现在位置:范文先生网>教案大全>数学教案>六年级数学教案>倒数的认识教学设计

倒数的认识教学设计

时间:2024-04-19 19:31:00 秀雯 六年级数学教案 我要投稿

倒数的认识教学设计(精选11篇)

  作为一名优秀的教育工作者,就不得不需要编写教学设计,借助教学设计可以提高教学效率和教学质量。那么什么样的教学设计才是好的呢?下面是小编帮大家整理的倒数的认识教学设计,仅供参考,大家一起来看看吧。

倒数的认识教学设计(精选11篇)

  倒数的认识教学设计 1

  教学目标:

  (1)知识目标:理解倒数的意义,掌握求倒数的方法。

  (2)能力目标:会求倒数,提高学生观察、比较、抽象、概括以及合作学习、口头表达的能力。

  (3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯和合作的意识。

  教学重点:

  理解倒数的意义和怎样求一个数的倒数。

  教学难点:

  正确理解倒数的意义及0为何没有倒数。

  教学过程:

  一、游戏导入

  教师:我知道同学们特别喜欢做游戏。今天我们一起做个游戏。这个游戏是这样的。如果我说1、2,大家就说2、1。那我说1、2、3,大家该怎么说?好!游戏正式开始。喜欢!我教育你!我吃西瓜!我打篮球!谁能说一说这个游戏的规则是什么?在数学当中,我们还可以怎样玩这个游戏?继续玩,我说分数,大家倒过来说。3/8、15/7、1/80、3(板书)

  二、探究意义

  1.找特点

  师:请同学们观察黑板上四组数都有什么特点。

  (生:分子、分母互相颠倒 )

  师:请同学们把每一组中的两个数相乘,看乘积是多少?

  (生:每一组中的两个数乘积都是1 )师及时板书

  师:谁还能很快说出乘积是1的两个数吗?

  (生回答)

  师:同学们说得这么快一定找到了窍门,把你找到的窍门跟同学门说说好吗?

  (生:两个数分子分母颠倒位置乘积是1)

  师:那么乘积是1 的两个数数学给它起个什么名呢?

  (生回答,师板书:乘积是1 的两个数叫互为倒数)

  师:在这个概念中你认为哪个词比较重要?让学生自由说出自己的想法。

  重点讲解“互为”的意思,就是互相是的意思。例如:

  3/8×8/3=1 我们就说3/8是8/3的倒数,或者说3/8的倒数是3/8,也可以说8/3和3/8互为倒数。而不能说8/3的倒数,或3/8是倒数。

  师:谁来把黑板上的后三组数仿照老师刚才叙述的来说一遍,用上“因为”“所以”一词。

  (指名叙述)

  师:根据同学们的叙述,我们可以看出倒数不是指某一个数,而是指两个数相互依存的关系,是相对两个数而言,不能孤立的说某一个数是倒数。

  三、探究求倒数的方法。

  师:现在我们已经理解了倒数的意义,那么怎样求一个数的倒数呢?继续观察黑板上的四组数,看互为倒数的两个数有什么特点,(分子,分母调换了位置)根据这个规律我们试着求下面几个数的倒数。

  出示:3/5 7/2 8/6 5/12 10/4

  (指名回答师板书)

  师:你们是怎么找出每个数的倒数的?

  (说自己的方法)

  师:除了这些分数外我们还学过哪些数?(整数、小数、带分数)怎样求它们的倒数呢?求同学们试着求下面书的倒数。

  出示:6 0.5 2 7/8 1

  (生回答,师板书)并说说你是怎样求的?

  师:是不是所有的`数都有倒数呢?同桌讨论

  0为什么没有倒数?(0和任何数相乘都不得1)

  师:通过同学们的练习,谁来总结求一个数的倒数的方法?

  (生总结,师板书)

  四、小结并揭示课题

  同学们我们今天重点认识了什么?(板书课题:倒数的认识)你们在这节课都学会了什么?下面老师想知道你们是否真正的掌握了没有,所以老师要考考你们。

  五、巩固练习。

  1、填空

  1、乘积是( )的两个数叫( )倒数。

  2、因为7/15 x 15/7 =1 所以7/15和15/7( )

  3、 5的倒数是( )。 0.2的倒数是( )。

  4、( )的倒数是它本身。( )没有倒数。

  5、8×( )=1 0.25×( )= 1

  ( )×2/3=1 7/2×( )=( )×8=( )×0.15 =1

  2、当把小医生。

  1、得数是1的两个数叫互为倒数。( )

  2a是一个整数,它的倒数一定是 1/a 。( )

  3、因为2/3×3/2=1,所以2/3是倒数。( )

  4、1的倒数是1,所以0的倒数是0。( )

  5、真分数的倒数都大于1。( )

  6、2.5和0.4 互为倒数。( )

  7、任何真分数的倒数都是假分数。( )

  8、任何假分数的倒数都是真分数。( )

  3、面各数的倒数

  2.5 4 1/8 2 6/7 0.12

  4、列式计算

  1、7/6加上它的倒数的和乘2/3,积是多少?

  2、 1减去它的倒数后除以0.12,商是多少?

