现在位置:范文先生网>教案大全>数学教案>六年级数学教案>人教版六年级下册数学教案

人教版六年级下册数学教案

时间:2022-08-22 22:10:22 六年级数学教案 我要投稿

【实用】人教版六年级下册数学教案四篇

  作为一名默默奉献的教育工作者,可能需要进行教案编写工作,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。优秀的教案都具备一些什么特点呢?以下是小编帮大家整理的人教版六年级下册数学教案4篇,希望能够帮助到大家。

【实用】人教版六年级下册数学教案四篇

人教版六年级下册数学教案 篇1

  教学内容:

  成数(课本第9页例2)

  教学目标:

  1、结合具体事物,经历认识成数,解答有关成数的实际问题的过程。。

  2、对成数问题有好奇心,获得运用已有知识解决问题的成功体验。

  教学重点:

  理解成数的意义。

  教学难点:

  解决解答有关成数的实际问题。

  教学过程:

  一、复习

  1、填空

  ①四折是十分之( ),改写成百分数是( )。

  ②六折是十分之( ),改写成百分数是( )。

  ③七五折是十分之( ),改写成百分数是( )。

  2、商店里花了56元钱买了一条牛仔裤,因为那儿的牛仔裤正在打七折销售,这条牛仔裤原价多少元?

  二、创设情境,导入新课

  同学们有听农民们说:今年我家的稻谷比去年增产二成,我家的'桂皮晒干后只有五成等吗?他们说的是什么意思呢?原来商业上与百分数有关的术语是折扣,而农业上与百分数有关的术语就是成数。渗透环保教育

  三、探究体验

  (一)成数表示一个数是另一个数的十分之几,通称几成。例如一成就是十分之一,改写成百分数就是10%。

  1、让学生尝试把二成及三成五改写成百分数。

  2、让学生说说除了农业上使用成数,还有哪些行业是使用了成数的知识。

  3、练习:将下列成数改写成百分数。

  二成=( )%; 四成五=( )%; 七成二=( )%。

  (二)教学例2

  1、出示例题,某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?

  2、让学生读题,分析题意,今年比去年节电二成五怎么理解?是以哪个量为单位1?

  3、学生尝试独立分析问题,解决问题,教师巡堂了解情况,指导个别学习有困难的学生。

  4、理解节电二成五就是比去年节省了百分之二十五的意思。从而根据求一个数的百分之几是多少的解法列出算式和解答。

  350(1-25%)=262.5(万千瓦时)

  或者引导学生列出

  350-35025%=262.5(万千瓦时)

  四、巩固练习

  1、三成=( )%; 五成六=( )%; 八成三=( )%;

  2、第9页做一做

  3、解决问题

  (1)某乡去年的水稻产量是1500吨,今年因为受到天气灾害的影响水稻产量只有去年的八成五,今年的水稻产量是多少吨?

  (2)鼎湖山20xx年累计旅游人次是18万人次,20xx年累计旅游人次比20xx年增加一成五,20xx年累计旅游人次是多少?(出外玩要做好垃圾分类)

  (3)我校20xx年的在校生人数有820人,比20xx年在校生人数减少了二成,我校20xx年的在校生人数是多少?

  (4)某鞋厂20xx年的年产量为30万双,20xx年年产量比20xx年增加了一成六,20xx年年产量又比20xx年增加一成,这个鞋厂20xx年的年产量是多少万双?

  五、课堂总结

  这节课你收获了什么?

