现在位置:范文先生网>教案大全>数学教案>六年级数学教案>人教版六年级下册数学教案

人教版六年级下册数学教案

时间:2022-08-23 16:11:07 六年级数学教案 我要投稿

关于人教版六年级下册数学教案范文合集9篇

  作为一名辛苦耕耘的教育工作者,就有可能用到教案,教案有助于顺利而有效地开展教学活动。教案应该怎么写才好呢?以下是小编为大家收集的人教版六年级下册数学教案9篇,希望能够帮助到大家。

关于人教版六年级下册数学教案范文合集9篇

人教版六年级下册数学教案 篇1

  教学内容:

  教材第15~16页的例4和第16页的试一试、练一练,完成练习三第1~3题。

  教学目标:

  1.结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。

  2.经历类比猜想验证说明的探索圆柱体积的计算方法的进程,掌握圆柱体的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

  3.引导学生探索和解决问题,渗透、体验知识间相互转化的思想方法。

  重点难点:

  掌握圆柱体积公式的推导过程。

  教学资源:

  PPT课件 圆柱等分模型

  教学过程:

  一、联系旧知,设疑激趣,导入新课。

  1.呈现例4中长方体、正方体和圆柱的直观图。

  2.提问:这几种立体的体积你都会求吗?你会求其中哪些立体的体积?

  启发:大家想不想知道圆柱的体积怎样计算?猜想一下:圆柱体积的大小与什么有关?怎么算?

  3.引入:我们的猜想对不对呢?今天我们就一起来探索一下圆柱的体积计算公式。

  二、动手操作,探索新知,教学例4

  1.观察比较

  引导学生观察例4的三个立体,提问

  ⑴这三个立体的底面积和高都相等,它们的体积有什么关系?

  ⑵长方体和正方体的体积一定相等吗?为什么?

  ⑶圆柱的体积与长方体和正方体的体积可能相等吗?为什么?

  2.实验操作

  ⑴谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,而且都等于底面积乘高。那用什么办法验证呢?让学生在小组中说说自己的想法。

  提醒:圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成长方体呢?

  ⑵提出要求:你能想办法把圆柱转化成长方体吗?各小组说出自己的想法,有条件的拿出课前准备好的圆柱,操作一下。

  ⑶讨论交流:如果把圆柱的底面平均分成16份,切开后能否拼成一个近似的长方体?

  操作教具,让学生观察。

  引导想像:如果把底面平均分的份数越来越多,结果会怎么样?

  演示一组动画(将圆柱底面等分成32份、64等份、128等份)课件演示使学生清楚地认识到:拼成的立体会越来越接近长方体。

  3.推出公式

  ⑴提问:拼成的.长方体与原来的圆柱有什么关系?

  指出:长方体的体积与圆柱的体积相等;长方体的底面积等于圆的底面积;长方体的高等于圆柱的高。

  ⑵想一想:怎样求圆柱的体积?为什么?

  根据学生的回答小结并板书圆柱的体积公式

  圆柱的体积=底面积高

  ⑶引导用字母公式表示圆柱的体积公式:V=sh

  长方体的体积 = 底面积 高

  圆柱的体积 = 底面积 高

  用字母表示计算公式V= sh

  三、分层练习,发散思维,教学试一试

  ⑴让学生列式解答后交流算法。

  ⑵讨论:知道什么条件就一定能算出圆柱的体积了?分别怎么算?

  (s和h,r和h,d和h,c和h)

  四、巩固拓展练习

  1.做练一练第1题。

  ⑴说一说:这两个圆柱中都是已知什么?能算出圆柱的体积吗?

  ⑵各自练习,并指名板演。

  ⑶对照板演,说说计算过程。

  2.做练一练第2题。

  已知底面周长和高,该怎么求它的体积呢?引导学生根据底面周长求出底面积。

  五、小结

  这节课我们学习了什么?有哪些收获?还有什么疑问?

  六、作业

  练习三第1~3题。

人教版六年级下册数学教案 篇2

  一、游戏导入

  1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。

  ①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。

  2、下面我们来难度大些的,看谁反应最快。

  ①我在银行存入了500元(取出了500元)。②知识竞赛中,五(1)班得了20分(扣了20分)。

  ③10月份,学校小卖部赚了500元。(亏了500元)。④零上10摄氏度(零下10摄氏度)。

  说明什么是相反意义的量(意义正好相反)

  3、谈话:周老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)

  二、教学例1

  1、认识温度计,理解用正负数来表示零上和零下的温度。

  课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。

  这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?