  3、已知A×3/2=B×3/5,(A、B都是不为0的数)

  求A、B的大小

  六、教学反思:

  倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。理解倒数的意义和会求一个数的倒数是学生学习分数除法的前提。学生必须学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。

  “倒数的认识”这一课的核心内容是“倒数的意义和求法”。“倒数的意义”属于概念的教学,我认为,只有让学生关注基础知识本身,让学生在深入剖析“倒数的意义”的过程中,学会数学思考,体会解决问题所带来的成功体验,才能使学习真正成为学生的需要。“倒数的求法”中求一个小数或带分数的倒数学生可能有些困难。

  今天教学倒数的认识后,我的感触很多。以往教学这部分内容,我是直接让学生写出结果是1的算式,再从学生说的算式中把乘积是1的算式板演在黑板上,再让学生观察算式的特点,然后再让学生理解互为的意思,最后总结出倒数的意义。现在想起来有一种牵着学生鼻子走的感觉。通过新课标理论的学习,我重新设计了教案。我觉得这样设计才是让学生自己通过观察、比较、归纳总结出倒数的意义,是学生自己通过参与整个学习过程后有了真正的收获。特别是通过游戏的形式激发学生的学习兴趣,学生发现了算式的特点,并让学生举例后发现,有这样特点的算式是写不完的。然后让学生仿照老师的样子,通过例子说倒数的意义,并强调说倒数的关键字词。这对学生掌握概念是非常必要的。当学生很高兴的自认为是掌握了求一个数的倒数的方法时,我又给学生设计了障碍:怎样求带分数、小数和整数的倒数。虽然教材新授内容没有这些知识,但在以后的练习中出现了。我把它提到前面来,大家一起研究。我觉得很有必要。这样,使学生避免把带分数的倒数也用把分子分母颠倒位置的方法来求。这样就不会给学生的认知造成误导。学生在知道了分数、带分数、整数、小数的求倒数的方法以后,我又提出是不是所有的数都有倒数么?使学生想到0的倒数问题。以前我是直接问学生“0“有倒数吗?好像暗示学生”0“没有倒数。改换成今天这样问,学生通过自己思考,得出两种答案,”0“有倒数,另一种是”0“没有倒数。有了分歧意见,又一次把学生带入了问题王国。学生分别发表自己的见解。最后,大家一致认为”0“没有倒数。因为“0”和任何数相乘都不等于1,也就是0不能作分母。我觉得这节课的教学比以往教学有了本质的转变,就是发挥了学生的主体作用。

  倒数的认识教学设计 2

  一、创设情境、导入新课。

  1、课件出示:吞---吴干---士杏---呆。

  2、请同桌互相交流一下,找一找下面文字的构成有什么规律吗?

  3、学生汇报。

  4、同学们观察的非常仔细,这种现象在数学中也有,今天这堂课我们就来研究倒数的知识。(板书课题:倒数的认识)

  二、出示学习目标

  1、能够理解和掌握倒数的意义。

  2、学习求一个数的倒数的方法,能正确地求出一个数的倒数。

  三、探究新知识

  1、课件出示例1的算式,开展小组活动:算一算,找一找,这组算式有什么特点?

  2、小组汇报交流。(通过计算,发现每组两个数的乘积都是1,还发现了相乘的两个分数的分子和分母的位置是颠倒的)

  3、同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,也发现了每组两个数的乘积都是1,我们现在就可以得出倒数的'定义了:乘积是1的两个数互为倒数。(板书)

  4、提问“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。

  5、强调“两个数”“乘积是1”

  6、出示0.4×2.5=1,让学生说一说0.4和2.5可不可以说互为倒数。

  7、随堂练习:判断:

  (1)得数是1的两个数叫做互为倒数。

  (2)因为10×1/10=1,所以10是倒数,1/10是倒数。

  (3)因为1/4+3/4=1,所以1/4是3/4的倒数。

  8、出示例题2,找一找哪两个数互为倒数?再说一说你是怎么找的?

  9、以小组为单位进行讨论交流。

  10、分组汇报:

  第一种方法:看两个分数的乘积是不是1。

  第二种方法:看两个分数的分子与分母是否分别颠倒了位置。

  哪一种方法比较快?

  11、观察书中的找倒数的方法,强调:3/5的倒数是5/3,不能用等号相连。

  我们刚才知道了真分数、假分数和整数找倒数的方法:还有一些数找倒数的方法我们没有归纳。请同学们想一想下面的数怎么找倒数?

  1、真分数、假分数。

  2、整数

  3、小数

  4、带分数(板书)

  12、例2中还有哪些数没有找到倒数?

  13、提问:1和0有没有倒数?如果有,是多少?(小组讨论、汇报。)

  四、巩固练习

  我们现在应用今天学习的知识解决一些问题。

  五、课堂总结。

  板书设计成知识树。

  倒数的认识教学设计 3

  教学目标:

  1. 通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。

  2. 使学生经历倒数意义的概括过程,提高衙门观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。

  3. 通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。

  教学过程:

  一、情境导入,引出问题

  1. 谈话理解“互为”。

  师:俗话说,在家靠父母,出门靠朋友,一个人在社会上除了亲人之外,也要有朋友,你们有自己的朋友吗?

  让一名学生(甲)说出自己的好朋友是谁?(乙)

  师:能用一句话表达两人之间的朋友关系吗?还可以怎么说?能说甲是朋友,乙是朋友吗?为什么?

  (设计意图)学生对于互为两个字的理解比较难,是教学中的一个难点。在这里,我用你是我的朋友,我是你的朋友这一关系多次转化,在自然中创设情境,让学生有一种生活体验,让学生在生活情境中知道什么是“互为朋友”,这样调动了学生的积极性,让学生在不知不觉中理解了“互为”的含义,分散了教学的难点。

  2. 游戏,按规律填空。

  (1 )学生观察填空,指名回答,并说出是怎么样想的。

  (2 )师:你们能按照上面的规律再说出几组数吗?(学生举例,教师板书)

  3. 学生观察板书的几组分数,看看每组中的两个数有什么特点?