人教版六年级下册数学教案 篇2

  教学目标

  1、使学生掌握圆柱体积公式,会用公式计算圆柱体积,能解决一些实际问题。

  2、让学生经历观察、操作、讨论等数学活动过程,理解圆柱体积公式的推导过程,引导学生探讨问题,体验转化和极限的思想。

  3、在图形的变换中,培养学生的迁移能力、逻辑思维能力,并进一步发展其空间观念,领悟学习数学的方法,激发学生兴趣,渗透事物是普遍联系的唯物辨证思想。

  教学重点、难点

  1、圆柱体积计算公式的推导过程并能正确应用。

  2、借助教具演示,弄清圆柱与长方体的关系。

  教具、学具准备

  多媒体课件、长方体、圆柱形容器若干个;学生准备推导圆柱体积计算公式用学具。

  教学设想

  《 圆柱的体积 》是学生在有了圆柱、圆和长方体的相关的基础上进行教学的。在知识与技能上,通过对圆柱的具体研究,理解圆柱的体积公式的推导过程,会计算圆柱的体积,在方法的选择上,抓住新旧知识的联系,通过想象、课件演示、实践操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探索。

  教学过程

  一、创设情境,激疑引入

  “水是生命之源!”节约用水是我们每个公民应尽的义务。前两天,老师家的水龙头出了问题,拧上阀门之后,还是不停的滴水,你们看,一刻钟就滴了这么多的水。

  1、出示装了水的圆柱容器。

  (1)启发思考:容器里面的水形成了什么形状?(圆柱)你能知道这些水的体积?

  (2)讨论后汇报:

  生1:用量筒或量杯直接量出它的体积;

  生2:用秤称出水的'重量,然后进一步知道体积;

  生3:把它倒入长方体容器中,从里面量出长、宽和水面的高后再计算。

  师:现在老师只有这些工具(圆柱形容器,长方形容器,半圆形容器和其他不规则容器),你怎么办?

  生1:把水到入长方体容器中……

  生2:我们学过了长方体的体积计算,只要量出长、宽、高就行

  [设计意图:通过本环节,给学生创设一个生活中的情境,提出问题,学习身边的数学,激起学生的学习兴趣;根据需要渗透圆柱体(新问题)和长方体(已知)的知识联系为所学内容作了铺垫的准备]

  2、创设问题情境。

  师:(课件显示)如果要求某些建筑中圆柱形柱子的体积,或是求压路机圆柱形大前轮的体积,能用同学们想出来的办法吗?

  [设计意图:进一步从实际需要提出问题,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体积的问题的欲望]

  师:今天,就让我们来研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)

  二、经历体验,探究新知

  1、回顾旧知,帮助迁移

  (1)教师首先提出具体问题:圆柱体和我们以前学过的哪些几何图形有联系?

  生1:圆柱的上下两个底面是圆形

  生2:侧面展开是长方形……

  生3:说明圆柱和我们学过的圆和长方形有联系

  师:请同学们想想圆柱的体积与什么有关?

  生1:可能与它的大小有关

  生2:不是吧,应该与它的高有关

  [设计意图:温故而知新,既复习了旧知识又引出了新知识,学生在不知不觉中就学到了新知。]

  (2)请大家回忆一下:在学习圆的面积时,我们是怎样将圆转化成已学过的图形,来推导出圆面积公式的。

  配合学生回答演示课件。

  [设计意图:通过想象,进一步发展学生的空间观念,由“形”到“体”;同时使学生感悟圆柱的体积与它的底面积和高的联系,通过圆面积推导过程的再现,为实现经验和方法的迁移作铺垫]

  2、小组合作,探究新知

  (1)启发猜想:我们要解决圆柱的体积的问题,可以怎么办?(引导学生说出圆柱可能转化成我们学过的长方体。并通过讨论得出:反圆柱的底面积分成许多相等的扇形,然后反圆柱切开,再拼起来,就转化近似的长方体了。)

  (2)学生以小组为单位操作体验。

  把圆柱的底面积分成许多相等的扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了。使学生进一步明确分的份数越多,形体中的 越接近 ,也就越接近长方体。同时演示一组动画(将圆柱底面等分成32份、64等份、128等份……)

  [设计意图:教师提出问题,学生带着问题大胆猜测、动手体验。这样学生在自主探索、体验、领悟的过程中成为了发现者和创造者。]