  B、现在你能看出南京是多少摄氏度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。

  (2)上海的气温:上海的'最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)

  指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。

  (3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?

  (4)比较:“4℃”和“—4℃”的意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。

  ① 上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)

  负号能不能省略不写?为什么?

  ② 北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄氏度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。

  (5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。

  2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)

  3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。

  4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。

  三、学习珠峰、吐鲁番盆地的海拔表达方法

  1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。

  2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?

  3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。

  你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。

  4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?

  (1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。

  吐鲁番盆地的海拔可以记作:-155米。(板书)

  (2)小小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。

人教版六年级下册数学教案 篇3

  教材分析:

  本课是一节数学综合应用的实践活动课,是课程标准实验教材新增加的一个内容。培养学生用数学解决问题的能力是义务教育阶段数学课程的重要目标之一,因此解决问题教学在数学教学中有着重要的作用。它既是发展学生数学思维的过程,又是培养学生应用意识、创新意识的重要途径。本册教材设计了确定起跑线这个数学综合运用活动,让学生通过小组合作的探究性活动,综合运用所学的数学知识和方法(如:圆的知识),动手实践解决问题,体会数学在日常生活中的应用价值,增强学生应用数学的意识,不断提高学生的实践能力和解决问题的能力。

  学生分析:

  在教学本课之前,大部分学生已经掌握圆的概念、圆的画法还有圆周长的计算方法等知识。学生具备一定的小组自我探究的能力,可以利用小组合作的形式进行学习。

  学生对体育活动也很喜欢,相当一部分学生去过体育场,对体育场的跑道和起跑线并不陌生。通过电视节目学生对起跑时运动员不能站在同一起跑线的现象也有一定的认识,但具体这样做是为什么、相邻两跑道起跑线该相差多远呢?学生可能很少从数学的角度去认真的思考。也很难通过经验和观察得到,需要学生收集相关的数据,具体分析起跑线的位子与什么有关。所以在教学中学生可能会在相邻跑道相差多远这一点上有些困难。

  教学目标:

  1、通过该活动让学生了解椭圆式田径场跑道的结构,学会确定起跑线的方法。

  2、通过活动培养学生利用小组合作,探究解决问题的能力。

  3、通过活动让学生切实体会到探索的乐趣,感受到数学在体育等领域的广泛应用。

  教学重点:运用圆的有关知识计算。

  教学难点:

  结合具体问题,让学生独立思考,提高解决简单问题的能力。

  关键:体会数学知识在体育中的应用。

  教学过程:

  一、汇报调查,引入课题(8分钟)

  1、汇报调查情况

  课前,我让大家调查运动场的情况,你们得到了哪些信息?

  2、课件显示如下情境图:

  师:图上画的是什么?指名学生回答,并引导得出:运动员进行跑步比赛。

  师:在一些短跑比赛中,运动员所在的起跑位置是不一样的,你知道为什么吗?引导学生回答:弯道处外圈比内圈长一些。

  3、揭示课题,下面我们就用几个具体的例子来验证同学们想法是否正确。

  二、结合实例、探究问题(24分钟)

  实例一:

  课件显示:

  淘气和笑笑分别从A,B处出发,沿半圆走到C,D。他们两人走过的路程一样长吗?

  (1)笑笑所走路线的半径为10米,她走过的路程是()米。

  (2)淘气所走的`路线半径为()米,他走过的路程为()米。

  (3)两人走过的路相差()米。

  1、理解题意

  根据这幅情境图,你能获得哪些信息?指名回答。

  2、小组讨论

  先让学生独立思考,待大多数学生基本解决上面3个小题后,在组织学生在小组内交流。

  3、全班交流

  抽生汇报,教师板书。

  实例2:

  课件显示: (一)了解跑道结构:出示完整跑道图(跑道最内圈为400米)

  1、观察跑道由哪几部分组成?

  2、在跑道上跑一圈的长度可以看成是哪几部分的和?

  (板书:跑道一圈长度=圆周长+2个直道长度)

  (二)简化研究问题:

  1、85.96米是指哪部分的长度?一条直道吗?

  2、讨论:运动员沿跑道跑一圈,各跑道之间的差距会在跑道的哪一部分呢?