  同桌讨论交流,然后全班汇报每组中两个分数的特点,教师注意引导。(主要是分子、分母的数字特点和两个分数的乘积方面。)

  4. 师:能根据每组中两个分数的特点,给这几组分数起一个合适的名字吗?

  教师揭示课题:倒数的认识。

  5. 师:看到这个课题,大家想提什么问题?

  根据学生回答,选择板书。如:

  (1)什么是倒数?

  (2)怎么样求一个数的倒数?

  (3)认识倒数有什么作用?……

  (设计意图)问题是数学的心脏,是学生探究的起点和动力,在谈话、游戏情境中引导学生发现问题,提出问题。

  二、 合作探究、解决问题

  1. 探究倒数的意义。

  (1 )观察3/8 与8/3 ,说说哪两个数互为倒数?还可以怎么样说?

  (2 )谁能说说10/7 与7/10 中谁和谁互为倒数?也可以怎么样说?

  (3 )小组讨论,什么是倒数?

  学生独立思考后,组内交流。

  全班汇报,教师根据学生的汇报点拨引导。学生可能有的答案是:

  A :分子、分母相互调换位置的两个数叫做互为倒数。

  B :乘积是1 的两个数叫做互为倒数。

  师生共同归纳倒数的意义:乘积是1 的两个数叫做互为倒数。(教师板书)

  2. 探究求倒数的方法。

  (1 )学习例1 :写出7/8 、5/2 的倒数。

  A :学生试写,教师巡视,提醒书写格式。

  B :指名回答,教师板书:7/8 的倒数是8/7 ,5/2 的'倒数是2/5 。

  师:互为倒数的两个数相等吗?怎么样表示它的结果?也可用—(破折号)表示。

  C :学生交流求一个分数倒数的方法。

  (2 )师:同学们已经会求一个分数的倒数了。想一想,我们还学过哪些数?(整数、小数、带分数),那么怎么样求整数、小数、带分数的倒数呢?选择一种,在小组内探究。

  A :学生选择一种研究,教师巡视指导。

  B :学生交流汇报,教师分别板书一例。

  C :引导学生概括求倒数的方法。

  (3 )教师引导质疑:0 有没有倒数?为什么?学生讨论释疑。

  1 ×( )=1 ,所以1 的倒数是1 。而0 ×( )=1 呢?

  1 的倒数是它本身,0 没有倒数。

  求一个数(0 除外)的倒数,只要把这个数的分子、分母互相交换位置就行了。

  (设计意图)充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。

  三、巩固联系、拓展深化。

  1. 下面哪两个数是互为倒数。

  4/3 , 7/6 , 8 , 6/7 , 3/4 , 1/8

  2. 写出下面各数的倒数。

  4/11 , 16/9 , 35 , 15/8 , 1/5

  学生在课练本上写出这些数的倒数,指名回答,并说出是怎么样求的,集体评价。

  3. 争当小法官,明察秋毫。

  (1)1 的倒数是1 。

  (2)所有的数都有倒数。

  (3)3/4 是倒数。

  (4 )A 的倒数是1/A 。

  (5)因为0.5 ×2=1 ,所以0.5 与2 互为倒数。

  (6)7/5 的倒数是7/2 。

  (7)真分数的倒数都大于1 。

  (8)假分数的倒数都小于1 。

  (9)因为8 -7=1 ,3 ÷3=1 ,所以8 和7 ,3 和3 是互为倒数。

  4. 填空。

  3/4 ×( )=1 7 ×( )=1

  2/5 ×( )= ( )×4= 5/4 ×( )=0.5 ×( )=1

  5. 游戏:找朋友。

  师:刚才我们在上课时各自说出了自己的好朋友,老师觉得你的朋友太少了,现在我们就在课堂上再找几个朋友吧,愿意吗?

  一名学生说出一个数,谁能又对又快地说出这个数的倒数,谁就和这名同学互为好朋友。

  (设计意图)多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。

  四、总结反思、评价体验

  这节课你们有什么收获?还有什么疑问?

  (设计意图)帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。

  五、布置作业。

  《倒数的认识》教学反思:

  本节课一开始创设“让学生找朋友”的情境,通过此活动帮助学生理解“互为”的含义,从而为构建新知扫清语言理解障碍。并在课中多次强调表达的准确性,引导学生在与他人的交流中,运用数学语言清晰地、有条理地表述自己的思考过程,进行讨论与质疑。

  本节课我采用了发现式教学法。教师只是通过组织者,引导者与合作者的身份,引导学生主动参与到整个学习过程中去,让学生自己组织学习材料,给学生提供放手的思维空间,并尊重学生的自主性,允许学生在探索新知中犯错误,并在修正错误中体会成功。以平等宽容的态度,激起学生的探究热情。特别是在探究倒数的意义与求倒数的方法时,放手让学生自己去探索,去观察,去归纳,去总结。此环节的设计,是为了引导学生在仔细观察数据特征的基础上,细心体会分子与分母的位置关系,尝试发现求倒数的方法。设计力求让学生成为学习的主人,做到“一切真理都要由学生自己获得或由他们重新发现,至少由他们重建”。

  “倒数”的学习适于学生展开观察、比较、交流、归纳等教学活动。为了更好地指导学法,我还采用小组合作形式组织教学。这一方面可以让学生尝试发现,体验到创造的过程;另一方面也可以增强学生的合作意识,让学生在小组交流、全班交流过程中,相互学习、相互借鉴,逐步完成对“倒数”的认识,有时还受同学启发,迸发出智慧的火花。并且充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。

  在课后的巩固练习中,我设计了“争当小法官,明察秋毫”、“填空”、“游戏:找朋友”等题型,通过这些多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。

  最后在全课的小结中再次提出问题,总结反思,帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。

  倒数的认识教学设计 4

  教学目的:

  1.使学生感知倒数的意义,掌握求倒数的方法,学会对倒数的正确表述。

  2.培养学生的观察能力、数学语言表达能力、发现规律的能力等。

  教学重点:

  求一个数的倒数的方法。

  教学难点:

  理解倒数的意义,掌握求一个数的倒数的方法。

  教学准备

  教学光盘

  课前研究

  自学课本P50:

  (1)什么是倒数?倒数的概念中哪几个字比较重要?说一说你是怎么理解的。

  (2)观察互为倒数的两个数,说说他们分子、分母的位置发生了什么变化?