  (3)学生小组汇报交流:

  近似的长方体的体积等于圆柱的体积, 近似的长方体的底面积等于圆柱的底面积,近似的长方体的高就是圆柱的高。根据长方体的体积等于底面积乘高,得出圆柱的体积也等于底面积乘高。

  教师根据学生汇报报,用教具进行演示。

  (4)概括板书:根据圆柱与近似长方体的关系,推导公式:

  长方体的体积 = 底面积 × 高

  ↓ ↓ ↓

  圆柱的体积 = 底面积 × 高

  用字母表示计算公式V= sh

  设计意图:首先通过学生的联想建立圆柱体和长方体的联系,初步建立转化的雏形,然后再通过实践

人教版六年级下册数学教案 篇3

  教学内容:

  教科书P23-26的内容,P24做一做,完成练习四的第1、2题。

  教学目标:

  1、认识圆锥,圆锥的高和侧面,掌握圆锥的特征,会看圆锥的平面图,会正确测量圆锥的高,能根据实验材料正确制作圆锥。

  2、过动手制作圆锥和测量圆锥的高,培养学生的动手操作能力和一定的空间想象能力。

  3、养学生的自主探索意识,激发学生强烈的求知欲望。

  教学重点:

  掌握圆锥的特征。

  教学难点:

  正确理解圆锥的组成。

  教具准备:

  每人一个圆锥,师准备一个大的圆锥模型。

  教学过程:

  一、复习

  1、圆柱体积的计算公式是什么?

  2、圆柱的特征是什么?

  二、新课

  1、圆锥的认识 (直观感受观察讨论汇报)

  (1)让学生拿着圆锥模型观察和摆弄后,指定几名学生说出自己观察的结果,从而使学生认识到圆锥有一个曲面,一个顶点和一个面是圆的,等等。

  (2)圆锥有一个顶点,它的底面是一个圆、(在图上标出顶点,底面及其圆心O)

  (3)圆锥有一个曲面,圆锥的这个曲面叫做侧面。(在图上标出侧面)

  (4)让学生看着教具,指出:从圆锥的顶点到底面圆心的距离叫做高。 (沿着曲面上的线都不是圆锥的高,由于圆锥只有一个顶点,所以圆锥只有一条高)

  2、小结

  圆锥的特征(可以启发学生总结),强调底面和高的特点,使学生弄清圆锥的特征是:底面是圆,侧面是一个曲面,有一个顶点和一条高.

  3、测量圆锥的高(组织学生分组进行测量)

  由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助一块平板来测量。

  (1)先把圆锥的底面放平;

  (2)用一块平板水平地放在圆锥的顶点上面;

  (3)竖直地量出平板和底面之间的距离。

  4、教学圆锥侧面的展开图

  (1)学生猜想圆锥的侧面展开后会是什么图形呢?

  (2)实验来得出圆锥的侧面展开后是一个扇形。

  三、课堂练习

  1、做第24页做一做的题目。

  让学生拿出课前准备好的模型纸样,先做成圆锥,然后让学生试着独立量出它的底面直径.教师行间巡视,对有困难的.学生及时辅导。

  2、练习四的第1题。

  (1)让学生自由地观察,只要是接近于圆柱、圆锥的都可以指出。

  (2)让学生说说自己周围还有哪些物体是由圆柱、圆锥组成的。

  3.完成练习四的第2题。

  补充习题

  1出示一组图形,辨认指出哪些是圆锥。

  2出示一组图形,指出哪个是圆锥的高。

  3出示一组组合图形,指出是由哪些图形组成的。

  四、总结

  关于圆锥你知道了些什么?你能向同学介绍你手中的圆锥吗?