  3、小结:既然与直道无关,为了便于我们更好的观察,暂时将直道拿走看看差距在那里,好吗?(课件:直道消失,屏幕上只剩下左右两个弯道。)

  (三)寻求解决方法:

  1、左右两个半圆形的弯道合起来是一个什么?

  2、讨论:你怎样找出相邻弯道的差距?相邻弯道差距其实就是谁的长度之差?

  3、交流小结:只要计算出各圆的周长,算出相邻两圆相差多少米,就是相邻跑道的差距,也就是相邻起跑线相差多少米。

  (四)、动手解决问题:

  1、计算圆的周长要知道什么?(直径)

  2、课件出示:第一道的直径为72.6米,第二道是多少?第三道呢?

  3、教师带领学生填写表格的前两道,注意计算第1道和第2道相差米数,应指导学生完成。

  引导学生将3.14159换成进行计算

  汇报结论:相邻起跑线相差都是2.5,也就是道宽2。说明起跑线的确定与道宽最有关系。

  4、计算相邻起跑线相差的具体长度:2.5=2.53.14=7.85米

  师:同学们通过努力找到了起跑线的秘密,运动员们的比赛应该把起跑线依次提前7.85米才公平。

  三、巩固练习、实践应用(3分钟)

  400米的跑步比赛,道宽为1.5米,起跑线该依次提前多少米?

  四、拓展延伸、自我评价(5分钟)

  1、解决问题:在运动场上还有200米的比赛,道宽为1.25米,起跑线又该依次提前多少米?

  2、课后自学课本第45页你知道吗?

  五、全课小结:

  谈一谈,这节课你有什么收获?

  六、布置作业

人教版六年级下册数学教案 篇4

  教材分析

  本节内容是学生学习了长方体与正方体的表面积后,在充分理解了圆柱的认识的基础上开展的.教材中选用了许多来自现实生活中的问题,通过学生想象和动手操作,使学生进一步理解圆柱的侧面展开是一个长方形或一个正方形,底面是两个圆的基础上,掌握圆柱的表面积的求法,获得求“圆柱体表面积”的算法。

  学情分析

  由于每个学生的学习水平有差异,在学习中可能会出现部分学生不知道圆柱侧面转化成学过的平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合操作清晰地表述圆柱侧面积计算方法的'推导过程。教师可以引导学生在上节课的基础上学习本节课,让学生通过动手操作,小组讨论得出圆柱的表面积的求法,及在生活中的应用。

  教学目标

  知识目标:理解圆柱体表面积的含义及求法。 能力目标:通过小组合作、独立操作推导并掌握求圆柱的表面积的方法,并能解决实际问题。

  情感目标:体验成功的收获,体会小组合作探索成功过程的喜悦。

  教学重点和难点

  重点:教师引导,动手操作得出求圆柱表面积的方法。

  难点:计算方法在生活中的应用。

  教学过程

  一、复习导入:

  1、圆柱由几个面组成?上下两个面是什么?侧面展开是什么图形?

  2、圆面积怎样求?

  3、长方形的面积呢?

  二、创设情境,引起兴趣:

  出示一顶厨师帽,让学生观察,做着一定帽需要多少布料?用我们以前学的知识能解决吗?教师借机引出课题并板书课题《圆柱表面积的求法》

  三、 自主探究,发现问题。

  1、分组,讨论:

  (1)、动手将圆柱的侧面沿着高剪开 。(你发现了什么?)

  圆柱的侧面剪开发现侧面是一个长方形(正方形),

  侧面积=长方形的面积=长×宽=地面周长×高。

  重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)这个长方形与圆柱体的哪个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)

  (2)、复习引导:(用旧解新)

  上下两个圆的面积怎样求?(如果已知底面半径就能求出底面积)

  (3)、小结:小组讨论,将公式延伸。

  圆柱表面积 = 圆柱的侧面积+底面积×2

  =Ch+2π r2

  =πdh+2π r2

  2、知识的运用:(回到情景创设)

  (1)、出示例题:

  例2:假如一顶厨师的帽子,高 28厘米,帽顶半径10厘米,做一顶帽子至少需要多少面料?( 用进一法结果保留正是整十平方厘米)

  (2)、独立试做:

  (3)、集体讲评。

  (4)、讲解进一法。

  3.巩固练习:

  四、课堂总结:

  这一节课重点学习了圆柱表面积的计算方法及运用。

人教版六年级下册数学教案 篇5

  教学内容:

  抽取游戏

  教学目标:

  1.使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。

  2.体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。

  教学重点:

  抽取问题。

  教学难点:

  理解抽取问题的基本原理。

  教学过程:

  一、教学例

  盒子里有同样大小的`红球和蓝球各4个。要想摸出的球一定有2个同色的,最少要摸出几个球?

