教具准备:
教师准备一些比例尺不同的地图或本校、本地的平面图。
教学过程:
一、复习
1.复习提问:长度单位:千米、米、分米、厘米、毫米之间的进率及化聚方法。
1米=()分米=()厘米=()毫米
1千米=()米=()厘米
2.什么叫做比?
二、新课
教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数,再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天我们就来学习这方面的知识。
1.教学比例尺的意义。
(1)教学例4。
设计一座厂房,在平面图上用10厘米的距离表示地上10米的距离。求图上距离和实际距离的比。
让学生读题。指名回答:
“这道题告诉我们什么?”(在平面图上用10厘米的距离表示地面上10米的距离。)
“要我们做什么?”(求图上距离和实际距离的比。)板书:图上距离:实际距离
“图上距离知道吗?实际距离也知道吗?各是多少?”继续板书如下:
图上距离:实际距离
10厘米:10米
“10厘米和10米的单位相同吗?能直接化简吗?”
教师说明:这两个数量的单位不同,所以先要把它们化成相同单位,再化简。
“是把厘米化作米,还是把米化作厘米?为什么?”(因为把米化作厘米后实际距离仍是整数,计算起来比较方便,所以要把米化作厘米。)
“10米等于多少厘米?”学生回答后,教师把10米改写成1000厘米。
“现在单位统一了,是多少比多少,怎样化简?”教师边说边擦掉10和1000后面的单位“厘米”,并加上“:”,板书成如下形式:
图上距离:实际距离
10:1000
请一名同学到黑板前化简这个比,别的同学在练习本上做。集体订正后,教师写出这道题的“答:…”。
然后说明:因为在绘制地图和其他平面图时,经常要用到“图上距离和实际距离的比”,我们就给它起一个名字叫做“比例尺”。(板书:图上距离:实际距离=比例尺)有时图上距离和实际距离的比也可似写成分数形式。(板书:或
图上距离=比例尺
实际距离
图上距离是比的前项,实际距离是比的后项。为了计算简便,通常把比例尺写成前项是1的最简单整数比。
教师出示比例尺不同的地图和本地、本校的平面图给学生看,让学生说出它们的比例尺各是多少,表示什么意思。
最后教师指出:
①比例尺与一般的尺不同,这是一个比,不应带计量单位。
②求比例尺时,前、后项的'长度单位一定要化成同级单位。如1O厘米:1O米,要把后项的米化成厘米后再算出比例尺。
③为了计算简便,通常把比例尺的前项化简成“1”,如果写成分数形式,分子也应化简成“1”。比如,例4中的比例尺通常写成:1:100=
(2)巩固练习。
让学生完成第6页的“做一做”。教师可提醒学生注意把图上距离和实际距离的单位化成同级单位。集体订正时,要注意检查学生求出的比例尺的前项是不是“l”。
2.教学根据比例尺求图上距离或实际距离。
教师:知道了一幅图的比例尺,我们可以根据图上距离求出实际距离,或者根据实际距离求出图上距离。
(1)教学例5。
在比例尺是1:6000000的地图上,量得南京到北京的距离是15厘米。南京到北京的实际距离大约是多少千米?
指名读题,并说出题目告诉了什么,要求什么。(告诉了比例尺,又告诉了南京到北京的图上距离,求南京到北京的实际距离。)
教师启发:因为图上距离:实际距离=比例尺,要求实际距离可以用解比例的方法来求。
“这道题的图上距离是多少?”板书:15
“实际距离不知道,怎么办?”(用x表示。)在15的下面板书出x,并在它们中间画上分数线。
“因为图上距离和实际距离的单位要相同,所设的x应用什么单位?”(应用厘米。)板书:解:设南京到北京的实际距离为x厘米。
“比例尺是多少?写成什么形式?”(写成分数形式。)最后板书成下面的形式:
15=1
x6000000
指定一名学生到前面求X的值,其他学生在练习本上做。订正后,回答:
“现在求出的实际距离是多少厘米,题目要求的实际距离是多少千米。应该怎么办?”板书:90000000厘米=900千米,并写出这道题的答。
之后,再回忆一下解答过程。
(2)巩固练习。
做第7页上的“做一做”。先让学生说出图中的比例尺是多少,表示什么意思,再用直尺量出图中河西村与汽车站间的距离,然后计算出实际距离。集体订正时,要注意检查学生是否把实际距离化成了千米。
(3)教学例6。
出示例6:一个长方形操场,长110米,宽90米,把它画在比例尺是的图纸上,长和宽各应画多少厘米?