  (3)0有倒数吗?为什么?

  教学过程:

  一、作业错例分析。

  二、学习分数的倒数:

  1.出示例7

  学生在自备本上完成,指名核对。

  教师板书: ×=1× =1× =1

  2.你能模仿着再举几个例子吗?

  学生回答,教师板书。

  3.观察板书,揭示倒数意义:乘积是1的两个数互为倒数。(板书)

  和 互为倒数,也可以说的倒数是 ,的倒数是。

  让学生模仿着说另外两个算式,谁和谁互为倒数?谁是谁的倒数?

  4.你能分别找出和的倒数吗?

  学生同桌讨论找法,指名交流。

  5.观察上面互为倒数的两个数,学生讨论怎样求一个分数的倒数?

  指名交流方法:求一个分数的倒数时,只要把它的分子、分母调换位置就可以了。

  6.合作练习:同桌两位同学一位说出一个分数,请另一位同学说这个分数的倒数,并交换练习。

  三、学习整数的倒数:

  1.电脑出示:5的倒数是多少?1的倒数呢?

  学生跟自己的同桌说一说,再指名交流。

  方法一:求5的倒数时,可以先把5看作,所以它的倒数是;

  方法二:想5×( )=1,再得出结果。

  2.那1的倒数是多少?(1)

  3.0有倒数吗?为什么?(没有一个数与零相乘的积是1,所以0没有倒数)

  4. 分数和整数(0除外)都有它的'倒数,小数有没有倒数?你能发表自己的观点吗?

  0.25 0.1 的倒数是多少?如何求的?

  5.练一练 示范写 的倒数: 的倒数是 ,明确不能写成 =。

  学生独立完成,集体核对。

  四、巩固练习:

  1.练习十第1题

  学生独立完成后集体订正,说说思路及倒数的意义和求倒数的方法

  2.练习十第2题

  学生先独立找一找,再交流想法,注意说完整话。例:与4互为倒数。

  3.练习十第3题

  学生独立填空后集体订正。

  4.练习十第4题

  写出每组数的倒数。说说有什么发现?

  第1组中都是真分数,倒数都是大于1的假分数。

  第2组中都是大于1的假分数,倒数都是真分数。

  第3组中都是一个分数的分数单位,倒数都是整数。

  第4组中都是非0的自然数,倒数都是几分之一。

  5.练习十第5题:

  学生独立完成。说说怎样求正方体的表面积和体积。

  6.练习十第6题

  学生独立列式解答后,辨析。

  两题中分数的不同意义:

  第一题中的表示两个数量间的倍比关系,要用乘法计算。

  第二题中的表示用去的吨数,求还剩多少吨,要用减法计算。

  7.思考题

  学生小组讨论,指名交流。

  按钢管的长度分三种情况考虑:

  (1)如果钢管的长度都是1米,那么两根钢管用去的一样多;

  (2)如果钢管的长度小于1米,那么第一根用去的长度长一些;

  (3)如果钢管的长度大于1米,那么第二根用去的长度长一些。

  五、课堂总结:

  今天我们学习了两个数之间的一种新的关系——倒数关系,谁再来说一说倒数是怎样定义的?怎样求一个数的倒数?1的倒数是多少?0有没有倒数?

  倒数的认识教学设计 5

  教材分析:

  这部分内容是在学历了分数乘法的基础上教学的,主要为后面学习分数除法做准备,因为一个数除以分数的计算方法,归结为乘这个数的倒数。这部分内容通过两个例题,主要教学倒数的意义和求倒数的方法。

  设计理念:

  本课强调从学生的学习兴趣,生活经验和认知水平出发,通过体验、实践、参与、交流和合作方式,让学生在合作学习的过程中,学会交流,相互评价,亲历知识的建构过程。在求一个数的倒数时,让学生先学后教,激发学习热情,并培养学生观察、归纳、推理和概括的能力。

  教学目标:

  使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

  能力目标:

  培养学生观察、归纳、猜想、推理和概括的能力。

  情感目标:

  提供适当的问题情境,激发学生的学习兴趣和学习热情。让学生体验探索中成功的快乐,培养学生的创新意识和科学精神。

  教学重点:

  使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

  教学难点:

  使学生通过探究活动,认识倒数的意义,掌握找倒数的`方法。

  教学过程:

  一、课前谈话突破难点

  1、谈话——蕴含“两个”,突破“互为”

  师:老师也愿和六(1)班的同学成为朋友,你们愿意吗?(愿意)那老师就是你们的…(朋友),你们是老师的…(朋友)。你们和老师互为朋友。(指板书:互为)

  二、导入揭题,引导质疑

  师:其实在我们的数学中也有类似的情况。今天这节课就让我们一起来发现数学中的类似问题。揭题——(板书:倒数的认识)

  师:看到“倒数”这个数学新名词,你的脑子里产生哪些问题。

  预设:什么是倒数?怎样求倒数?……

  这节课一起来探究这些问题?