  1.猜一猜。

  让学生想一想,猜一猜至少要摸出几个球。

  2.实验活动。

  (1) 一次摸出2个球,有几种情况?

  结果:有可能摸出2个同色的球。

  (2) 一次摸3个球,有几种情况?

  结果:一定能摸出2个同色的球。

  3.发现规律。

  启发:摸出球的个数与颜色种数有什么关系?

  学生不难发现:只要摸出的球比它们的颜色种数多1,就能保证有两个球同色。

  二、做一做

  第1题。

  (1) 独立思考,判断正误。

  (2) 同学交流,说明理由。

  第2题。

  (1) 说一说至少取几个,你怎么知道呢?

  (2) 如果取4个,能保证取到两个颜色相同的球吗?为什么?

  三、巩固练习

  完成课文练习十二第1、3题。

人教版六年级下册数学教案 篇6

  设计说明

  “反比例”是在学生学习了“比和比例”和“正比例”的基础上进行教学的。本着“学生是学习的主体”的理念,在本节课的教学中,最大限度地为学生提供了自主探究的机会。

  1.借助定义、实例,渗透函数思想。

  教学伊始,借助正比例的意义和生活实例,使学生进一步体会函数思想,充分理解成正比例关系的两种量的比值不变的特点,为学生探究成反比例关系的两种量之间的关系以及理解反比例的意义和特点奠定良好的基础。

  2.借助具体情境,在观察、讨论中发现规律。

  教学中,通过具体情境,引导学生在观察、讨论中发现“把相同体积的水倒入底面积不同的杯子中,水面的高度不同”及“杯子的底面积×水的高度=水的体积”这一规律,使学生通过自己的努力,归纳、概括出反比例的意义及特点。

  3.借助已有的学习经验总结反比例关系式。

  因为正、反比例体现的都是两种相关联的量之间的关系,且正比例关系表达式学生已经掌握,所以在总结反比例关系表达式时,教师要引导学生根据已有的经验自己总结出反比例关系表达式,体验成功的喜悦。

  课前准备

  教师准备 PPT课件

  学生准备 玻璃杯 直尺 水 实验记录单

  教学过程

  ⊙复习引入

  1.复习。

  课件出示:一个圆柱形水箱,底面积是0.78平方米,高是1.2米,这个水箱能装水多少立方米?

  (1)引导学生独立解决问题。

  (2)提问:你是根据什么公式进行计算的?

  预设

  生:圆柱的体积=底面积×高。

  (3)师追问:圆柱的体积、底面积和高之间还有怎样的数量关系呢?在什么情况下其中的两种量成正比例关系?

  预设

  生1:底面积=圆柱的体积÷高,高=圆柱的体积÷底面积。

  生2:如果底面积一定,圆柱的.体积与高就成正比例;如果高一定,圆柱的体积与底面积就成正比例。

  2.引入课题。

  如果圆柱的体积一定,那么底面积与高又成怎样的关系呢?这就是本节课我们要学习的内容。(板书课题:反比例)

  设计意图:通过复习有关圆柱的体积问题以及列举圆柱的体积、底面积和高之间的关系,在培养学生思维完整性的同时,为新知的学习作铺垫。

  ⊙探究新知

  1.在具体情境中初步感知成反比例关系的量。

  (1)课件出示教材47页例2,引导学生结合问题进行观察。

  师:观察情境图,理解图意后,观察下表,先一行一行地观察,再一列一列地观察,并思考下面的问题。

  杯子的底面积与水的高度的变化情况如下表。

杯子的底面积/cm2


10


15


20


30


60



水的高度/cm


30


20


15


10


5



  ①表中有哪两种量?

  ②水的高度是怎样随着杯子底面积的大小变化而变化的?

  ③相对应的杯子的底面积与水的高度的乘积分别是多少?