  教学反思:

  观察、感知中认识并掌握圆锥的特点,经历探究测量圆锥高的方法的过程,加深了对圆锥高的认识。在旋转,对比圆柱和圆锥的过程中,加深对圆锥特点的认识,发展学生的思维。

人教版六年级下册数学教案 篇4

  一、学习目标

  (一)学习内容

  《义务教育教科书数学》(人教版)六年级下册第五单元第68~69页的例1、2。“抽屉原理”是一类较为抽象和艰涩的数学问题,对全体学生而言具有一定的挑战性。为此,教材选择了一些常见的、熟悉的事物作为学习内容,经历将具体问题“数学化”的过程。

  (二)核心能力

  经历将具体问题“数学化”的过程,初步形成模型思想,发展抽象能力、推理能力和应用能力。

  (三)学习目标

  1.理解“鸽巢原理”的基本形式,并能初步运用“鸽巢原理”解决相关的实际问题或解释相关的现象。

  2.通过操作、观察、比较、说理等数学活动,经历鸽巢原理的形成活动,初步形成模型思想,发展抽象能力、推理能力和应用能力。

  (四)学习重点

  了解简单的鸽巢问题,理解“总有”和“至少”的含义。

  (五)学习难点

  运用“鸽巢原理”解决相关的实际问题或解释相关的现象。

  (六)配套资源

  实施资源:《鸽巢原理》名师教学课件

  二、学习设计

  (一)课堂设计

  1.谈话导入

  师:我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请一位同学任意抽5张,不要让我看到你抽的是什么牌。但是老师却知道,其中至少有两张牌是同种花色的,再找一个学生再次证明。

  师:看来我两次都猜对了。谢谢你们。老师为什么能料事如神呢?到底有什么秘诀呢?学习完这节课以后大家就知道了。

  2.问题探究

  (1)呈现问题,引出探究

  出示例1:小明说“把4支铅笔放进3个笔筒里。不管怎么放,总有一个笔筒里至少放进2支铅笔”,他说得对吗?请说明理由。

  师:“总有”是什么意思?“至少”有2支是什么意思?

  学生自由发言。

  预设:一定有

  不少于两只,可能是2支,也可能是多于2支。

  就是不能少于2支。

  (2)体验探究,建立模型

  师:好的,看来大家已经理解题目的意思了。那么把4支铅笔放进3个笔筒里,可以怎样放?有几种不同的摆法?(我们用小棒和纸杯分别表示铅笔和笔筒)请大家摆摆看,看有什么发现?

  小组活动:学生思考,摆放。

  ①枚举法

  师:大部分同学都摆完了,谁能说说你们是怎么摆的。能不能边摆边给大家说。

  预设1:可以在第一个笔筒里放4支铅笔,其它两个空着。

  师:这种放法可以记作:(4,0,0),这4支铅笔一定要放在第一个笔筒里吗?

  (不一定,也可能放在其它笔筒里。)

  师:对,也可以记作(0,4,0)或者(0,0,4),但是,不管放在哪个笔筒里,总有一个笔筒里放进4支铅笔。还可以怎么放?

  预设2:第一个笔筒里放3支铅笔,第二个笔筒里放1支,第三个笔筒空着。

  师:这种放法可以记作(3,1,0)

  师:这3支铅笔一定要放在第一个笔筒里吗?

  (不一定)

  师:但是不管怎么放——总有一个笔筒里放进3支铅笔。

  预设3:还可以在第一个笔筒里放2支,第二个笔筒里也放2支,第三个笔筒空着,记作(2,2,0)。

  师:这2支铅笔一定要放在第一个和第二个笔筒里吗?还可以怎么记?

  预设:也可能放在第三个笔筒里,可以记作(2,0,2)、(0,2,2)。

  预设4:还可以(2,1,1)

  或者(1,1,2)、(1,2,1)

  师:还有其它的放法吗?

  (没有了)

  师:在这几种不同的放法中,装得最多的那个笔筒里要么装有4支铅笔,要么装有3支,要么装有2支,还有装得更少的情况吗?(没有)

  师:这几种放法如果用一句话概括可以怎样说?