  三、创设活动情景,理解概念——“倒数是什么”

  师:我们刚刚研究了分数乘法,老师想了解大家掌握的怎么样?请看计算。

  1、在分类中理解“是什么”

  ①5/8×8/5②0.25×4③3/4+1/4

  ④1.6—3/5⑤13/7×7/13⑥3/2×6/5×5/9

  计算后你有什么发现?

  师:如果请你将这六个算式分成两类,你准备怎么分?

  (学生汇报:乘积是1。)[适当处板书:乘积是1]

  归纳总结:分类的标准不同,得到的答案也不同,今天我们就研究这一类的算式。

  师:这三个算式有什么共同的特征吗?

  预设:乘积是1。

  2、举例感悟“怎么做”

  师:你还能举出这样的例子吗?

  还能举出与这些算式不同的例子吗?还能举出不同的算式吗?

  归纳总结:像刚才举的这些例子,他们都有一个共同的特点!(乘积是1)在数学上“乘积是1的两个数互为倒数”。如5/8×8/5=1,我们就可以说5/8和8/5互为倒数,还可以怎么说?如我们表述朋友的关系。

  5/8倒数是8/5,8/5倒数是5/8。

  师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

  ②0.25×4这两个数的关系可以怎么说?请您告诉你的同桌。

  (学生活动)

  ⑤13/7×7/13

  3、在思辨中深入理解

  师:能说3/4和1/4互为倒数吗?为什么?

  师:能说3/2、6/5和5/9互为倒数吗?为什么?

  四、运用概念,探究方法——“怎样求倒数”

  过渡:大家对倒数理解的很不错,那么我给你一个数你能找出它的倒数吗?

  (投影,出示例2)

  1、求下面各数的倒数

  3/5267/20。610。250

  学生尝试。

  回报交流。

  师:这组数中,你最喜欢求哪些数的倒数?为什么?

  预设:

  生1:我最喜欢求分数的倒数,因为把分数的分子、分母调换位置,它们的乘积就是1。很容易,所以我喜欢求。

  生2:我最喜欢求1的倒数,因为1的倒数可以写成分数,分子、分母调换位置还是,1的倒数就是1。很有趣,所以我喜欢求1的倒数。生:进行计算。

  师:这组数中,你最不喜欢哪个数的倒数?

  预设:

  生1:我最不喜欢求0的倒数,因为0如果写成分数,要是调换分子、分母的位置就是,0不能作分母(0不能作除数)。0好像没有倒数。

  生2:再说0乘任何数都等于0,也不等于1呀,0肯定没有倒数。

  师:那你是怎样求26的倒数的呢?

  你是怎样求一个小数的倒数的呢?

  归纳总结:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。

  生1:求一个数的倒数,只要把分子分母调换位置。

  2、强调书写格式

  师:刚才老师看到有学生是这样写的,可以吗?(3/5=5/3)

  归纳总结:互为倒数的两个数是不会相等的(1除外)。我们在书写时要写清谁是谁的倒数,或谁的倒数是谁,如老师黑板上写的一样。

  先说说下面每组数的倒数,再看看你能发现什么?

  (1)3/4的倒数是( )(2)9/7的倒数是( )

  2/5的倒数是( )10/3的倒数是( )

  4/7的倒数是( )6/5的倒数是( )

  (3)1/3的倒数是( )(4)3的倒数是( )

  1/10的倒数是( )9的倒数是( )

  1/13的倒数是( )14的倒数是( )

  由学生说出各数的倒数。

  师:请你仔细观察,看能从中发现什么,发现得越多越好。

  师:小组间可以先互相说一说。

  汇报:

  预设:

  生1:我从第一组中发现真分数的倒数都是假分数。

  生2:我从第二组中发现假分数的倒数是真分数或者假分数。

  生3:真分数的倒数都小于1,假分数的倒数大于1。

  3、填空:

  7×( )=15/2×( )=( )×0.25=0.17×( )=1

  倒数的认识教学设计 6

  教学目标:

  1、 使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

  2、 培养学生观察、归纳、推理和概括的能力。

  教学过程

  一、创设活动情景,引入概念

  出示例1的一组算式,开展小组活动:算一算,找一找,这组算式有什么特点?

  小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的……)

  师:同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。

  让学生读一读:“倒数”。

  出示倒数的意义:乘积是1的两个数互为倒数。

  二、探究讨论,深入理解

  让学生说说对倒数意义的理解。

  提问:“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)

  判断下面的句子错在哪里?应该怎样叙述。

  因为3/4×4/3=1,所以3/4是倒数,4/3也是倒数。

  三、运用概念,探讨方法

  出示例2,找一找哪两个数互为倒数?

  汇报找的结果,并说说怎样找的?

  1、 看两个分数的乘积是不是1;

  2、 看两个分数的分子与分母是否分别颠倒了位置。

  讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)

  通过具体实例总结归纳找倒数的方法。

  (1)找分数的倒数:交换分子与分母的位置。

  例:

  (2)找整数的倒数:先把整数看成分母是1的`分数,再交换分子和分母的位置。

  例:

  四、出示特例,深入理解

  看一看,例2中的哪些数据没有找到倒数?(1,0)

  提问:1和0有没有倒数?如果有,是多少?

  小组讨论、汇报。

  1、 关于1的倒数。

  因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。

  也可以这样推导:

  1的倒数是1。

  2、 关于0的倒数。

  因为0与任何数相乘都不等于1,所以0没有倒数。

  也可以这样推导:

  分母不能为0,所以0没有倒数。

  五、巩固练习

  1、 完成“做一做”。先独立做,再全班交流。

  2、 练习六第3题。

  用多媒体或投影逐题出示,学生判断,并说明理由。

  3、 同桌进行互说倒数活动(练习六第2题)。

  六、总结

  今天学习了什么?

