现在位置:范文先生网>教案大全>数学教案>八年级数学教案>八年级数学教案

八年级数学教案

时间:2022-09-03 13:54:00 八年级数学教案 我要投稿
  • 相关推荐

有关八年级数学教案范文汇编8篇

  作为一名教职工,时常需要用到教案,教案有利于教学水平的提高,有助于教研活动的开展。那么你有了解过教案吗?以下是小编整理的八年级数学教案8篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

有关八年级数学教案范文汇编8篇

八年级数学教案 篇1

  教学目标:

  1、经历对图形进行观察、分析、欣赏和动手操作、画图过程,掌握有关画图的操作技能,发展初步审美能力,增强对图形欣赏的意识。

  2、能按要求把所给出的图形补成以某直线为轴的轴对称图形,能依据图形的轴对称关系设计轴对称图形。

  教学重点:本节课重点是掌握已知对称轴L和一个点,要画出点A关于L的轴对称点的画法,在此基础上掌握有关轴对称图形画图的操作技能,并能利用图形之间的轴对称关系来设计轴对称图形,掌握有关画图的技能及设计轴对称图形是本节课的难点。

  教学方法:动手实践、讨论。

  教学工具:课件

  教学过程:

  一、 先复习轴对称图形的定义,以及轴对称的相关的性质:

  1.如果一个图形沿一条直线折叠后,直线两旁的部分能够互相________,那么这个图形叫做________________,这条直线叫做_____________

  2.轴对称的三个重要性质______________________________________________

  _____________________________________________________________________

  二、提出问题:

  二、探索练习:

  1. 提出问题:

  如图:给出了一个图案的一半,其中的虚线是这个图案的对称轴。

  你能画出这个图案的另一半吗?

  吸引学生让学生有一种解决难点的'想法。

  2.分析问题:

  分析图案:这个图案是由重要六个点构成的,要将这个图案的另一半画出来,根据轴对称的性质只要画出这个图案中六个点的对应点即可

  问题转化成:已知对称轴和一个点A,要画出点A关于L的对应点 ,可采用如下方法:`

  在学生掌握已知一个点画对应点的基础上,解决上述给出的问题,使学生有一条较明确的思路。

  三、对所学内容进行巩固练习:

  1. 如图,直线L是一个轴对称图形的对称轴,画出这个轴对称图形的另一半。

  2. 试画出与线段AB关于直线L的线段

  3.如图,已知 直线MN,画出以MN为对称轴 的轴对称图形

  小 结: 本节课学习了已知对称轴L和一个点如何画出它的对应点,以及如何补全图形,并利用轴对称的性质知道如何设计轴对称图形。

  教学后记:学生对这节课的内容掌握比较好,但对于利用轴对称的性质来设计图形觉得难度比较大。因本节课内容较有趣,许多学生上课积极性较高

八年级数学教案 篇2

  单元(章)主题第三章 直棱柱任课教师与班级

  本课(节)课题3.1 认识直棱柱第 1 课时 / 共 课时

  教学目标(含重点、难点)及

  设置依据教学目标

  1、了解多面体、直棱柱的有关概念.

  2、会认直棱柱的侧棱、侧面、底面.

  3、了解直棱柱的侧棱互相平行且相等,侧面是长方形(含正方形)等特征.

  教学重点与难点

  教学重点:直棱柱的有关概念.

  教学难点:本节的例题描述一个物体的形状,把它看成怎样的两个几何体的组合,都需要一定的空间想象能力和表达能力.

  教学准备每个学生准备一个几何体,(分好学习小组)教师准备各种直棱柱和长方体、立方体模型

  教 学 过 程

  内容与环节预设、简明设计意图二度备课(即时反思与纠正)

  一、创设情景,引入新课

  师:在现实生活中,像笔筒、西瓜、草莓、礼品盒等都呈现出了立体图形的形状,在你身边,还有没有这样类似的立体图形呢?

  析:学生很容易回答出更多的答案。

  师:(继续补充)有许多著名的建筑,像古埃及的金字塔、巴黎的艾菲尔铁塔、美国的迪思尼乐园、德国的古堡风光,中国北京的西客站,它们也是由不同的立体图形组成的;那么立体图形在生活中有着怎样的广泛的应用呢?瞧,食物中的冰激凌、樱桃、端午节的粽子等。

  二、合作交流,探求新知

  1.多面体、棱、顶点概念:

  师:(出示长方体,立方体模型)这是我们熟悉的立体图形,它们是有几个平面围成的?都有什么相同特点?