  (装得最多的笔筒里至少装2支。)

  师:装得最多的'那个笔筒一定是第一个笔筒吗?

  (不一定,哪个笔筒都有可能。)

  【设计意图:在理解题目要求的基础上,通过操作活动,用画图和数的分解来表示上述问题的结果,更直观。再通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个铅笔盒里至少有2支铅笔”这句话。】

  ②假设法

  师:刚才我们研究了在所有放法中放得最多的笔筒里至少放进了几支铅笔。怎样能使这个放得最多的笔筒里尽可能的少放?

  预设:先把铅笔平均放,然后剩下的再放进其中一个笔筒里。

  师:“平均放”是什么意思?

  预设:先在每个笔筒里放一支铅笔,还剩一支铅笔,再随便放进一个笔筒里。

  师:为什么要先平均分?

  学生自由发言。

  引导小结:因为这样分,只分一次就能确定总有一个笔筒至少有几支笔了。

  师:好!先平均分,每个笔筒中放1支,余下1支,不管放在哪个笔筒里,一定会出现总有一个笔筒里至少有2支铅笔。

  师:这种思考方法其实是从最不利的情况来考虑,先平均分,每个笔筒里都放一支,就可以使放得较多的这个笔筒里的铅笔尽可能的少。这样,就能很快得出不管怎么放,总有一个笔筒里至少放进2支铅笔。我们可以用算式把这种想法表示出来。

  【设计意图:让学生自己通过观察比较得出“平均分”的方法,将解题经验上升为理论水平,进一步强化方法、理清思路。】

  (3)提升思维,建立模型

  ①加深感悟

  师:如果把5支笔放进4个笔筒里呢?大家讨论讨论。

  预设:5支铅笔放在4个笔筒里,先平均分,不管怎么放,总有一个笔筒里至少有2支铅笔。

  师:把7支笔放进6个笔筒里呢?还用摆吗?

  学生自由发言。

  师:把10支笔放进9个笔筒里呢?把100支笔放进99个笔筒里呢?

  师:你发现了什么?

  预设:我发现铅笔的支数比笔筒数多1,不管怎么放,总有一个笔筒里至少有2支铅笔。

  师:你的发现和他一样吗?

  学生自由发言。

  师:你们太了不起了!

  师:难道这个规律只有在铅笔的支数比笔筒数多1的情况下才成立吗?你认为还有什么情况?

  练一练:

  师:我们来看这道题“5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子,为什么?”

  师:说说你的想法。

  师:由此看来,只要分的物体比抽屉的数量多,就总有一个抽屉里至少放进2个物体。这就是最简单的鸽巢原理。【板书课题】

  介绍狄利克雷:

  师:鸽巢原理最先是由19世纪的德国数学家狄利克雷提出来应用于解决问题的,后来人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫狄利克雷原理,也叫抽屉原理。

  ②建立模型

  出示例2:一位同学学完了“鸽巢原理”后说:把7本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有3本书。他说得对吗?

  学生独立思考、讨论后汇报:

  师:怎样用算式表示我们的想法呢?生答,板书如下。

  7÷3=2本……1本(2+1=3)

  师:如果有10本书会怎么样能?会用算式表示吗?写下来。

  出示:

  把10本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

  10÷3=3本……1本(3+1=4)

  师:观察板书你有什么发现?

  预设:我发现“总有一个抽屉里至少有2本”,只要用“商+1”就可以得到。

  师:那如果把8本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?请大家算一算。

  学生讨论,汇报:

  8÷3=2……22+1=3

  8÷3=2……22+2=4

  师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?在小组里进行研究、讨论。

  师:认真观察,你认为“抽屉里至少有几本书”或“鸽笼里至少有几只鸽子”可能与什么有关?