  什么叫倒数?怎样找出一个数的倒数?

  倒数的认识教学设计 7

  教学目标:

  1、理解倒数的意义,掌握求一个数倒数的方法,能熟练地写出一个数的倒数。

  2、引导同学自主合作交流学习,结合教学实际培养同学的笼统概括能力,激发同学学习的兴趣。

  教学重点:

  理解倒数的意义,掌握求倒数的方法。

  教学难点 :

  熟练写出一个数的倒数。

  教具准备:

  多媒体课件。

  教学过程:

  一、情境导入。

  1、口算。

  5/12x2/5 = 15/7 x7/5 = 11/8 x8/13 =

  5/21x1/5 = 3/16 x7/3 = 8/21 x7/8 =

  先独立考虑,再指名口算订正。

  2、比一比,看谁算得又对又快:

  2/3x3/2 = 2x1/2 = 11/8 x8/11 =

  1/10x10= 7/9x9/7 = 1/7x7=

  6/5x5/6 = 1/5x5 = 22/35x35/22 =

  同学先独立口算,再口答订正。观察这些算式,说说自身有什么发现。

  【设计意图:通过口算,观察,考虑,激发了同学的学习兴趣和强烈的探究欲望,使同学获得积极的情感经验。】

  二、合作探索。

  1、小组合作交流:

  (1)和同桌说一说你的发现。

  (2)请你自身举出3个像上面这样的乘法式子。

  小组代表说说有什么发现。指名说说自身举出的例子。

  教师:像这样的乘积是1的两个数我们说它们的关系是互为倒数。

  教师:关于倒数的知识,你已经有哪些认识?(同学说说自身的已有认识)

  教师:书上又是怎样讲解倒数的呢?我们一起来读一读。

  阅读教材,进一步理解。

  教师:现在谁来说一说自身是怎样理解倒数的?

  同学口答,教师小结:假如两个数的乘积是1,那么我们称其中一个数是另一个数的倒数,并称这两个数互为倒数。

  出示:乘积是1的两个数互为倒数。读一读,强调概念中的.关键词:“乘积”、“互为”。

  【设计意图:关于倒数,局部同学已经有一定的知识准备,教学时采用小组合作交流、阅读课本的方法,让同学自主的体验学习知识的过程与获取知识的方法,提高同学的自主学习能力,同时,在合作交流的过程中,培养同学的独立考虑和合作探究意识。】

  2、强化概念理解。

  你认为下面这两种说法是否正确?

  (1) 2/3 是倒数。

  (2) 得数是1的两个数互为倒数。

  同学先独立考虑,再口答,说明理由。

  【设计意图:一些同学通过自身的阅读和交流获得的知识往往是比较肤浅的,为让同学深刻的理解,需要教师的点拨,这样较好的完善同学认识,更利于同学掌握所学的知识。】

  倒数的认识教学设计 8

  学习目标:

  1、理解倒数的意义,掌握求一个数倒数的方法,能准确熟练地写出一个数的倒数。

  2、通过独立思考、小组合作、展示质疑,在探索活动中,培养观察、归纳、推理和概括能力。

  3、激情投入,挑战自我。

  教学重点:

  求一个数倒数的方法。

  教学难点:

  1和0倒数的问题。

  教学过程:

  离上课还有一点时间,咱们先聊一会吧。同学们,我给你们代数学课多长时间了?(一年)一年时间虽然不是很长,但我觉得我们之间已经互相成为了朋友,你有这种感觉吗?该怎样表述我们之间的朋友关系呢?(你是我的朋友,我是你的朋友,互相应该是双方面的。)就先聊到这儿吧?好,上课!

  一、导入:

  同学们,在上数学课之前,老师想考你们一个语文知识,怎么样?(出示“杏”和“呆”)看到这两个字,你发现了什么?

  生:上下两部分调换了位置,变成了另一个字。

  师:对了,把其中任一个字上下两部分倒过来,就变成了另一个字,这个现象很有趣很奇妙吧!

  师小结:这种奇妙有趣的现象不仅出现在语文中,其实在数学中也存在着,想了解吗?今天我们就一起揭秘这种现象,好吧?

  二、合作探究:

  (一)揭示倒数的意义

  1.(出示例题课件)请看大屏幕,先计算,再观察这些算式,同桌互相说一说它们有什么规律?(学生自学,经历自主探索总结的过程,并独立完成)。

  请同学们按照要求逐一完成,看谁是认真仔细的人,既能准确的计算,又能发现其中的秘密。

  师:同学们,在以前我们看来非常简单的乘积是1的两个数,研究起来有如此大的发现,那么,像符合这种规律的两个数叫什么数呢?谁能给这种数取个名字?(生取名字)

  师:那么根据刚才的计算结果与发现的规律你能说出什么叫倒数吗?(生答)

  师板书:乘积是1的两个数互为倒数。

  你认为哪些字或词比较重要?你是如何理解“互为”的?你能用举例子的方法来说明吗?(生答)

  师小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。就像课前我们聊得话题,老师和你互相成为了好朋友,就是说“老师是你的朋友”,“你是老师的朋友”,我们俩是双方面的。

  (二)小组探究求一个倒数的方法

  1.出示例题2课件:下面哪两个数互为倒数?