  析:一个同学回答,然后小结概念:由若干个平面围成的几何体,叫做多面体。多面体上相邻两个面之间的交线叫做多面体的棱,几个面的公共顶点叫做多面体的顶点

  2.合作交流

  师:以学习小组为单位,拿出事先准备好的几何体。

  学生活动:(让学生从中闭眼摸出某些几何体,边摸边用语言描

  述其特征。)

  师:同学们再讨论一下,能否把自己的`语言转化为数学语言。

  学生活动:分小组讨论。

  说明:真正体现了“以生为本”。让学生在主动探究中发现知识,充分发挥了学生的主体作用和教师的主导作用,课堂气氛活跃,教师教的轻松,学生学的愉快。

  师:请大家找出与长方体,立方体类似的物体或模型。

  析:举出实例。(找出区别)

  师:(总结)棱柱分为之直棱柱和斜棱柱。(根据其侧棱与底面是否垂直)根据底面多边形的边数而分为直三棱柱、直四棱柱……直棱柱有以下特征:

  有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;

  侧面都是长方形含正方形。

  长方体和正方体都是直四棱柱。

  3.反馈巩固

  完成“做一做”

  析:由第(3)小题可以得到:

  直棱柱的相邻两条侧棱互相平行且相等。

  4.学以至用

  出示例题。(先请学生单独考虑,再作讲解)

  析:引导学生着重观察首饰盒的侧面是什么图形,上底面是什么图形,然后与直棱柱的特征作比较。(使学生养成发现问题,解决问题的创造性思维习惯)

  最后完成例题中的“想一想”

  5.巩固练习(学生练习)

  完成“课内练习”

  三、小结回顾,反思提高

  师:我们这节课的重点是什么?哪些地方比较难学呢?

  合作交流后得到:重点直棱柱的有关概念。

  直棱柱有以下特征:

  有上、下两个底面,底面是平面图形中的多边形,而且彼此全等;

  侧面都是长方形含正方形。

  例题中的把首饰盒看成是由两个直三棱柱、直四棱柱的组合,或着是两个直四棱柱的组合需要一定的空间想象能力和表达能力。这一点比较难。

  板书设计

  作业布置或设计作业本及课时特训

八年级数学教案 篇3

  一、教学目标

  1.灵活应用勾股定理及逆定理解决实际问题.

  2.进一步加深性质定理与判定定理之间关系的认识.

  二、重点、难点

  1.重点:灵活应用勾股定理及逆定理解决实际问题.

  2.难点:灵活应用勾股定理及逆定理解决实际问题.

  3.难点的突破方法:

  三、课堂引入

  创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法.

  四、例习题分析

  例1(P83例2)

  分析:⑴了解方位角,及方位名词;

  ⑵依题意画出图形;

  ⑶依题意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;

  ⑷因为242+182=302,PQ2+PR2=QR2,根据勾股定理的逆定理,知∠QPR=90°;

  ⑸∠PRS=∠QPR—∠QPS=45°.

  小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识.

  例2(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的'长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状.

  分析:⑴若判断三角形的形状,先求三角形的三边长;

  ⑵设未知数列方程,求出三角形的三边长5、12、13;

  ⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形.

  解略.

  本题帮助培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识.

八年级数学教案 篇4

  1.展示生活中一些平行四边形的实际应用图片(推拉门,活动衣架,篱笆、井架等),想一想:这里面应用了平行四边形的什么性质?

  2.思考:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动过程如图)

  3.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出本课题及矩形定义.

  矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).

  矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都有矩形形象.

  【探究】在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状.

  ①随着∠α的变化,两条对角线的长度分别是怎样变化的?

  ②当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的.角?它的两条对角线的长度有什么关系?

  操作,思考、交流、归纳后得到矩形的性质.

  矩形性质1 矩形的四个角都是直角.

  矩形性质2 矩形的对角线相等.

  如图,在矩形ABCD中,AC、BD相交于点O,由性质2有AO=BO=CO=DO=AC=BD.因此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.

  例习题分析

  例1(教材P104例1)已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长.

  分析:因为矩形是特殊的平行四边形,所以它具有对角线相等且互相平分的特殊性质,根据矩形的这个特性和已知,可得△OAB是等边三角形,因此对角线的长度可求.