  (2)学生思考后在小组内交流。

  (3)全班交流。

  预设

  生1:有杯子的底面积和水的高度这两种量。

  生2:杯子的底面积增大,水的高度降低;杯子的底面积减小,水的高度升高。

  生3:相对应的杯子的底面积与水的高度的乘积都是300,是一定的,也就是杯子的底面积×水的高度=水的体积(一定)。

  (4)明确什么是成反比例的量。

  因为水的体积一定,所以水的高度随着杯子的底面积的变化而变化。杯子的底面积增大,水的高度反而降低;杯子的底面积减小,水的高度反而升高。但是无论怎样变化,杯子的底面积和水的高度的乘积总是一定的,所以我们就把杯子的底面积和水的高度这两种量叫做成反比例的量,它们的关系叫做反比例关系。

人教版六年级下册数学教案 篇7

  教学目标

  1、使学生掌握圆柱体积公式,会用公式计算圆柱体积,能解决一些实际问题。

  2、让学生经历观察、操作、讨论等数学活动过程,理解圆柱体积公式的推导过程,引导学生探讨问题,体验转化和极限的思想。

  3、在图形的变换中,培养学生的迁移能力、逻辑思维能力,并进一步发展其空间观念,领悟学习数学的方法,激发学生兴趣,渗透事物是普遍联系的唯物辨证思想。

  教学重点、难点

  1、圆柱体积计算公式的推导过程并能正确应用。

  2、借助教具演示,弄清圆柱与长方体的关系。

  教具、学具准备

  多媒体课件、长方体、圆柱形容器若干个;学生准备推导圆柱体积计算公式用学具。

  教学设想

  《 圆柱的体积 》是学生在有了圆柱、圆和长方体的相关的基础上进行教学的。在知识与技能上,通过对圆柱的具体研究,理解圆柱的体积公式的推导过程,会计算圆柱的体积,在方法的选择上,抓住新旧知识的联系,通过想象、课件演示、实践操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探索。

  教学过程

  一、创设情境,激疑引入

  “水是生命之源!”节约用水是我们每个公民应尽的义务。前两天,老师家的水龙头出了问题,拧上阀门之后,还是不停的滴水,你们看,一刻钟就滴了这么多的.水。

  1、出示装了水的圆柱容器。

  (1)启发思考:容器里面的水形成了什么形状?(圆柱)你能知道这些水的体积?

  (2)讨论后汇报:

  生1:用量筒或量杯直接量出它的体积;

  生2:用秤称出水的重量,然后进一步知道体积;

  生3:把它倒入长方体容器中,从里面量出长、宽和水面的高后再计算。

  师:现在老师只有这些工具(圆柱形容器,长方形容器,半圆形容器和其他不规则容器),你怎么办?

  生1:把水到入长方体容器中……

  生2:我们学过了长方体的体积计算,只要量出长、宽、高就行

  [设计意图:通过本环节,给学生创设一个生活中的情境,提出问题,学习身边的数学,激起学生的学习兴趣;根据需要渗透圆柱体(新问题)和长方体(已知)的知识联系为所学内容作了铺垫的准备]

  2、创设问题情境。

  师:(课件显示)如果要求某些建筑中圆柱形柱子的体积,或是求压路机圆柱形大前轮的体积,能用同学们想出来的办法吗?

  [设计意图:进一步从实际需要提出问题,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体积的问题的欲望]

  师:今天,就让我们来研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)

  二、经历体验,探究新知

  1、回顾旧知,帮助迁移

  (1)教师首先提出具体问题:圆柱体和我们以前学过的哪些几何图形有联系?

  生1:圆柱的上下两个底面是圆形

  生2:侧面展开是长方形……

  生3:说明圆柱和我们学过的圆和长方形有联系

  师:请同学们想想圆柱的体积与什么有关?

  生1:可能与它的大小有关

  生2:不是吧,应该与它的高有关

  [设计意图:温故而知新,既复习了旧知识又引出了新知识,学生在不知不觉中就学到了新知。]

  (2)请大家回忆一下:在学习圆的面积时,我们是怎样将圆转化成已学过的图形,来推导出圆面积公式的。

  配合学生回答演示课件。

  [设计意图:通过想象,进一步发展学生的空间观念,由“形”到“体”;同时使学生感悟圆柱的体积与它的底面积和高的联系,通过圆面积推导过程的再现,为实现经验和方法的迁移作铺垫]

  2、小组合作,探究新知

  (1)启发猜想:我们要解决圆柱的体积的问题,可以怎么办?(引导学生说出圆柱可能转化成我们学过的长方体。并通过讨论得出:反圆柱的底面积分成许多相等的扇形,然后反圆柱切开,再拼起来,就转化近似的长方体了。)