  师:同学们知道了什么是倒数,那你能找出一个数的倒数吗?那好,请完成这道题。

  出示课件,请看这里,哪两个数互为倒数?(生找)(生说教师演示)

  提问:你用什么好办法这么快就找出了这三组数的倒数?(同桌互相说说看)(找几名学生汇报)

  师板书:求倒数的方法:分数的分子、分母交换位置。

  同学们想出了找倒数的好方法,那就是分数的分子、分母交换位置,你们把老师想说的都说出来了,太棒了!我们一起来看一看(出示课件)。在这三组数里哪一组不同于其它两组?对,6是整数,像6这样的整数找倒数的方法可以先把整数写成分母是1的分数,再找倒数。

  2.师提问:再次出示连线题的课件,本题中的还有哪些数据没有找到倒数?它们有没有倒数?如果有,又是多少呢?同桌讨论说说你的发现。

  3.出示课件想一想。

  我的发现:1的`倒数是(1),0(没有)倒数。

  师提问:(1)为什么1的倒数是1?

  生答:(因为1×1=1“根据乘积是1的两个数互为倒数”,所以1的倒数是1)

  (2)为什么0没有倒数?

  生答:(因为0与任何数相乘都等于0,而不等于1,所以0没有倒数)

  4.探讨带分数、小数的倒数的求法

  师:看来像这样的分数与整数它的倒数求法很简单,可是我们学过的不仅仅是分数、整数,还有呢?这些数的倒数又该怎样求呢?请同桌的同学讨论一下,把你们讨论的结果填在表格上。(课件出示)

  你们有结果了吗?谁愿意到这里把你们组的讨论结果说出来与大家共享(师切换实物投影),小组汇报讨论结果,学生自己用投影展示讨论结果并说明。

  (师切换投影):老师也把求这一类数的倒数的方法写出来了,一起看看我们想的是否一样呢?(出示课件5)。

  当你给带分数、小于1的小数、大于1的小数找出倒数后你有没有发现什么规律?请你对照大屏幕说说自己的发现:

  发现1:带分数的倒数都(小于)本身;

  发现2:比1 小的小数的倒数都(大于)本身,并且都(大于)1。

  发现3:比1 大的小数的倒数都(小于)本身,并且都(小于)1。

  (三)学以致用:

  师:探究到这里,大家肯定有了很大的收获,现在请大家闭上眼睛休息一下,休息时想一想什么是倒数?再想一想求倒数的方法是什么?让学生再次记忆找倒数的方法。

  1.想不想检验一下自己学的怎么样?

  请打开课本24页完成做一做和25页练习六的第4题,(让学生做在课本上,并找学生口答做一做的题。练习六的第4题连线用投影展示学生的作业)。

  2.(课件出示)请你以打手势的形式告诉老师你的答案。

  (四)全课总结

  今天学习了什么?我们一起回顾总结出来好吗?

  什么叫倒数?怎样找出一个数的倒数?

  倒数的认识教学设计 9

  教学目标:

  1、能清楚地知道倒数的概念,能求一个数的倒数。

  2、培养学生动手动脑能力,以及判断、推理能力。

  3、培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活。

  教学重点

  能求一个数的倒数。

  教学难点

  在小组间交流合作的基础上,得出倒数的概念,并能求一个数的倒数。

  教学准备

  多媒体课件

  教学过程

  一、用汉字作比喻引入

  1、师指出:我国汉字结构优美,有上下、左右……结构,如果把“杏”字上下一颠倒成了什么字?“呆”把“吴”字一颠倒呢?(吞)……一个数也可以倒过来变为另一个数,比如“3/4”倒过来呢?(4/3)“1/7”倒过来呢?(7/1也就是7)这叫做“倒数”,随即板书课题。

  2、提一个开放性的问题:看到这个课题,你们想到了什么?

  二、新知探索:

  1.研究倒数的意义

  乘积等于1的'两个数叫做互为倒数。

  倒数是对两个数来说的,它们是互相依存的。必须说,一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

  2.学生自主举例,推敲方法:

  (1)师:下面,请大家各自举例加以说明。

  (2)学生先独立思考,再交流。

  (a.以“真分数”为例;如:5/8的倒数是8/5……真分数的倒数是假分数。)

  (b.以“假分数”为例;8/5的倒数是5/8……假分数的倒数是真分数。)

  (c.以“带分数”为例;带分数的倒数是真分数。)

  (d.以“小数”为例;分两种情况:纯小数和带小数,纯小数相当于真分数,带小数相当于假分数)

  (e.以“整数”为例;整数相当于分母是1的假分数)

  学生举例的过程同时将如何寻找倒数的方法也融入其中。

  3.讨论“0”、“1”的情况:

  1的倒数是1。0没有倒数。要求学生说出想的过程(因为1与1相乘得1,所以1的倒数是1。0和任何数相乘都得0,不可能是1,所以0没有倒数。)

  4.总结方法:

  (除了0以外)你认为怎样可以很快求出一个数的倒数?

  三、反馈巩固:

  多媒体出示:

  1.写出下面各数的倒数:

  3/4、9/5、6、1、0、5、1.5这组数中,你最喜欢求哪个数的倒数?最不喜欢求哪个数的倒数?为什么?

  2.判断:

  (1)互为倒数的两个数的乘积一定等于1。( )

  (2)2和它的倒数的和是?( )

  (3)假分数的倒数是真分数。( )

  (4)小数的倒数大于1。( )

  (5)在8-7=1和3÷3=1中,8和7、3和3是互为倒数的。( )

  (6)a的倒数是?( )

  (让学生用手势判断,进行辨析,训练说理能力。)

  3.游戏:找朋友

  一名学生说出一个数,谁能又对又快地用一句话说出这个数的倒数,谁就和这名同学互为朋友。

  四、全课总结,自我评价。

  提问:通过这节课,你学到哪些知识?