指名读题并说出题目告诉了什么,求什么。(告诉了操场的长和宽的实际距离和比例尺,求长和宽的图上距离。)
教师:我们先来求长的图上距离。长的图上距离不知道,应设为x。(板书:解:设长应画x厘米。)长的实际距离是多少?它和图上距离的单位相同吗?怎么办?比例尺是多少?
然后让学生求x的值,并说出求解过程,教师板书出来。
“这道题做完了吗?还要求宽的图上距离。宽的图上距离不知道,应用什么未知数来表示呢?因为前面求长的图上距离时,已经用了x,这里就不能再用它来表示宽的图上距离了,要用其它的字母来表示。我们就用y来表示、”板书:设宽应画y厘米。让学生把这道题做完。最后教师写出这道题的答。
三、练习
1、比例尺=()实际距离=()图上距离=()
2、2.5米=()厘米0.00006千米=()厘米0.032米=()厘米350000厘米=()千米3.5千米=()厘米
独立完成练习二第1题,并订正。
完成练习二的第2题、3题。
第3题,让学生先想想比例尺子表示的意思。1厘米的图上距离相当于100厘米的实际距离。)然后再量出图中所示的宽和高,并计算出实际的宽和高各是多少。集体订正时,要让学生说说计算出的实际的宽和高的单位是什么。
小学数学六年级《比例的应用》教案 14
教学内容:
课本第63页例2;练一练;《作业本》第28页。
教学目标:
进一步理解按比例分配的意义,巩固解答按比例分配的基本方法,并能应用按比例分配解决简单的实际问题。
教学重点:
在连比中按比例分配应用题的特征与解答方法
教学难点:
理解连比(三部分比)的意义与分数应用题的关系
教学关键:
理解连比(三部分比)的意义
教学过程:
一、基本练习:
1、你可以想到什么?
(1)某班男、女生人数比是5∶4;
(2)柳树、杨树棵数比是1∶6;
(3)科技书和故事书比是5∶4。
2、练习:
(1)学校有故事书80本,故事书和科技书的本数之比是2∶3,科技书有多少本?
(2)改编1题中的故事书80本为科技书有80本。
分析:每题有多种不同的`解法,想想你能列出几种不同的解法?
二、新授
1、出示例2:一种混凝土,由水泥、沙子和石子按2∶3∶5拌制而成。要配制这种混凝土6000千克,需要水泥、沙子和石子各多少千克?
(1)想:2∶3∶5叫做水泥、沙子和石子这三种量的连比。意思是这种混凝土里水泥占2份,沙子占3份,石子占5份。
(2)学生尝试解答。
(3)反馈、讲评。
2、试一试:一种青铜,内含铜88份,锡10份,锌2份。要炼制这种青铜400吨,需要铜、锡、锌各多少吨?
3、补充:一个长方体的棱长总和是24厘米,长、宽、高的比是3∶2∶1,这个长方体的体积是多少?
三、练一练。P64。
四、课堂小结。
这堂课与上堂课有什么不同吗?你学会了什么?
五、《作业本》第28页。
【小学数学六年级《比例的应用》教案】相关文章:
数学教案-比例的应用08-16
小学数学六年级教案《比例尺的应用》08-23
数学教案-正比例应用题08-16
比例的应用08-16
数学教案-用比例知识解答应用题08-16
比例的应用说课稿08-11
小学六年级数学《反比例》教案06-09
小学数学六年级下册反比例教案08-26
小学六年级数学按比例分配教案04-12
数学教案-解比例08-16