  (2)学生以小组为单位操作体验。

  把圆柱的底面积分成许多相等的扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了。使学生进一步明确分的份数越多,形体中的 越接近 ,也就越接近长方体。同时演示一组动画(将圆柱底面等分成32份、64等份、128等份……)

  [设计意图:教师提出问题,学生带着问题大胆猜测、动手体验。这样学生在自主探索、体验、领悟的过程中成为了发现者和创造者。]

  (3)学生小组汇报交流:

  近似的长方体的体积等于圆柱的体积, 近似的长方体的底面积等于圆柱的底面积,近似的长方体的高就是圆柱的高。根据长方体的体积等于底面积乘高,得出圆柱的体积也等于底面积乘高。

  教师根据学生汇报报,用教具进行演示。

  (4)概括板书:根据圆柱与近似长方体的关系,推导公式:

  长方体的体积 = 底面积 × 高

  ↓ ↓ ↓

  圆柱的体积 = 底面积 × 高

  用字母表示计算公式V= sh

  设计意图:首先通过学生的联想建立圆柱体和长方体的联系,初步建立转化的雏形,然后再通过实践

人教版六年级下册数学教案 篇8

  一、创设情境,提出问题

  师:同学们,你们知道一个人去找工作时,他一般最关注什么?

  生:工资。

  生:工作环境和待遇。

  师:找工作时工资的多少往往是人们最关心的,李叔叔看到一份超市招聘公告上写着:本超市工作人员月平均工资1000元,现招收员工若干。李叔叔一看条件不错,就应聘做了超市的一名工作人员。可第一个月他只拿到工资500元,第二个月也只有600元,问了一些同事大部分都是600元,少数超过600元。他找到了超市副经理说:你们欺骗了我,我已经问过其他工人没有一个工人的工资超过1000元,平均工资怎么可能是每月1000元呢?超市副经理拿出了超市工作人员的工资表:

  某超市工作人员月工资如下表单位:元经理副经理员工A员工B员工C员工D员工E员工F员工G员工H员工I

  月工资30002000900800700700600600600600500

  问题1请大家仔细观察表中的数据,讨论回答下面的问题:

  (1)副经理说月平均工资1000元是否欺骗了李叔叔?

  (2)你有什么想法?

  生:刚才我算了一下,这11个数的平均数是1000,所以月平均工资1000元没有欺骗。

  师:对,我们学过平均数的知识,平均数是1000元是没有错。

  那为什么李叔叔只能拿到600元。大家可以阐述一下自己的观点。

  生:因为两位经理的工资很高,带动了员工的平均公资。

  师:,看来这组数据中,由于出现了两个特别的数据,所以平均数1000不能真实反映大多数员工的工资水平,你认为应该用什么数反映这个超市的工资水平比较合理呢?请大家观察这些数据的特点,然后说说你的想法。

  【设计意图:本环节痛过李叔叔在找工作时遇到的实际问题,使数学贴近生活,激发学生的兴趣,让学生在帮助李叔叔的过程中感受到在这里平均数和中位数不能真实反映员工的工资水平,初步感受众数产生的必要性。】

  学生小组讨论:

  生1:我们小组讨论后认为用600元是比较好的,因为这里600元的人是最多的,有4个人。

  生2:我认为700元比较合理,因为它是这组数据的中位数。

  师:大家分析的不错,很有自己的想法。平均数会受一些特别偏大或偏小的数据的影响。那么李叔叔最有可能挣到多少钱?

  生:600元

  师:600在这里出现次数最多,它代表的是多数人的工资水平,所以600就是这组数据的众数。

  二、探究新知。

  板书:众数。

  【设计意图;本环节提出这样的问题,主要想通过工资表中出现次数最多的600理解众的含义,进而理解众数的意义。】

  师:请大家试着说一说众数的意义;然后教师小结出示概念。齐读概念。

  师:现在,我们已经知道了三个统计量,那么,面对具体的问题,我们应该选择哪个统计量来描述数据的集中趋势呢、下面请看这个问题。

  五(2)班要选10名同学组队参加集体舞比赛。下面是15名候选队员的身高情况。(单位:米)

  1.41,1.41,1.41,1.44,1.45,1.4,1.48,1.49

  1.51,1.51,1.51,1.51,1.52,1.54,1.54

  你认为参赛队员的身高是多少比较合适?