  预设:我认为根“商”有关,只要用“商+1”就可以得到。

  师:我们一起来看看是不是这样(引导学生再观察几个算式)啊!果然是只要用“商+1”就可以了。

  引导总结:我们把要分的物体数量看做a,抽屉的个数看做n,如果满足【a÷n=b……c(c≠0)】,那么不管怎样放,总有一个抽屉里至少放(b+1)本书。这就是抽屉原理的一般形式。

  鸽巢原理可以广泛地运用于生活中,来解决一些简单的实际问题。解决这类问题时要注意把谁看做“抽屉”。

  【设计意图:借助直观操作和假设法,将问题转化为“有余数的除法”的形式。可以使学生更好地理解“抽屉原理”的一般思路,经历将具体问题“数学化”的过程,初步形成模型思想,发展抽象能力、推理能力和应用能力。考查目标1、2】

  3.巩固练习

  (1)学习了“鸽巢原理”,我们再回到课前的“扑克牌”游戏,你现在能解释一下吗?(出示课件)学生思考,讨论。

  (2)第69页的做一做第1、2题。

  4.全课总结

  师:通过这节的学习,你有什么收获?

  小结:今天这节课我们一起研究了鸽巢原理,也叫抽屉原理,解决抽屉原理问题关键就是找准物体和抽屉,在一些复杂的题中,还需要我们去制造抽屉。

  (三)课时作业

  1.一个小组共有13名同学,其中至少有几名同学同一个月出生?

  答案:2名。

  解析:把1—12月看作是12个抽屉,13÷12=1…11+1=2【考查目标1、2】

  2.希望小学篮球兴趣小组的同学中,最大的12岁,最小的6岁,最少从中挑选几名学生,就一定能找到两个学生年龄相同。

  答案:8名。

  解析:从6岁到12岁一共有7个年龄段,即6岁、7岁、8岁、9岁、10岁、11岁、12岁。用7+1=8(名)【考查目标1、2】

  第二课时鸽巢原理

  中原区汝河新区小学师芳

  一、学习目标

  (一)学习内容

  《义务教育教科书数学》(人教版)六年级下册教材第70页例3。本例是“鸽巢原理”的具体应用,也是运用“鸽巢原理”进行逆向思维的一个典型例子。要解决这个问题,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”,这样就把“摸球问题”转化为“抽屉问题”。

  (二)核心能力

  在理解鸽巢原理的基础上,利用转化的思想,把新知转化为鸽巢问题,提高分析和推理的能力。

  (三)学习目标

  1.进一步理解“抽屉原理”,运用“抽屉原理”进行逆向思维,解决实际问题,体会转化思想。

  2.经历运用“抽屉原理”解决问题的过程,体验观察猜想,实践操作的学习方法,提高分析和推理的能力。

  (四)学习重点

  引导学生把具体问题转化为“抽屉原理”。

  (五)学习难点

  找出“抽屉”有几个,再应用“抽屉原理”进行反向推理。

  (六)配套资源

  实施资源:《鸽巢原理》名师教学课件

  二、学习设计

  (一)课堂设计

  1.情境导入

  师:同学们,你们喜欢魔术吗?今天老师给你们表演一个怎么样?看,这是一副扑克牌,去掉两张王牌,还剩下52张,请同学们任意挑出5张。(让5名学生抽牌)好,见证奇迹的时刻到了!你们手里的牌至少有2张是同花色的。

  师:神奇吧!你们想不想表演一个呢?

  师:现在老师这里还是刚才这副牌,请你抽牌,至少抽多少张牌才能保证至少有2张牌的点数相同呢?

  在学生抽的基础上揭示课题。教师:这节课我们学习利用“鸽巢原理”解决生活中的实际问题。(板书课题:鸽巢原理)

  2.探究新知

  (1)学习例3

  ①猜想

  出示例3:盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有2个同色的,至少要摸出几个球?