  解:∵ 四边形ABCD是矩形,

  ∴ AC与BD相等且互相平分.

  ∴ OA=OB.

  又∠AOB=60°,

  ∴△OAB是等边三角形.

  ∴矩形的对角线长AC=BD=2OA=2×4=8(cm).

  例2(补充)已知:如图,矩形ABCD,AB长8cm,对角线比AD边长4cm.求AD的长及点A到BD的距离AE的长.

  分析:(1)因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法

八年级数学教案 篇5

  第一步:情景创设

  乒乓球的标准直径为40mm,质检部门从A、B两厂生产的乒乓球中各抽取了10只,对这些乒乓球的直径了进行检测。结果如下(单位:mm):

  A厂:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1;

  B厂:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.

  你认为哪厂生产的乒乓球的直径与标准的误差更小呢?

  (1)请你算一算它们的平均数和极差。

  (2)是否由此就断定两厂生产的.乒乓球直径同样标准?

  今天我们一起来探索这个问题。

  探索活动

  通过计算发现极差只能反映一组数据中两个极值之间的大小情况,而对其他数据的波动情况不敏感。让我们一起来做下列的数学活动

  算一算

  把所有差相加,把所有差取绝对值相加,把这些差的平方相加。

  想一想

  你认为哪种方法更能明显反映数据的波动情况?

  第二步:讲授新知:

  (一)方差

  定义:设有n个数据,各数据与它们的平均数的差的平方分别是,…,我们用它们的平均数,即用

  来衡量这组数据的波动大小,并把它叫做这组数据的方差(variance),记作。

  意义:用来衡量一批数据的波动大小

  在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定

  归纳:(1)研究离散程度可用(2)方差应用更广泛衡量一组数据的波动大小

  (3)方差主要应用在平均数相等或接近时

  (4)方差大波动大,方差小波动小,一般选波动小的

  方差的简便公式:

  推导:以3个数为例

  (二)标准差:

  方差的算术平方根,即④

  并把它叫做这组数据的标准差.它也是一个用来衡量一组数据的波动大小的重要的量.

  注意:波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。所以方差公式是能够反映一组数据的波动大小的一个统计量,教师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。

八年级数学教案 篇6

  一、教学目标:

  1、会根据频数分布表求加权平均数,从而解决一些实际问题

  2、会用计算器求加权平均数的值

  3、会运用样本估计总体的方法来获得对总体的认识

  二、重点、难点:

  1、重点:根据频数分布表求加权平均数

  2、难点:根据频数分布表求加权平均数

  三、教学过程:

  1、复习

  组中值的定义:上限与下限之间的中点数值称为组中值,它是各组上下限数值的简单平均,即组中值=(上限+上限)/2.

  因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义.

  应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010.而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数.所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的.最大好处是简化了计算量.

  为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义.

  2、教材P140探究栏目的意图

  ①、主要是想引出根据频数分布表求加权平均数近似值的计算方法.

  ②、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权.

  这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义.

  3、教材P140的思考的意图.

  ①、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题.

  ②、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力.

  4、利用计算器计算平均值

  这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比.一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器.所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单.统计中一些数据较大、较多的计算也变得容易些了.

  5、运用样本估计总体

  要使学生掌握在哪些情况下需要通过用样本估计总体的方法来获得对总体的认识;一是所要考察的对象很多,二是考察本身带有破坏性;教材P142例3,这个例子就属于考察本身带有破坏性的情况.

八年级数学教案 篇7

  教学目的

  1. 使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度。

  2. 熟识等边三角形的性质及判定.

  2.通过例题教学,帮助学生总结代数法求几何角度,线段长度的方法。

  教学重点

  等腰三角形的性质及其应用。

  教学难点

  简洁的逻辑推理。

  教学过程

  一、复习巩固

  1.叙述等腰三角形的性质,它是怎么得到的?

  等腰三角形的两个底角相等,也可以简称等边对等角。把等腰三角形对折,折叠两部分是互相重合的,即AB与AC重合,点B与点 C重合,线段BD与CD也重合,所以C。

  等腰三角形的顶角平分线,底边上的中线和底边上的高线互相重合,简称三线合一。由于AD为等腰三角形的对称轴,所以BD= CD,AD为底边上的中线;BAD=CAD,AD为顶角平分线,ADB=ADC=90,AD又为底边上的高,因此三线合一。

  2.若等腰三角形的两边长为3和4,则其周长为多少?