  学生小组合作。根据学生汇报,教师小结。从审美角度以及队伍整齐观点来看应以众数1.51为标准选择队员身高会比较均匀。

  【设计意图:本环节通过小组活动给学生提供参与数学活动的机会,使他们在思考,探究,讨论。交流中充分发表自己的意见,在实际问题中体会三个统计量的区别和他们各自的适用限度,让学生意识到生活中数学无处不在,感受和体会数学中美的因素】。

  三、分析数据,尝试统计决策。

  师:同学们,全世界都关注的奥运会就要在北京召开了,我国的体育健儿正在紧张的训练,准备迎战奥运会。国家队的教练想在两名优秀的射击运动员中选择一名去参加比赛:(出示两名运动员成绩)

  甲:9.5109.49.59.79.59.49.39.49.3

  乙:109108.39.89.5109.88.79.9

  看到两名运动员的成绩,大家能否猜想一下,教练会选择谁去呢?

  生1:我认为会选甲,甲的成绩很高。

  生2:我想会选乙,乙打中10环的多。

  生3:我想应该看看他们的平均分。

  师:大家说的很好,大胆的说出了自己的想法;让我们用掌声来鼓励他们。那我们就先从平均数入手,大家动手做一做,看看他们的平均数是多少?(可以同桌合作)

  生:老师,平均数一样,都是9.5。

  师;平均数一样我们该怎么办呢?

  生1:看众数。甲的'众数是9.5。

  生2:9.4也出现三次,9.4也是众数。那两个都是众数吗?

  师:当然,众数可以不止一个。也可以没有,比如说我们班前五名同学的成绩就没有重复的,那自然就没有众数了。

  生:乙的众数是10,所以乙获胜的机会大一些。

  师:在平均数相同时,我们应该看众数。

  【设计意图:通过一组练习,使学生能灵活选择适当的统计量表示一些数据的特点,并从数据的波动大小中,体现概率的可能性。让学生能根据统计量进行简单的预测或作出决策。使学生充分感受到数学与生活的联系,并从解决问题中体会到成功的喜悦,从而更加热爱数学。】

  四、学生畅谈收获。

  五:教师小结。

  同学们,通过本节课的学习,我们认识了众数这一统计量,并且通过练习理解了平均数,中位数和众数这三个统计量的联系与区别,根据我们分析数据的不同需要,可以正确选择合适的统计量。

  案例反思:

  1、创设问题情境,教学开始,我提出的是一个生活中的真实问题。让学生在参与中引发他们的理性认识,通过学生的独立思考和交流,引起了学生对月工资水平的认知冲突,发现单靠平均数来描述数据特征有时是不合适的。让学生从具体问题中体会数学在生活中的重要性

  2、在分析讨论中促进学生对概念的理解,众数的概念,我没有直接给出,而是通过学生观察、分析、讨论、在共享集体思维成果的基础上逐步建构的,这样做使学生逐步体会到这三个统计量都反映一组数据的集中趋势,但描述的角度并不相同,三者之间既有联系又有区别,同时也渗透出了他们的优越性与局限性。可以比较全面、正确地理解所学知识。教学中,让学生通过思考总结,如射击队员的选择,数据越多,频率越稳定。如能经过更多数据的收集和整理,根据方差的特点由数据的稳定性及波动大小再考虑一下其他因素,可能结果会不一样。对不完善的地方再加以补充,充分发挥学生在学习中的主体地位,同时,教师作为参与者,主动加入到学生的讨论中,对学生的认识起到帮助和促进的作用。

人教版六年级下册数学教案 篇9

  教学内容:

  人教版《义务教育课程标准实验教科书数学》六年级下册第2~4页例1、例2。

  教学目标:

  1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。

  2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。

  3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。

  教学重、难点:

  负数的意义。

  教学设备:班班通

  教学过程:

  一、谈话交流

  谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?

  二、教学新知

  1.表示相反意义的量。

  (1)引入实例。

  谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(出示)。

  ① 六年级上学期转来6人,本学期转走6人。

  ② 张阿姨做生意,二月份盈利1500元,三月份亏损200元。

  ③ 与标准体重比,小明重了2.5千克,小华轻了 1.8千克。

  ④ 一个蓄水池夏季水位上升米,冬季水位下降米。

  指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)

  (2)尝试。

  怎样用数学方式来表示这些相反意义的量呢?