  预设:2个、3个、5个…

  ②验证

  师:我们的猜想是不是正确呢?我们可以用画一画、写一写的方法来说明理由,并把验证的过程进行整理。

  可以用表格进行整理,课件出示空白表格:

  学生独立思考填表,小组交流。

  全班汇报。

  汇报时,指名按猜测的不同情况逐一验证,说明理由,看看解决这个问题是否有规律可循。

  课件汇总,思考:从这里你能发现什么?

  教师:通过验证,说说你们得出什么结论。

  小结:盒子里有同样大小的红球和蓝球各4个。想要摸出的球一定有2个同色的,最少要摸3个球。

  ③小结

  师:为什么球的个数一定要比抽屉数多?而且是多1呢?

  预设:球有两种颜色,就是两个抽屉,从最不利的情况考虑摸2个球都不同色,就必须多摸一个,所以球一定要比抽屉数多1。其实摸4个球、5个球或者更多球,都能保证一定有2个球同色,但问题中要求摸的球数必须“至少”,所以摸3个球就够了。

  师:说得好!运用学过的知识、逆推的方法说明了“只要摸出的球比球的颜色种数至少多1,就能保证有2个球同色”。这一结论是正确的。

  板书:只要摸出的球比球的颜色种数至少多1,就能保证有2个球同色。或者说只要物体数比抽屉数至少多1,就能保证有一个抽屉至少放2个物体。

  (2)引导学生把具体问题转化成“抽屉原理”。

  师:生活中像这样的例子很多,我们不能总是猜测或动手试验,能不能把这道题与前面讲的“抽屉原理”联系起来思考呢?

  思考:①摸球问题与“抽屉原理”有怎样的联系?

  ②应该把什么看成“抽屉”?有几个“抽屉”?要分别放的东西是什么?

  学生讨论,汇报结果,教师讲评:因为有红、蓝两种颜色的球,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”。这样把“摸球问题”转化成“抽屉问题”,即“只要分的物体比抽屉多1,就能保证有一个抽屉至少有2个同色球”。

  从最特殊的情况想起,假设两种颜色的球各拿了1个,也就是在两个抽屉里各拿了1个球,不管从哪个抽屉里再拿1个球,都有2个球是同色的。假设至少摸a个球,即a÷2=1……b,当b=1时,a就最小。所以一次至少应拿出1×2+1=3个球,就能保证有2个球同色。

  结论:要保证摸出的球有两个同色,摸出的球数至少要比抽屉数多1。

  3.巩固练习

  (1)完成教材第70页“做一做”第1题。

  (2)完成教材第70页“做一做”第2题。

  4.课堂总结

  师:这节课你学到了什么知识?谈谈你的收获和体验。

  (三)课时作业

  1.有黑色、白色、蓝色、红色手套各10只(不分左、右手),至少要拿出多少只(拿的时候不看颜色),才能在拿出的手套中,一定有两只不同颜色的手套?

  答案:5只。

  解析:4个颜色相当于4个抽屉,保证一定有两只不同的颜色,相当于分的物体个数比抽屉多1。【考查目标1、2】

  2.一个鱼缸里有很多条鱼,共有5个品种。至少捞出多少条鱼,才能保证有4条鱼的品种相同?

  答案:16条。

  解析:5个品种相当于5个抽屉,保证有4条鱼品种相同,所放物品的个数是:5×3+1=16。【考查目标1、2】

【人教版六年级下册数学教案】相关文章:

人教版六年级下册数学教案06-30

人教版六年级下册数学教案03-14

人教版六年级下册数学教案06-17

人教版六年级下册数学教案(通用)08-26

人教版六年级下册数学教案7篇11-19

人教版六年级下册数学教案5篇01-11

人教版六年级下册数学教案(5篇)01-11

人教版六年级下册数学教案8篇01-13

人教版六年级下册数学教案(8篇)01-13

人教版六年级下册数学教案(6篇)02-18