  二、新课

  在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。我们把三条边都相等的三角形叫做等边三角形。

  等边三角形具有什么性质呢?

  1.请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜想。

  2.你能否用已知的知识,通过推理得到你的猜想是正确的?

  等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到B=C,又由B+C=180,从而推出B=C=60。

  3.上面的条件和结论如何叙述?

  等边三角形的各角都相等,并且每一个角都等于60。

  等边三角形是轴对称图形吗?如果是,有几条对称轴?

  等边三角形也称为正三角形。

  例1.在△ABC中,AB=AC,D是BC边上的中点,B=30,求1和ADC的度数。

  分析:由AB=AC,D为BC的中点,可知AB为 BC底边上的中线,由三线合一可知AD是△ABC的.顶角平分线,底边上的高,从而ADC=90,BAC,由于B=30,BAC可求,所以1可求。

  问题1:本题若将D是BC边上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC上的高线,其它条件不变,计算的结果是否一样?

  问题2:求1是否还有其它方法?

  三、练习巩固

  1.判断下列命题,对的打,错的打。

  a.等腰三角形的角平分线,中线和高互相重合( )

  b.有一个角是60的等腰三角形,其它两个内角也为60( )

  2.如图(2),在△ABC中,已知AB=AC,AD为BAC的平分线,且2=25,求ADB和B的度数。

  四、小结

  由等腰三角形的性质可以推出等边三角形的各角相等,且都为60。三线合一性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。

  五、作业

  1.课本P127─7,9

  2、补充:如图(3),△ABC是等边三角形,BD、CE是中线,求CBD,BOE,BOC,

  EOD的度数。

  (一)课本P127─1、3、4、8题.

八年级数学教案 篇8

  一、教学目标

  (一)、知识与技能:

  (1)使学生了解因式分解的意义,理解因式分解的概念。

  (2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。

  (二)、过程与方法:

  (1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想。

  (2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力。

  (3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力。

  (三)、情感态度与价值观:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。

  二、教学重点和难点

  重点:因式分解的概念及提公因式法。

  难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系。

  三、教学过程

  教学环节:

  活动1:复习引入

  看谁算得快:用简便方法计算:

  (1)7/9 ×13-7/9 ×6+7/9 ×2= ;

  (2)-2.67×132+25×2.67+7×2.67= ;

  (3)992–1= 。

  设计意图:

  如果说学生对因式分解还相当陌生的话,相信学生对用简便方法进行计算应该相当熟悉.引入这一步的目的旨在让学生通过回顾用简便方法计算——因数分解这一特殊算法,使学生通过类比很自然地过渡到正确理解因式分解的概念上,从而为因式分解的掌握扫清障碍,本环节设计的计算992–1的值是为了降低下一环节的难度,为下一环节的理解搭一个台阶.

  注意事项:学生对于(1)(2)两小题逆向利用乘法的分配律进行运算的方法是很熟悉,对于第(3)小题的逆向利用平方差公式的运算则有一定的困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式。

  活动2:导入课题

  P165的探究(略);

  2. 看谁想得快:993–99能被哪些数整除?你是怎么得出来的?

  设计意图:

  引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备。

  活动3:探究新知

  看谁算得准:

  计算下列式子:

  (1)3x(x-1)= ;

  (2)(a+b+c)= ;

  (3)(+4)(-4)= ;

  (4)(-3)2= ;

  (5)a(a+1)(a-1)= ;

  根据上面的算式填空:

  (1)a+b+c= ;

  (2)3x2-3x= ;

  (3)2-16= ;

  (4)a3-a= ;

  (5)2-6+9= 。

  在第一组的整式乘法的计算上,学生通过对第一组式子的`观察得出第二组式子的结果,然后通过对这两组式子的结果的比较,使学生对因式分解有一个初步的意识,由整式乘法的逆运算逐步过渡到因式分解,发展学生的逆向思维能力。

  活动4:归纳、得出新知

  比较以下两种运算的联系与区别:

  a(a+1)(a-1)= a3-a

  a3-a= a(a+1)(a-1)

  在第三环节的运算中还有其它类似的例子吗?除此之外,你还能找到类似的例子吗?