  请同学们选择一例,试着写出表示方法。

  ……

  (3)展示交流。

  ……

  2.认识正、负数。

  (1)引入正、负数。

  谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6 -6),这种表示方法和数学上是完全一致的。

  介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。

  “-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。

  像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。

  (2)试一试。

  请你用正、负数来表示出其它几组相反意义的量。

  写完后,交流、检查。

  3.联系实际,加深认识。

  (1)说一说存折上的数各表示什么?(教学例2。)

  (2)联系生活实际举出一组相反意义的量,并用正、负数来表示。

  ① 同桌交流。

  ② 全班交流。根据学生发言板书。

  这样的正、负数能写完吗?(板书:… …)

  强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。

  4.进一步认识“0”。

  (1)看一看、读一读。

  谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(出示)。

  哈尔滨: -15 ℃~-3 ℃

  北京: -5 ℃~5 ℃

  深圳: 12 ℃~23 ℃

  温度中有正数也有负数,请把负数读出来。

  (2)找一找、说一说。

  我们来看首都北京当天的温度,“-5 ℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5 ℃又表示什么?

  你能在温度计上找出这两个温度所在的刻度吗?(出示温度计,没有刻度数)为什么?

  现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)

  说一说,你怎么这么快就找到了?

  (配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)

  你能很快找到12 ℃、-3 ℃吗?

  (3)提升认识。

  请学生观察温度计,说一说有什么发现?

  在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)

  “0”是正数,还是负数呢?

  在学生发言的基础上,强调:“0”作为正数和负数的`分界点,它既不是正数也不是负数。

  (4)总结归纳。

  如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类:

  (完善板书。)

  5.练一练。

  读一读,填一填。(练习一第1题。)

  6.出示课题。

  同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?

  根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。

  7.负数的历史。

  (1)介绍。

  其实,负数的产生和发展有着悠久的历史,我们一起来了解一下(配音播放):

  “中国是世界上最早认识和运用负数的国家,早在20xx多年前,我国古代数学著作《九章算术》中对正数和负数就有了记载。魏朝数学家刘徽在该书的注文中则更进一步地概括了正、负数的意义:‘两算得失相反,要令正负以名之。’古代用算筹表示数,这句话的意思是:‘两种得失相反的数,分别叫做正数和负数。’并且规定用红色算筹表示正数,黑色算筹表示负数。由于记录时换色不方便,到了十三世纪,数学家还创造了在数字上面画斜杠来表示负数的方法。国外对负数的认识经历了曲折的过程,并且也出现了各种表示负数的形式,直到20世纪初,才形成了现在的形式。但比中国晚了数百年!”

  (2)交流。

  简单了解了负数的历史,你有什么感受?

  三、练习应用

  今天,负数在我们的生产和生活中依然有着广泛的用途。让我们就一起走进生活,感受数与生活的密切联系。

  逐一出示:

  1.表示海拔高度。(“做一做”第2题。)

  通常,我们规定海平面的海拔高度为0米,珠穆朗玛峰比海平面高8844.43米,可以记作_____________;吐鲁番盆地大约比海平面低155米,它的海拔高度应记作_____________。

  2.表示温度。(练习一第2题。)

  月球表面白天的平均温度是零上126℃,记作_________℃, 夜间的平均温度为零下150℃,记作_____________℃。

  3.(出示电梯按钮图)小红的家在五楼,储藏室在地下一楼。如果她要回家,按哪个按钮?如果到储藏室取东西呢?

  4.表示时间。(练习一第3题。)

  5. “净含量:10±0.1g”表示什么意思?

  四、总结延伸

  1.学生交流收获。

  2.总结。

  简要、具体地评价学生的收获,并强调:关于负数,生活中还有更广泛的应用;走进负数,还有更多的知识等待我们去探索,相信同学们在今后的生活和学习中会有更多的收获。

【人教版六年级下册数学教案】相关文章:

人教版六年级下册数学教案06-17

人教版六年级下册数学教案03-14

人教版六年级下册数学教案06-30

人教版六年级下册数学教案(通用)08-26

人教版六年级下册数学教案7篇11-19

人教版六年级下册数学教案6篇11-18

人教版六年级下册数学教案8篇01-13

人教版六年级下册数学教案(8篇)01-13

人教版六年级下册数学教案(精选10篇)06-07

人教版六年级下册数学教案(精选9篇)03-01