  倒数的认识教学设计 10

  教学目标:

  1、通过独立计算以及小组讨论等活动认识倒数,理解倒数的意义,能准确的说出,互为倒数的两个数乘积为一,并且相乘的两个数分子、分母颠倒了位置

  2、通过合作交流探讨出求一个数的倒数的方法,并能正确的求出一个数的倒数。

  3、在探究交流的活动中,提高观察、抽象、概括的能力,发展数学思维。

  教学重点:

  认识倒数并能准确的求一个数的倒数。

  教学难点:

  小数求倒的`方法

  教具准备:

  课件

  教学流程

  一、创设情境,提出问题。

  1、师:请同学们完成一下计算:

  2、组织学生观察以上算式,说出你的发现。

  3、你还能再列举出其他类似的算式吗?

  4、师:乘积是1的两个数之间存在着一种特殊的关系——互为倒数。

  今天我们就一起来认识倒数,研究倒数。

  二、探索交流,解决问题。

  ①倒数的意义

  问题 1:请认真阅读课本第 28 页例 1 以上的部分,然后告诉老师

  什么是倒数?互为倒数的两个数有什么特点?“互为”两个字又是什么

  意思?先独立思考,然后小组讨论。

  生汇报,师引导交流评价。

  【随堂小测 1】第 29 页第 2 题的(1)( 2)题

  ②求一个数的倒数

  问题 2:通过交流、探讨,你发现怎样才能正确的求一个数的倒数?

  独立思考后,小组间讨论。

  【随堂小测 2】第 28 页做一做

  问题 3:特殊数 0 和 1 的倒数你会求吗?你有什么发现?

  小结:1 的倒数是 1,0 没有倒数。

  问题 4:0.45 的倒数你会求吗?说说你的思考过程。

  独立思考后,小组间讨论。

  【随堂小测 3】第 29 页第 2 题的(3)( 4)

  思考:互为倒数的两个数有什么特点?如何求整数的倒数?如何求

  分数的倒数?

  三、巩固应用,内化提高 。

  四、回顾整理,反思提升。

  通过这节课的学习,你有什么收获?有什么感受?

  倒数的认识教学设计 11

  教学目标:

  1、通过观察、比较、概括、抽象,从本质上理解倒数的意义,并能正确地求一个数的倒数。

  2、培养学生的数学思维。

  教学重点:

  理解倒数的意义,求一个数的倒数。

  教学难点:

  从本质上理解倒数的意义。

  教学过程:

  一、呈现数据,先计算,再观察发现。

  1、出示:3/8×8/3 7/15×15/7 5×1/5 0.25×4 2、

  计算后,这些数据你发现有什么规律?(学生先独立思考,然后组内交流)

  二、交流思辨,抽象概念。

  1、汇报。乘积都是1。

  2、你能根据上面的观察写出乘积是1的另一个数吗?

  3/4×( )=1 ( )×9/7=1

  说说你是怎样写得,有什么窍门?

  你还能写出像这样乘积是1的两个数吗?不过要写得与众不同!(鼓励学生写出整数、小数) 你是怎样想的?

  如0.5、1.7 3、抽象概念,乘积是1的两个数,互为倒数。可以说谁和谁是互为倒数,也可以说谁是谁的倒数。

  4、让学生说说上面的数(用两种说法)。

  5、是互为倒数的它们的积是1,这两个数有特点吗?仔细观察这些数。

  学生讨论:分数的分子分母调了一下位置;

  师:那么5×1/5 0.2×5乘积也是1哟!怎么?把整数和小数也化成分数。

  6、沟通:分子分母倒一下跟乘积是1有联系吗?

  7、现在你对倒数有了怎样的'认识?

  三、求一个数的倒数。

  1、找一个数的倒数。

  5/11的倒数是( ),( )的倒数是4/7,( )和15是互为倒数。

  你是怎样找一个数的倒数的?说说你的方法。(从倒数的意义和现象)

  2、会找了吗?你能找到下列数的倒数吗?

  3/5 4/9 6 7/2 1 1.25 1.2 0

  学生独立完成,然后交流。

  《倒数的认识》的教学反思:

  《倒数的认识》这一节课内容很简单,它是在分数乘法计算的基础上进行教学的,它主要为分数除法做准备。本节课主要让学生理解倒数的意义,掌握求一个数的倒数的方法。学生必须学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。这节课我设计的两个游戏贯穿了新授内容的始终。课的一开始我是让学生听音乐,找朋友,通过找朋友的游戏理解“什么是互为好朋友”?从而真正理解“互为”的含义,为以后学习倒数的意义打下基础。接着我又设计“猜字”来引出倒数?如:我说“吴”“杏”字上下颠倒,变成什么字?那数学是不是与有这样的特征呢?使学生在做猜字的同时理解倒数的意义,同时也增加了数学学习的趣味性。不足之处:由于本课我为了增强学生学习的趣味性,设计的游戏环节花费时间过长。但让学生亲历学习过程,势必要花去大量的时间,这样练习应用的时间就相对减少,以至于在求带分数、小数的倒数时练习的少,因此,合理安排授课时间还是应当讲究。

【倒数的认识教学设计】相关文章:

《倒数的认识》教学设计与评析08-16

《倒数的认识》教学反思10-20

倒数的认识教学反思02-17

数学倒数的认识教学反思04-16

倒数的认识08-16

《倒数的认识》教学反思15篇03-08

倒数的认识教学反思15篇03-12

倒数的认识教学反思(15篇)04-16

倒数的认识说课稿01-17